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Abstract: User’s choices of conical picks currently involve specifying their material and geometric
parameters (functional requirements), incorporating the place and conditions of their work (opera-
tional requirements). The selection is usually made based on solely one criterion, which is the price.
Thus, at the stage of both purchase and operation, the quality of picks, as well as their matching for
a specific machine, are not assessed. The problem of defining whether the producer has fulfilled
the user’s requirements arises only when the user questions the picks’ quality. Analysis of this
problem has resulted in developing assumptions, concepts and research procedures based on the
cutting process requirements. The procedure allows conducting tests to determine the geometric
parameters of a pick, the type of material of the pick body and WC-Co insert, as well as the pick
wear rate (intensity). The C2 index describes the wear rate (intensity)—the smaller its value, the
slower the pick’s wear. Laboratory tests were carried out at the AGH University of Science and
Technology in Kraków, Poland. Following the developed method and procedure, the quality of picks
was precisely and unambiguously assessed. The C2 index, apart from testing the quality of picks,
was also used to forecast their wear. Based on the C2 index, a method is proposed to estimate the
wear rate of conical picks provided by different manufacturers and determine the acceptable unit
price and operating costs. Thus, it is possible and reasonable to precisely define the investment
requirements and appropriately select the pick. Relevant tests were carried out for eight different
types of conical picks used in roadheaders, longwall shearers and shaft-boring roadheaders.

Keywords: underground mining; longwall shearers; roadheaders; conical picks; quality; costs

1. Introduction

Mining minerals consists of separating their parts from the whole using well-known
mining methods, appropriate technology and machines. These methods can be divided
into mechanical methods and blasting [1–3]. Milling, ploughing or drilling are widely
used to extract minerals in underground mines [4–10], whereas digging and picking are
open-pit technologies [11]. It is strictly borehole technologies that rely only on drilling, but
in multi-step bits, conical picks are also used [6,12].

Machines and devices realising these processes are dedicated to each method and
technology of exploitation (underground, open-pit, borehole). In underground mining,
these are longwall shearers [3,10,13], roadheaders [2,5–7,14] and shaft shearers [15] or
ploughs [9,10], whereas in road construction and open-pit mining, these are road milling
machines, excavators and rippers [11]. The machines are equipped with cutting elements
or units called cutting heads. The largest group of cutting heads are the milling heads
(Figure 1) equipped with cutting picks, i.e., radial, tangent and conical picks (Figure 2).
The latter are mainly applied in the mining of natural and artificial minerals [16–19]. They
are widely used not only in underground or open-pit mining, but also in the construction
industry.
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Figure 1. Cutting heads of: (a) a longwall shearer; (b) a roadheader; and (c) a road milling machine [13,14,20]. Figure 1. Cutting heads of: (a) a longwall shearer; (b) a roadheader; and (c) a road milling machine [13,14,20].
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also the risk of the tip falling out (Figure 3d). This is why the selecting process of the de-
sign parameters of the picks and holders is so crucial, considering the geometrical and 
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Conical picks are used in cutting heads due to their excellent durability, greater than
radial or tangent picks. They have a specific structure, where the pick body is a solid of
revolution, consisting of working and handle parts [21–23]. The working part is equipped
with a WC-Co insert, which is a pick tip [24–27]. On the other hand, the pick holder’s
gripping part is equipped with a spring-ring, a spring sleeve or a Hert ring [23]. This
prevents the pick from falling out of the holder during cutting.

The picks are installed in pick holders, furnished on the cutting head’s lateral surface,
and together form a system of picks. The rotary mounting of the picks in the holders
enables their stochastic rotation and symmetrical wear [17,18,21] (Figure 3a,c). This process
occurs if certain conditions related to the cutting angles are obtained [3,28–32]. Otherwise,
the picks are blocked in the holders, and their wear is asymmetrical (Figure 3b). There
is also the risk of the tip falling out (Figure 3d). This is why the selecting process of the
design parameters of the picks and holders is so crucial, considering the geometrical and
kinematic parameters of the cutterhead and the cutting machine [2,3,28]. Concurrently,
mining and geological conditions must be considered, particularly the mineral’s properties
when being extracted (cutting resistance, abrasivity) [33–37]. Hence, the user should apply
conical picks of the quality required for the premised cutting efficiency and costs [29].
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Figure 3. Worn conical picks: (a) properly (symmetrical); (b) improperly (asymmetrical); (c) with the tip exposed; and (d)
with the tip falling out [37].

