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Abstract: The design of energy systems is very important in order to reduce operating costs and
guarantee the reliability of a system. This paper proposes a new algorithm to solve the design problem
of optimal multi-objective redundancy of series-parallel power systems. The chosen algorithm
is based on the hybridization of two metaheuristics, which are the bat algorithm (BA) and the
generalized evolutionary walk algorithm (GEWA), also called BAG (bat algorithm with generalized
flight). The approach is combined with the Ushakov method, the universal moment generating
function (UMGF), to evaluate the reliability of the multi-state series-parallel system. The multi-
objective design aims to minimize the design cost, and to maximize the reliability and the performance
of the electric power generation system from solar and gas generators by taking into account the
reliability indices. Power subsystem devices are labeled according to their reliabilities, costs and
performances. Reliability hangs on an operational system, and implies likewise satisfying customer
demand, so it depends on the amassed batch curve. Two different design allocation problems,
commonly found in power systems planning, are solved to show the performance of the algorithm.
The first is a bi-objective formulation that corresponds to the minimization of system investment
cost and maximization of system availability. In the second, the multi-objective formulation seeks
to maximize system availability, minimize system investment cost, and maximize the capacity of
the system.

Keywords: multi-objective optimization; metaheuristics; bat algorithm; generalized fly; reliability;
cost; power system design; Ushakov method

1. Introduction

Over the past two decades, many researchers were concerned about multi-state sys-
tems dependability, for example, regarding optimization and performance measurement [1],
multi-state analysis using a fault tree applied to a satellite-based railway system [2], and a
multi-state dependability simulation using Monte Carlo [1]. Moreover, researchers have
been practically interested in reliability, non-repairable multi-state reliability [3], and multi-
state and multi-level reliability redundancy optimization [4]. Accordingly, this research
establishes a review of scientific works about multi-state system reliability [5].

One of the most explored multi-state systems is a series-parallel power system or
oneincorporating redundancy, which has several states with various ability levels, alternat-
ing from total failure to a perfect process. Conversely, in the conventional binary reliability
model, only two situations can appear: thoroughly failed or efficiently purposeful. De-
graded functioning states must appear when modeling availability, to reflect manufacturing
reality [6].
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Our research continues to investigate the optimal design problem of a series-parallel
power network. We investigated a memetic algorithm for heterogeneous multi-state series-
parallel systems design [7]. The algorithm is based on an improved inter-subsystem local
search method hybridized to a quantum evolutionary algorithm, adding to the swarm
optimization algorithm a credibility-based fuzzy model of cost and performance constraints
in reliability maximization [8]. We used Lagrange multipliers to determine the number of
redundant elements in the power system in order to maximize reliability [9].

At this time, the redundancy optimization problem still attracts many researchers, such
as a binary matrix to model a multi-type production system with cold standby redundant
subsystems [10]. The study introduced a continuous-time Markov chain with a multi-
objective evolutionary algorithm for the reliability–redundancy allocation problem through
the reliability of a hydraulic system for an entire wind turbine [11]. The Markov-based
fuzzy dynamic fault-tree analysis method was developed to model reliability including
dynamic failure characteristics, to achieve lower cost and higher reliability with active
redundancy of the hybrid modular multilevel converter, consisting of half- and full-bridge
submodules (MSS) with DC-fault ride-through capability. To achieve this, the authors used
a fuzzy system [12].

As the redundancy optimization problem is one of the NP’s complete combinatory
optimization problems, conventional methods are often not sui for parallel-series network
design, due to the required execution time when increasing the number of component
types or the number of subsystems. In contrast, an approach using intelligent methods,
such as metaheuristic ones, seems to provide a good resolution to such a problem in less
time. Accordingly, several intelligent methods have been used in series-parallel systems
design, such as particle swarm optimization and local search [13], harmony search [14], ant
colony optimization [15], tabu search [16], immune algorithm [17], firefly algorithm and
bat algorithm [6,18–20].