The required quality of conical picks is related to their appropriate construction
(cutting angles, dimensions), material parameters of the pick body (chemical composition,
hardness, microstructure, steel grade), and the pick tip (dimensions, HV30 hardness,
density, chemical composition—determination of the mass fraction of carbide phase (%WC),
matrix (%Co) and WC grain size).

A better quality of pick increases the price. This translates into costs involved in
purchasing picks and the costs associated with their replacements (operational costs) [29].
Therefore, the quality of picks should be relevant to the required design, material parame-
ters and the rate of their wear. This becomes very important when a user is buying picks
from various manufacturers and at different prices. Therefore, the user firstly should pin-
point their requirements and expectations concerning the design and material parameters
of the picks. Secondly, a control method should be defined. Then, a decision, as to which
picks meet the user’s requirements and expectations, is required, with a price adequate to
its quality and the assumed cutting efficiency. Hence, a method of determining the quality
of conical picks and a procedure for their selection should be applied [28,29].
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Based on this methodology and the procedures contained therein, different manufac-
turers’ conical picks are tested to compare and assess the picks themselves. This is especially
advisable when placing new conical pick designs or material solutions on the market.

For some time now, pick manufacturers have been using various forms of protection
of the working part of the pick’s surface [22,33,36] (Figure 4). This is often performed
by hardfacing with various materials. Their hardness is higher than the native material
used to make the body of the pick. In consequence, the abrasion resistance of the working
part is better. However, this study revealed that the durability of picks with protected
surfaces was not significantly increased compared to standard picks [37]. Hence, based
on the research conducted thus far, it has been concluded that investigations need to be
continued to find the most effective and cheapest protection and the technology for its
implementation.
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Figure 4. Options of additional protection of conical picks against abrasive wear: (a) standard pick; (b) welded picks;
(c) pick with a ring made of WC-Co; (d) pick with two rings made of WC-Co; (e) pick with a lowered body and WC-Co
insert in the CAP type [28].

For this purpose, the researchers obtained eight different types of conical picks used
on the cutterheads of roadheaders, longwall shearers and shaft-boring roadheaders. These
picks were tested according to the methodology described below, and the procedures
contained therein (a measurement of constructional and material parameters, wear rate) to
assess their quality and wear rate (durability).

2. Test Procedure for Conical Picks

The problem mentioned above related to assessing the quality of conical picks has
been solved by developing a method and an appropriate procedure for experimentation [28,
29,36,37]. For the contemporary work of conical picks, the following elements have been
considered:
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• The measurement of geometric parameters of the whole pick;
• The measurement of geometric parameters and determining the shape of the pick tip

in the form of a WC-Co insert;
• Testing of pick body material parameters;
• Testing of pick tip material parameters;
• Determination of the pick wear rate in laboratory conditions.

Therefore, the tests were carried out in three steps. The first step included measuring
the geometric parameters; the second step was material testing; and the third step was
measuring the wear rate of conical picks at a laboratory test stand.

The measuring of geometric parameters was conducted first for the whole pick. Next,
the pick tip, in the form of a WC-Co insert fixed in the pick body by hard soldering, was
obtained in the machining process. Then, it was possible to test the geometric parameters
of the WC-Co insert.

The most essential linear and angular dimensions of a conical pick are (Figure 5):

• The length of the working part, Ln;
• The total length, Lc;
• The diameter or diameters of the holder part, du, du1;
• The diameter of thrust ring flange, dk;
• The angle of the pick tip, 2βu;
• The height of the pick tip, hw;
• The diameter of the pick tip, dw.
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Figure 5. Two- and single-stage conical pick with its measured design parameters [28,29].

The linear dimensions were measured using an altimeter (maximum permissible error
±40 µm) and a calliper (maximum error ±30 µm), while the angles were measured with a
protractor characterised by a maximum permissible error of ±2◦). Figure 6 presents picks
on this particular measuring base, equipped with an altimeter, calliper and protractor.
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The chemical composition of the pick body material was analysed by the spark 
method using a Foundry Master device (Figure 8a), whereas the hardness measurement 
was carried out using the Rockwell method (Figure 8b), following the standard [38], on 
samples taken from the working part and the gripping part. 

WC-Co inserts (pick tips) have a particular chemical composition and mechanical 
properties primary for the cutting process [24–27]. However, measuring all the parame-
ters of the WC-Co insert leads to a significant increase in research costs while being rela-
tively insignificant for the valuation of the insert suitability for mining a specific rock. 

Figure 6. Instruments for measuring linear and angular dimensions: (1) surface plate; (2) conical
pick; (3) WC-Co insert; (4) altimeter; (5) calliper; and (6) protractor [28,29].

The next part of the research procedure was material testing, which requires separating
the tip from the steel body. Consequently, separate tests should be carried out for two
different materials (Figure 7).
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Figure 7. Conical pick with measurement points marked: (a) measurement of tip parameters; (b) mea-
surement of working part parameters; and (c) measurement of gripping part parameters [28,29].

The chemical composition of the pick body material was analysed by the spark method
using a Foundry Master device (Figure 8a), whereas the hardness measurement was carried
out using the Rockwell method (Figure 8b), following the standard [38], on samples taken
from the working part and the gripping part.
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Vickers and Rockwell [29].

WC-Co inserts (pick tips) have a particular chemical composition and mechanical
properties primary for the cutting process [24–27]. However, measuring all the parameters
of the WC-Co insert leads to a significant increase in research costs while being relatively
insignificant for the valuation of the insert suitability for mining a specific rock. Therefore,
considering the costs of the test and their subsequent application, it is recommended to
perform a quantitative analysis of density and hardness for a mentioned WC-Co insert.

Quantitative analysis of the chemical composition of the WC-Co insert was per-
formed by the X-ray method, using a Mini Pal4 EDXRF Analyser (Energy Dispersive
X-ray Fluorescence), produced by Malvern Panalytical (Malvern, UK). The specific density
was determined by the hydrostatic weighing method [39], and hardness by the Vickers
method [40], using an HPO-250 hardness tester (Figure 8b).

Quantitative description of the WC-Co insert microstructure in the cobalt matrix was
performed using the Met-Ilo automated image analysis computer software [41]. The mi-
crostructure images for analysis were captured with a DM 4000 light microscope, produced
by Leica (Wetzlar, Germany), at 200- and 500-times magnification.

Measurement of the wear rate of conical picks leads to determining their durability.
It must always be conducted under the same conditions so that the results are reliable,
reproducible and comparable. This enables assessment of the pick durability, but it also
allows comparing picks from different manufacturers.

To evaluate the conical picks’ durability, their wear rate index was adopted for tests,
as described by the C2 index, which is defined as the total loss of mass of the pick or picks
concerning the volume of the mined rock obtained (Equation (1)).

C2 =
∆m
m
· Vw

Vun
[–] (1)

where C2 is the pick wear rate index based on mass, ∆m is the loss of pick mass during
tests (body with the tip) [g], m is the pick mass before tests [g], Vw is the sample standard
volume [m3], and Vun is the volume of sample mined during tests [m3].

The definitions of the above parameters and the requirements for testing the wear rate
of conical picks necessitate the use of the following test methodology:

• Cutting an artificial cement–sand sample with almost-isotropic properties;
• Mining by cutting in laboratory conditions;
• Measurement pick’s mass before and after the cutting process;
• Measurement of the volume of rock cut.
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Laboratory tests need to be conducted in a unique test stand that meets the adopted
test methodology requirements. Therefore, the tests were carried out at a unique laboratory
test stand for testing the cutting process with single cutting tools or heads belonging to the
AGH University of Science and Technology, Kraków, Poland (Figure 9).
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Figure 9. Laboratory test stand for testing by cutting or rotary drilling with single cutting tools or
heads: (a) operator’s cab; (b) concrete sample as well as a test cutting head; (c) head drive [29,37].

The test stand consists of two units: a cutting head drive and a block advance system
intended for mining. The working element is a unique drum with commercial holders of
single-stage and two-stage conical picks.

The rotations of the head and the rectilinear, reciprocating motion of the rock sample
in the horizontal plane, allowed the cutting process within a particular area. The hydraulic
advance mechanism enabled the base to be moved together with the rock block. The engine
revolutions were regulated by the control system located in the control cabinet, while a
hydraulic power unit regulated the value of advance rate mining and sumping.

A sample could be placed on the advance mechanism base. In the case of testing the
wear rate of conical picks, it is advisable to cut artificial rock (cement–sand sample), which
has strong abrasive properties. The test stand was equipped with a measuring system:
comprising a torque meter, pressure transducers, distance transducers, and measuring
computer. These measured the load of the cutting element, the speed and pressure in the
advance system, and, consequently, determined the resistance or energy consumption of
the cutting process.
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Four picks mounted in holders of the testing drum were used (Figure 10) to calculate
their wear rate. Before testing, each pick had to be marked to enable accurate identification
after the tests (position on the test drum).
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Picks were weighed both before and after tests with a certificated laboratory scale
(verification scale interval 1 g). The obtained weight loss and the excavated rock sample
volume were used to calculate the C2 index. It should be emphasised that the smaller
the value of the C2 index, the smaller the pick wear. In this case, laboratory tests are
particularly recommended, but most importantly, they need to be carried out at a unique
test stand that meets the adopted test methodology requirements.