In the last years, the use of metaheuristics rather than conventional methods became
crucial in all redundancy optimization problems (ROP), in particular for power applica-
tions. In [21], the authors used a new methodology called boundary-simplified swarm
optimization (BSO) for ROP, by integrating a novel self-boundary search (SBS) and a two-
variable update mechanism (UM2), to improve simplified swarm optimization (SSO) when
solving mixed-integer programming problems that include both discrete and continuous
variables. The authors of [22] developed an integrated algorithm to solve the reliability
design problem by considering instantaneous availability, repairable components, and
the selection of configuration strategies based on Markov processes and the NSGA-II
algorithm. In [23], the problem is formulated by considering a cold-standby strategy. The
decision-making problems are encountered due to the presence of maximizing system
reliability and simultaneously minimizing the total cost, weight or volume of the systems.
The authors used a multi-objective evolutionary algorithm (NSGA-II). In order to calculate
the exact reliability values for the ROP, a Markov-based approach is used. The authors
of [24] proposed an advanced reliability–redundancy problem that considers an optimal
redundancy strategy, either active or cold standby, with an imperfect detector/switch. They
used a parallel genetic algorithm for solving the allocation problem in a mixed-integer
nonlinear programming model. The authors of [25] considered a generalized redundancy
allocation problem with a generalized network design. The components are linked with
each other, neither in parallel nor in series, but in some logical relationship. The system re-
liability was estimated through simulation. They proposed a partitioning-based simulation
optimization PBSO method to solve the problem.

Thus, our recent work in [26] proposed a deep-reinforcement learning algorithm (DRL)
that determines the multi-objective optimization problem of the enabled multiphysics-
constrained fast charging of a lithium-ion battery. Furthermore, a soft deep-reinforcement
learning (DRL) strategy is innovatively exploited to optimize the energy management
for a hybrid electric bus, as was presented in [27]. In [28], the authors proposed a recent
approach based on an expert-assistance deep deterministic policy gradient algorithm
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(EADEPGA) to achieve optimized battery-involved energy management for a hybrid
electric bus. The authors of [29] proposed a mathematical model for optimizing multiple
redundancy-reliability systems, known as mega-systems. The system components are
multi-state, and the universal generating function (UGF) has been simulated to evaluate
system availability. The components may have a minor or major failure, which reduces the
components’ performance rate. They used a parameter-tuned memetic algorithm (MA) to
solve the allocation problem. In [30] a Markov model with a genetic algorithm was used to
resolve the problem of ready but inactive devices. The approach proposed in this paper
hybrids two relatively recent metaheuristics, the bat algorithm (BA) andthe generalized
evolutionary walk algorithm (GEWA), to solve the redundancy optimization problem. The
algorithm has to find the optimal design of the series-parallel structure. This structure
consists of several subsystems, which can be a power production system incorporating
solar and gas generators, and a power transmission one.

The optimal solution corresponds to minimizing the required cost, maximizing relia-
bility, and maximizing the performance of the parallel-serial system, while satisfying the
customer demand and guaranteeing the reliability of the system. To evaluate the reliability
of multi-state series-parallel systems, a rapid reliability estimation function was developed.
This procedure is based on the mathematical technique of the Laplace transform. The
universal moment generator function (UMGF) developed by Ushakov has been revealed
as an efficient technique for many problems [31,32].

To present an energy system design resolution approach, the redundancy optimiza-
tion problem, as well as the mathematical formulation, are described in the next section.
Here, many objectives are combined. In the third section of this paper, the hybridized
metaheuristic, which is the bat algorithm with generalized evolutionary flight (BAG) is
described, and next, the reliability estimation technique is detailed. In the last section,
the proposed approach regarding the distinctive multi-objective problems is investigated,
based on an industrial system of electro-energy production.

2. Redundancy Energy System Design Optimization Problems

Consider an electrical System enclosing n electrical subsystems (generators, trans-
formers and lines) linked in series. Each subsystem i represents a component and contains
a variety of device versions linked in parallel. Device j from subsystem i is described
by its availability or reliability (Aij) or (Rij), its price (Cij) and its load capacity (Gij). The
structure of subsystem i can be defined by the number of parallel identical components
kij for 1≤ j ≤ Vi, where Vi is the number of available versions of type i components, as
presented in Figure 1.
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The multi-objective optimization of the series-parallel multi-state electrical power
network refers to the resolution of two or more objectives to be satisfied simultaneously,
with a number of inequality constraints. As with the objectives, many multi-objective
design problems can be expressed mathematically. Below, two optimization problems are
distinguished: a bi-objective design and a multi-objective one, depending on reliability
maximization, cost minimization and performance.

2.1. Bi-Objective Optimization (First Problem)

The first formulation aims to maximize system reliability R, and minimize the total
cost C, as given by Equation (1) for a series-parallel system with some cost-constraint, and
reliability requirement R0 is given by Equation (2).