3. Price of the Conical Pick and Its Wear Rate versus Cutting Efficiency

The previously described method and its implementation allow for checking the
geometric and material parameters of the conical pick body and the tip, as well as the wear
rate index, C2.

Therefore, it is reasonable to establish the correlation of the C2 index with the number
of worn picks and the cutting efficiency. The dependency (1) shows that the higher the
C2 index value, the faster the pick wears out; thus, it has a lower quality. Using these
picks on the cutting drum results in faster wear and a decrease in cutting efficiency. This is
caused by a more frequent change of picks and downtime of the mining machine (milling
machine). In [29], dependency (2) was given, which indicated when slower wearing and
more expensive picks could be used without increasing the purchase costs of picks (3). This
condition makes it possible to set the maximum price of a better-quality pick, which results
in savings in terms of investment and operation (the cost of purchasing picks, transport,
and replacement).

Assuming that the price of a lower-quality pick Cn2 is equal to PLN 80 (approx. EUR
20) per piece and the C22:C21 ratio is equal to 1.5, the price for a better-quality pick Cn1(C21)
cannot exceed PLN 120 (approx. EUR 30). However, the C22:C21 ratio may assume different
values depending on the C2 index values for individual picks obtained through empirical
tests. The ratio is always higher than one when C22 is higher than C21.

C21 < C22;
C21

C22
< 1 (2)

Cn1(C21) < Cn2(C22)·
C22

C21
(3)
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Similarly, from Equations (4) and (5), it is possible to determine the maximum price of
a better-quality pick concerning the possible decrease in the cutting efficiency for lower-
quality and cheaper picks.

Cn1(C21) ≥
∆Vu·Cjur

n
+ Cn2(C22)·

C22

C21
(4)

or

Cn1(C21) ≥
γw ·∆Vu·Cjum

n
+ Cn2(C22)·

C22

C21
(5)

where ∆Vu is the volume of mined rock [m3], γw is the density of mined rock [kg/m3], Cjur

is the unit price of mined rock in relation to its volume [PLN/m3], Cjum is the unit price of
mined rock in relation to its mass [PLN/kg], and n is the number of picks to be replaced
after one cutting cycle [pcs].

Bearing in mind the above dependencies, in most cases, better-quality picks should be
used [29].

4. Research Material

Five pieces of each type of conical pick were assigned for testing. One pick was
intended for material tests, and the other four were for measuring the design parameters
and the wear rate. The pick’s bodies were made of various grades of steel and reinforced
with various cemented carbide (WC-Co) inserts. The surface of the working part of the
pick body was protected with various padding welds—reinforced picks (Figure 11b–f)—or
was not protected—standard picks (Figure 11a,c,g,h). The following picks were used for
testing:

1. Commercial picks for roadheaders—five pcs (Figure 11a);
2. Hardfaced picks for roadheaders—five pcs (Figure 11b);
3. Commercial picks for roadheaders—five pcs (Figure 11c);
4. Commercial picks for shaft-boring roadheaders—five pcs (Figure 11d);
5. Commercial picks for shaft-boring roadheaders—five pcs (Figure 11e);
6. Commercial picks for shaft-boring roadheaders—five pcs (Figure 11f);
7. Commercial picks for longwall shearers—five pcs (Figure 11g);
8. Commercial picks for longwall shearers—five pcs (Figure 11h).
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5. Conical Pick Testing Results and Discussion

The selected conical picks were tested in accordance with the previously described pro-
cedure. The obtained results allowed for evaluating the picks and formulating conclusions
regarding their design and material parameters as well as the wear rates.

5.1. Determination of Design Parameters

The parameters obtained from the measurements of construction dimensions’ average
values are summarised for each pick in Table 1. The designations of individual parameters
in the table are consistent with the designations in Figure 6. Measurement of the dimensions
of the tips in the form of sintered carbide (WC-Co) inserts was possible only for one of
the five picks, which was intended for material testing. For this purpose, the insert was
extruded from the pick body (Figure 12). At the same time, the body of the same pick was
subjected to material tests.

The results of measurements of conical picks’ construction dimensions indicate that
the obtained cutting angles are correct. Therefore, the rate of the picks’ wear can be tested at
a laboratory test stand. However, notably, the tips of two picks for shaft-boring roadheaders
had a different shape (Figure 12d,f). In both cases, they were mushroom-shaped, unlike
the others, which were cylindrical–conical.