MinimizeC =
n
∑

i=1

Vi
∑

j=1
kijcij

MaximizeR =
n
∏
i=1

[
ji
∏
j

p, q(z)minn
i=1

j
∑

i=1
Gij

] (1)

Under constraints:

C =
n
∑

i=1

Vi
∑

j=1
kijcij ≤ C0

n
∏
i=1

[
ji
∏
j

p, q(z)minn
i=1

j
∑

i=1
Gij

]
≥ R0

(2)

2.2. Multi-Objective Optimization (Second Problem)

In the second multi-objective formulation, in addition to minimizing the total cost,
maximizing the system reliability and the maximization of the system performance as
given in Equation (3) for a series-parallel system under cost, reliability and performance
constraints, as given in Equation(4).

MinimizeC =
n
∑

i=1

Vi
∑

j=1
kijcij

Maximize R =
n
∏
i=1

[
ji
∏
j

p, q(z)minn
i=1

j
∑

i=1
Gij

]
MaximizeGmin{ai ,bj}

(3)

Under constraints:

n
∑

i=1

Vi
∑

j=1
kijcij ≤ C0

n
∏
i=1

[
ji
∏
j

p, q(z)minn
i=1

j
∑

i=1
Gij

]
≥ R0

Gmin{ai ,bj} ≥ G0

(4)

3. Combined Approaches

In this section, two techniques are described: first, how to evaluate the power system
reliability with the universal moment generator function (UMGF); second, the metaheuristic
chosen to resolve the optimization of the system design. In this last technique, the standard
bat algorithm (BA) and the generalized evolutionary walk algorithm (GEWA) are detailed,
to explain adequately why the improved version is used.
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3.1. Reliability Estimation Technique

The problem of series-parallel multi-state systems reliability was diagnosed in the
1970s, and revealed as complex [33,34]. The behavior of multi-state systems and their
constituents is displayed in many states, with various performances related to each state.
In the literature, the structural designs are varied. Several works study series-parallel,
multi-state and bridge configurations [32,35,36]. The probability that the electrical system’s
total ability satisfies thoroughly the load request level W is estimated in Equation (5):

R(W) = P{G �W} = 1− P{G ≤W} (5)

The Ushakov technique (UMGF: universal moment generator function) developed in
1986 has been explained and appraised in detail in [35]. Therefore, the Ushakov method
is corroborated as a rapid technique for numerical applications. A variable G denotes
performance and can yield J potential states.Thus, the UMGF of a random performance G
is a polynomial is given by Equation (6):

u(z) =
J

∑
j=1

Pj zGj (6)

Pj are the state probabilities.
The probabilistic characteristics of the random variable G can be found using the

function u(z). In particular, if the discrete random variable G is the stationary output
performance of the MSS, availability A is given by the probability (G ≥W) which can be
defined as follows:

proba(G ≥W) = Φ
(
u(z)z−w) (7)

When Φ is a distributive operator defined by Expressions (8) and (9) [36]:

Φ
(

pj zσ−W
)
=

{
p, i f σ ≥W
0, i f σ〈W (8)

Φ

(
J

∑
j=1

pjz
Gj−W

)
=

J

∑
j=1

Φ
(

pjz
Gj−W

)
(9)

Moreover, to assess availabilities, two basic operators are brought together. These
operators define the polynomial u(z) for a set of elements.

3.1.1. Parallel Elements

The universal moment generator function of a multi-state system linking redundant
devices is estimated using the = operator is defined as:

us(z) = =(u1(z), u2(z), . . . um(z)), (10)

In agreement, the application of the operator in a simple two-redundant device system
is displayed in Equation (11):

=
(

J

∑
j=1

Pjz
Gj−W

)
=

n

∑
i=1

m

∑
j=1

PiQiz
ai+bj (11)

The parameters ai and bj are physically interpreted as the performance of both devices.
The variables n and m are the number of possible performance levels for these devices. Pi
and Qj are the probabilities of possible performance levels for the devices.
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3.1.2. Series Device

For a multi-state system covering m elements in series, the operator δ defines its
universal function, as given by Equation (12) [31]:

us(z) = δ(u1(z), u2(z), . . . um(z)), (12)

Therefore, a simple application on two elements is defined as:

δ(u1(z), u2(z))=
n

∑
i=1

Pizai ,
m

∑
j=1

Qj z
bj =

n

∑
i=1

m

∑
j=1

PiQj z
min(ai ,bj) (13)

Consequently, the universal moment function of a series-parallel system is attained by
consecutively applying the two operators.

3.1.3. Reliability of the Demand Model

In the field of electrical systems, availability or reliability is defined as the degree of
the system’s capacity to fulfill the load request (W), in order to offer sufficient energy (G).
This definition of reliability is usually used in the power system design. This index (loss of
load probability (LOLP)) is often used to evaluate reliability.

3.2. Redundancy Optimization Method

A bat algorithm with generalized flight (BAG) is a hybridization of the bat algorithm
and the GEWA algorithm. It was first introduced by [37] and then applied to manufacturing
system scheduling in [38], and to a green economic power dispatch problem in [39]. Our
improvement lies in adding a global search function to the classical BA, which is the global
flight of the worst bats. Bats with a bad position fly according to a probability αg (explained
further in the GEWA algorithm) around the best bat, whereas the other artificial bats follow
the principles of the original algorithm, as explained below.

3.2.1. The Bat Algorithm (BA)

The bat algorithm is a swarm metaheuristic that was first developed by [40]. It is
inspired by the echolocation of small bats that generate sound waves with given frequencies
and pulse rates. The bat algorithm has been feasible to apply in various combinatory
and continuous optimization areas, such as environmental economic power dispatch
problems [41], datascience [42], medical goods dispatching [43], and operating-room
scheduling [44]. One can also see its application in robotics [45] and in energy modeling [46].
In the field of power systems design, the authors of [47] investigated the standard algorithm
in a mono optimization version. Researchers continue to explore possible meaningful
improvement, and then propose modified versions [48–52].

The frequencies vector f contains integers or real numbers, depending on the selected-
minimal and maximal values of frequency, which can be given as:

fi = fmin + ( fmax − fmin) rand (), rand ∈ [0, 1] (14)

The velocities V of bats is represented by positive double numbers. Velocities suggest
the flight of bats, which should be changed at a certain moment. A bat communicates with
other bats via the best global solution, gbest, as given by Equation (15):

Vi = Vi + (Xi − gbest) fi (15)

The location can be either updated with velocity using Equation (16), or via the best
overall solution, using the intensity defined by Equation (17):

Xi = besti + Vi (16)

Xi = gbest + random(−1, 1).Amoy (17)
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Or randomly:
Xi = besti + random(−1, 1).Amoy (18)

A is the average sound level of bats, which can be given as:

Ai = αAi, α ∈ [0, 1] (19)

ri are the pulsation rate values, as defined by Equation (20):

ri = r0
i

(
1− e(−γt)

)
(20)

With ri
0 as a starting pulsation rate, γ > 0, and t is the rank of the current algorithm

generation.

3.2.2. The Generalized Evolutionary Walk Algorithm

GEWA is an algorithm based on a generic optimization principle [53], which has been
investigated in [37,41,54]. It is based on a random global search that replaces the poor
positions of a population of walkers. The random worst walkers’ steps that are made, using
step length d, are given by Equation (21):

d as a length vector follows the solutions definition dimension.

wt = εtd (21)

The new position of the wrong walkers is generated according to Equation (22):

xt
worst = gt−1

Best + wt (22)

where εt is Gaussian distribution or normal distribution N (0, δ). δ can be taken as 1.
Additionally, the worst walkers can also move respectively to the solution; the definitions
of upper and lower boundaries wmax and wmin are given in Equation (23):

xt
worst = wmin + (wmax − wmin)ε

t (23)

The GEWA algorithm depends on only two parameters: the size of the walker popula-
tion and α for control. Typically, α = 0.9 is used.

Most of the generalized evolutionary search of GEWA algorithm was included in the
improved BAG algorithm so as to benefit from the advantages of both algorithms described
in this subsection.

3.2.3. Bat Algorithm with Evolutionary Generalized Flight (BAG)

The authors of [37] improved the standard bat algorithm with a global flight of the
worst bat, as with the principle of the generalized evolutionary walker algorithm. The
wrong bat, and eventually many bats, exclusively flyaccording to a global search function
following Equations (21) and (23). Simultaneously, the other bats follow the bat algorithm
principles, see Algorithm 1 below.

Algorithm 1: Hybridization of the GEWA and BAT in the BAG algorithm.

1 BAG(Nbr_iter: generations number, nb:number of bats)
2 Wmin,wmax, δ, d, αG: GEWA coefficients to be initialized
3 Define objective function f(x), x = (x1 . . . ,xnb)
4 Generate a bat population xiand speedsvi, 0 < α < 1; γ > 0
5 Set fmin = 0; fmax = 100;
6 Initialize pulse frequenciesfi: fmin + (fmax − fmin)rand()
7 Initializes pulse: ri0[0.1] and intensities: Ai[1.2].
8 Evaluate objective function:Fitness(i)←f(xi), besti←xi
9 Determine the best overall fitnessfgbest←min(fi) and itsgbestpositionand bad fitness
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10 fgworst←max(fi)
11 While (index < Nbr_generation) do
12 εiter← uniform(0,δ)
13 Fori←1tonb do
14 if(f (xi) == fgworst)
15 if(rand < αG)
16 w←εindex*d//Flight depends on thestep
17 xi←gbest + w//dependentontheglobalbest
18 else
19 x←wmin + (wmax − wmin)εindex//randomflightin the field
20 End if Else
21 else
22 fi←fmin + (fmax − fmin)rand()//rand [0,1],Adjustedfrequencies
23 vi←vi + (xi − gbest)fi//velocitiesupdate
24 xi←besti + vi//Generate new bats
25 if(rand > ri)
26 xi←gbest+ random(−1,1).Amoy otherwise
27 xi←besti+random(−1,1).Amoy
28 End if
29 if rand < Aiand f(xi) < fitness(i)
30 besti←xi//Accept new solutions
31 ri←ri0(1-exp(-γ.index))//Incrementri
32 Ai←αAi//α] 0, 1[, reduce Ai
33 End if
34 End if else
35 End For
36 Sort bats and save the current bestgbestsolutionandUpdatefgworst
37 index++
38 End While
39 End

4. Computational Experimentation and Results
4.1. Data

The purpose is to properly pick the optimal combination so as to maximize the
reliability and performance, and also to minimize the total budget of a series-parallel
power network. This structure has been previously introduced by [55].

The two examples presented afterward are composed of the five main subsystems
described below. Two different objective function formulations are considered. In the
first example [56], the bi-objective formulation considered was the maximization of sys-
tem availability and the minimization of system investment cost. The second example
in [57] considers a multi-objective formulation that seeks the maximization of system
availability, the minimization of system investment cost, and the maximization of the
performance system.

The systems considered in the two problems are electrical network systems. The
electricity networks that provide energy to users are designed with five basic subsystems,
as shown in Figure 2. The entire set of devices in the system are considered as a unit, with
a total breakdown. The electricity is delivered by the first column (subsystem 1) and then
the transformation by the HVB transformers (Subsystem 2), and thenrouted by the HVB
lines (subsystem 3). A second transformation is effected by the HVB/HVA transformers
(subsystem 4), where the load is fed through HVA lines (subsystem 5). Each device is
characterized by its reliability Rij, cost Cij (mls $), and installed capacity Gij (MW). This
supplies energy to users.
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Figure 2. Series-parallel electro-energy system.

To achieve the optimum system, it is necessary to choose the parameters of the
algorithms used in this study. Several simulations were done based on increasing or
decreasing the parameters mostfound in the literature, as per the following formula:

Parameter r0 = most literature_known_parameter

Parameter i+1 = Parameter i± (24)

Rand() x (max literature_known_parameter−min literature_ known_parameter)

The retained parameters values are:
For GEWA part: αgewa = 0.7, δgewa = 1;
And for BAT part: Amax = 30, Amin = 0.01, α = γ = 0.02.
In addition, for each of the examples, the algorithm BAG was run assuming a popula-

tion size of 15 and 40 generations.
The metaheuristic chosen in this article was programmed in C++ on a computer with

the following characteristics: i5-SSD 256 @ 3.00 GHz 12 GB RAM.

4.1.1. First Example

First, we consider the design of a hybrid gas solar power plant, The data for the
various versions of all subsystems are defined in Table 1, as has already been used in [53].

Five subsystems are connected in series, and for all of the subsystems, 3 to 8 various
device types, connected in parallel, are available. This table shows that all equipment is
represented by reliability R, performance (capacity) G, and cost C. Table 2 shows thecu-
mulative load demand curve, demand level Wm, and the time interval Tm. Reliability is
obtained by the probability that its performance is more than or equal to consumption.
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Table 1. Characteristics of the system elements available [56].

Sub-System Version Reliability R [%] Cost C [mln $] Performance G [MW]

Power Units
1 0.994 77 65
2 0.988 64 60
3 0.996 45 25

HVB
Transformers

1 0.996 2.805 120
2 0.992 2.272 100
3 0.997 2.594 120
4 0.993 2.569 100
5 0.997 1.857 100

HVB Lines

1 0.975 1.985 150
2 0.987 1.983 140
3 0.971 1.842 140
4 0.986 1.318 130

HVB/HVA
Transformers

1 0.992 0.842 60
2 0.982 0.875 80
3 0.984 0.745 60
4 0.983 0.654 40
5 0.957 0.625 30
6 0.968 0.608 40
7 0.969 0.492 60
8 0.979 0.415 30

HVA Lines

1 0.988 0.456 30
2 0.959 0.432 40
3 0.989 0.364 20
4 0.981 0. 283 20
5 0.968 0.242 10

Table 2. Parameters of the cumulative load [56].

Wm [MW] 140 125 100 60

Tm [h] 1752 1752 3504 1752

4.1.2. Second Example

Second, we take the model of a gas unit; the data for the various versions of all
subsystems are shown in Table 3, as has already been modeled by [57].

Table 3. Characteristics of the system elements available [57].

Subsystems Versions Reliability A [%] Cost C [mln $] Capacity Ξ [MW]

Power Units

1 0.980 0.590 120
2 0.977 0.535 100
3 0.982 0.470 85
4 0.978 0.420 85
5 0.983 0.400 48
6 0.920 0.180 31
7 0.984 0.220 26

HVB
Transformers

1 0.995 0.205 100
2 0.996 0.189 92
3 0.997 0.091 53
4 0.997 0.056 28
5 0.998 0.042 21
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Table 3. Cont.

Subsystems Versions Reliability A [%] Cost C [mln $] Capacity Ξ [MW]

HVB Lines

1 0.971 7.525 100
2 0.973 4.720 60
3 0.971 3.590 40
4 0.976 2.420 20

HVB/HVA
Transformers

1 0.977 0.180 115
2 0.978 0.160 100
3 0.978 0.150 91
4 0.983 0.121 72
5 0.981 0.102 72
6 0.971 0.096 72
7 0.983 0.071 55
8 0.982 0.049 25
9 0.977 0.044 25

HVA Lines

1 0.984 0.986 128
2 0.983 0.825 100
3 0.987 0.490 60
4 0.981 0. 475 51

Five subsystems are connected in series, and for all the subsystems, 4 to 9 various types
of components connected in parallel are available.This table indicates that all equipment
is represented by reliability R, performance (capacity) G, and cost C. Table 4 shows the
cumulative load demand curve, demand level Wm, and the time interval Tm. Reliability is
obtained using the probability that its performance is more than or equal to consumption.

Table 4. Parameters of the cumulative load [57].

Wm [MW] 100 80 50 200

Tm [h] 4208 788 1228 2536

4.2. Results and Discussion

In order to solve the multi-objective optimization, for each example, different arith-
metic Pareto factors were retained in order to put the three objectives (cost, performance,
and reliability) in the same scale and to avoid favoring one objective over another. The
choice was based essentially on the known middle global cost of each scenario. Table 5
illustrates the structure of the optimal or approximately optimal system configurations.
The purpose is to select the optimal combination of elements used in theseries-parallel
electrical power system, which must correspond to the maximization of system availability
and the minimization of system investment cost.

The designs shown in Table 5 have good reliability that exceeds 99% and costs that
meet those known to be good for the dataset (about USD 231 million for the first example
and USD 17million for the second example).

After using BAG to solve this problem, 49 solutions for example 1 were found in the
Pareto front, as shown in Figure 3, and 45 solutions for example 2 were found in the Pareto
front, as shown in Figure 4. As is shown with an arrow on the values cloud in Figure 3, the
optimal value found (USD 231 million with a reliability of 99.1%) through generation and
simulations using the multi-objective optimization program meets perfectly the minimum
cost with the right reliability, inasmuch as the perfect reliability cost is considerably more
(from USD 260 million to more than USD 300 million).
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Table 5. Optimal design configurations for bi-objective optimization (first problem).

Bi-Objective Optimization:
System Availability Maximization and System Cost Minimization

Data Optimal Configuration Reliability [%] Cost [mln $]

Example 1

Subsystem 1: 1(1)–2(2)

99.16 231.6
Subsystem 2: 1(1)–3(2)–1(5)
Subsystem 3: 2(2)–2(3)–1(4)
Subsystem 4: 2 (2)–1(4)–1(5)

Subsystem 5: 5(1)–2(2)

Example 2

Subsystem 1: 5(7)

99.6 17.01
Subsystem 2: 3(3)–2(4)–1(5)

Subsystem 3: 3(3)–1(4)
Subsystem 4: 2(8)–4(9)–1(5)

Subsystem 5: 2(1)
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In the fourth figure, it is more obvious how the multi-objective optimization program
reaches the best bi-objective solutions (USD 17 million and a reliability of 99.6%) and how
there is not any better cost that could be found under that value (USD 17 million) without
a loss in system reliability, since a design of one million less (USD 16 million) cannot even
reach a reliability of 98.5%.

Table 6 shows the result of multi-objective optimization, which seeks to maximize
system reliability, maximize performance, and minimize series-parallel electrical power
system design cost. The designs keep the best reliabilities (99.21% for the first example and
99.42 for the second example) and the best costs (USD 235 million for the first example and
USD 16.88 million for the second example) despite seeking good performance (180 for the
first example and 100 for the second).
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Table 6. Optimal design configurations for multi-objective optimization (second problem).

Multi-Objective Optimization:
Maximization of System Availability, Minimization of System Cost and Maximization of System Performance

Data Optimal Configuration Reliability [%] Performance [MW] Cost [mln $]

Example 1

Subsystem 1: 1(1)–2(2)

99.21 180 235.5
Subsystem 2: 4(2)–2(3)–1(5)

Subsystem 3: 4(4)
Subsystem 4: 4(2)–1(3)–1(4)

Subsystem 5: 4(1)–3(3)

Example 2

Subsystem 1: 1(2)

99.42 100 16.88
Subsystem 2: 6(5)
Subsystem 3: 4(3)
Subsystem 4: 6(9)
Subsystem 5: 3(3)

After using BAG to solve this problem, 48 solutions for example 1 were found in the
Pareto front, as shown in Figure 5, and81 solutions for example 2 were found in the Pareto
front, as shown in Figure 6.

As is presented in the 3-dimensional Pareto values clouds, better performances could
be reached if reliability or cost purposes are neglected. This is why the multi-objective
design optimization program promotes correct multi-objective solutions with the most
suitable cost, performance and reliability values, especially due to the choice of equitable
Pareto and scale factors.

Multi-objective and bi-objective designs satisfy cost and reliability constraints. To
illustrate this, the best bi- and multi-objective solutions for the second example are com-
pared to the figures from the literatureas the known best cost, individually optimized, in
Table 7. Our compromised costs (16.88 and 17.01) are still in the range of the known best
cost found in the literature (15.425), whereas their corresponding reliabilities (99.42% and
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99.6%) topped the corresponding reliability found in the cost for the mono-optimization
design (99.1%).
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Table 7. Comparison between bi- and multi-objective design values, and individually optimized cost.

Subsystem Bi-Objective Multi-Objective Best Cost Individually

Best Solution Best Solution Optimized [20]

System Design

Subsystem 1 5(7) 1(2) 2(1)
Subsystem 2 3(3)–2(4)–1(5) 6(5) 3(2)
Subsystem 3 3(3)–1(4) 4(3) 2(2) 3(1)
Subsystem 4 2(8)–4(9)–1(5) 6(9) 6(1) 7(2)
Subsystem 5 2(1) 3(3) 3(1) 4(2)

Cost [mlm $] 17.01 16.88 15.425

Reliability [%] 99.66 99.42 99.1

5. Conclusions

In this article, we have proposed a resolution for the multi-state heterogeneousseries-
parallel electrical power system design multi-objective problem, considering the necessity
of high reliability and a lower budget. Two variants of multi-objective redundancy opti-
mization were mathematically formulated. For the purpose of minimizing investment cost
and maximizing reliability and performance, some constraints were added, to findthe best
range of solutions. The multi-objective functions of cost, reliability and performance were
formulated as a Pareto function, taking into account the penalty of constraints abuse.

The optimization methodology was based on an improved hybrid algorithm, based
overall on the bat algorithm (BA) and a global search function similar to the generalized
evolutionary walk algorithm (GEWA). The power of the chosen method lies in adding a
global search function, or the flight of the worst bat. As the performance and the reliability
of an electrical system are implicitly dependent, the universal general function (UMGF),
also known as the Ushakov technique, was used.

Two different power system design allocation examples are presented, to illustrate
the performance of the developed algorithm. The choice of value was based on a middle
budget and cost of each system, and also the performance of components. First, the design
of a hybrid gas solar power plant was considered, with five subsystems connected in series,
and for all of the subsystems, three to eightassorteddevices. Second, the design of the
gasunit was considered asfive subsystems connected in series, and for all the subsystems,
four to nine various types of components. Each device is characterized by its reliability Rij
(%), cost Cij (mls $), and installed capacity Gij (MW).

Pareto and scale factors were customized for each dataset according to the known
interval of system cost, as the multi-objective function is also based on a probability that
ranges from 0 to 1.

As shown in the paper, the setting of parameters of the bat algorithm with generalized
flight (BAG) were not easily determined, due to the number of parameters of GEWA and
BAT metaheuristics. The known used parameter values of each algorithm can be found
separately in the literature for continuous optimization rather than highly complex combi-
natorial problems. Thatia why intensive experimentation was needed for this combinatorial
redundancy problem.

Regarding time efficiency, the proposed improved metaheuristic for multi-objective
optimization, using the Ushakov approach for objective function evaluation, ensured a
rapid execution time.

After using a bat algorithm with generalized flight to solve a bi-objective problem
that aimed to maximize reliability and minimize cost under constraints, 49 solutions for
example 1 and 45 solutions for example 2 were found in the Pareto front. The optimalvalues
found through generation and simulations using the bi-objective optimization design meet
perfectly the minimum cost with the right reliability, inasmuch as the perfect reliability
cost was considerably more.

The result of multi-objective optimization that seeks to maximize system reliability,
maximize performance and minimize design cost, showed that the design kept the best
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reliabilities and the best costs despite the fact of searching for good performances. After
using the bat algorithm with generalized flight to solve this problem, 48 solutions for the
first example and 81 solutions for the second example were found in the Pareto front.

However, in addition to confirming how multi-objective and bi-objective designs
satisfy either cost or reliability constraints, the compromised value had to be compared to
theliterature’s known best value. In the bat algorithm with generalized flight, compromised
costs are still in the range of the known best cost found in the literature, whereas their
corresponding reliabilities conquered the corresponding reliability found in the cost mono-
optimization design. If the goal is to design an efficient power system, the proposed
improved approach can at least seek an optimum design for a gas system and for a solar
plant system.

The actual work might reveal the power of the proposed metaheuristic to solve
such high-complexity combinatorial multi-objective problems. The premature problem
of convergence could be avoided through the use of various global search parts in the
improved bat algorithm with generalized flight, good discretization and finally the careful
choice of parameter values.

Currently, work is ongoing to extensively study the non-heterogenous networks and
preventive maintenance of a multi-state power system.
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Abbreviations

ROP Redundancy optimization problem
MSS Multi states system
UMGF Universal moment generating function
LOLP Loss of Load Probability
BA Bat algorithm
GEWA Generalized Evolutionary Walk Algorithm
BAG Bat Algorithm with Generalized flight
NP Nondeterministic polynomial
DC Direct current
NSGA Nondominated Sorting Genetic Algorithm
BSO Boundary simplified swarm optimization
SBS Self-boundary search
UM2 Update mechanism
SSO Simplified swarm optimization
PBSO Partitioning-based simulation optimization
MA Memetic algorithm
DRL Deep reinforcement learning
EADEPG Expert-assistance deep deterministic policy gradient
Nomenclature
Symbol Meaning
Ci Cost of electrical component i (mlm $)
Gi, Ξi Performance of power component i (MW)
Ai, Ri Reliability of power component i (%)
i,j,l Respectively indices of series, versions and demand period interval
n Number of series i
Vi Number of Available electrical components technologies of type i
kij Number of occurrence of component j in series i
Aij Reliability of power component j of type i (%)
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A0 Minimum avaibilityrequired (%)
C0 Maximum cost required (mlm $)
G0 Minimum performance required (MW)
M Number of demand period interval
Kmax Maximum number that can be taken from each component j
Pi Performance probability of i-th device
Qi Performance probability of j-th device
W Demand levels
= Operator for parallel device
δ Operator for series device
f Frequency
v Velocities
Xi Intensity
Ai Average sound level bats
ri pulsation rate
εt Gaussian distribution
xt wrong walkers
gbest Best global solution
ri

0 Starting pulsation rate
t Rank of the current algorithm generation
d Length vector follows the solutions definition dimension
N Normal distribution
w Boundaries
Xt

W Worst walkers
HVB High voltage class B
HVA High voltage class A
Wm Demand level
Tm Time interval
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