Table 1. Summary of linear and angular dimensions of the tested picks.

No. Pick
Geometrical Parameters

Lc
(mm)

Ln
(mm)

Lu
(mm)

hk
(mm) 2βu (◦) dk

(mm)
du

(mm)
du1

(mm)
dw

(mm)
hw

(mm)

1 Figure 11a 146.30 70.80 75.50 16.77 93.00 58.10 37.88 – 22.00 34.89
2 Figure 11b 146.37 70.82 75.55 16.82 93.00 58.17 37.98 – 22.04 34.87
3 Figure 11c 147.20 71.00 76.20 15.15 – 57.70 37.98 – 25.28 35.46

4 Figure 11d 155.13 77.53 77.60 15.13 94.45 80.08 41.99 – 22.11/
17.85 29.11

5 Figure 11e 167.64 90.67 76.97 – – 80.00 41.88 – 22.04 33.84

6 Figure 11f 156.63 76.69 79.94 14.10 93.30 80.00 41.82 – 22.04/
15.06 29.92

7 Figure 11g 165.22 90.25 74.97 12.22 92.97 58.00 37.80 29.89 22.05 35.20
8 Figure 11h 165.44 90.30 75.14 16.32 93.00 64.88 37.89 – 22.12 34.86
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Figure 12. Tips in the form of WC-Co inserts, obtained by extruding from the tested picks: (a) pick for roadheaders
(Figure 11a); (b) hardfaced pick for roadheaders (Figure 11b); (c) pick for roadheaders (Figure 11c); (d) pick for shaft-
boring roadheaders (Figure 11d); (e) pick for shaft-boring roadheaders (Figure 11e); (f) pick for shaft-boring roadheaders
(Figure 11f); (g) pick for longwall shearers (Figure 11g); (h) pick for longwall shearers (Figure 11h).

5.2. Determination of Material Parameters

As mentioned before, one pick from each batch of picks was intended for material
testing. For this purpose, samples from the steel body of each pick were obtained in
the process of machining (Figure 13a,b), and tips in the form of sintered carbide inserts
(Figure 13c) were obtained.
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Figure 13. Examples of samples from a conical pick for material testing: (a) gripping part; (b) working part; (c) WC-Co
insert.

The results of measurements of the tested picks’ material parameters have been
provided in tables, i.e., Tables 2–6, where the results of measurements for the pick used in
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roadheaders are presented (Figure 11a). The tables contain information on the hardness
of the working and gripping parts, the chemical composition of the steel comprising the
tested pick’s body, as well as the hardness of the WC-Co insert and the value of its density.
Based on this, the grade of steel used to make the bodies of the tested picks [42] and the
types of carbides used to make their tips were determined. The type (symbol) of sintered
carbide was determined using the PN-88/H-89500 polish standard [43], classifying sintered
carbides based on WC and Co percentages, density, HV30 hardness and other mechanical
parameters, and also indicates the place of their application. In the case of picks reinforced
with padding weld, their hardness was additionally measured (Figure 14). The results of
material tests for individual picks are given in Table 7.

Table 2. Results of measurements of HRC hardness of the gripping part of the pick for roadheaders (Figure 11a).

No.
Measurement Site Number

Average
1 2 3 4 5 6 7 8 9 10

1 40 40 41 41 42 42 41 41 40 40 41

Table 3. Results of measurements of HRC hardness of the working part of the pick for roadheaders (Figure 11a).

No. Distance from the Surface, mm
Measurement Site Number

1 2 3 4

1 1 35 35 35 35
2 3 36 34 36 35
3 10 35 30 37 36

Table 4. Chemical composition of the material (steel) of the conical pick for roadheaders (Figure 11a).

Chemical Element, wt.%
Steel

GradeC Mn Si S P Cr Ni Mo V

0.336↓ 0.860↓ 1.19↑ 0.0092 0.0154 1.14↓ 0.0766 0.0262 0.002

Al Cu Ti W Pb As Co Fe –
100CrMn6

0.0196 0.173 0.002 0.015 0.025 0.01 0.0092 96.1 –

The chemical elements, the content of which is underestimated or overestimated in relation to the standard, are marked in red.

Table 5. Results of measurements of HV30 hardness of the sintered carbide insert of the pick for roadheaders (Figure 12a).

No.
Measurement Site Number

Average
1 2 3 4 5 6 7 8 9 10

1 1076 1034 1041 1075 1111 1071 1057 1081 1125 1135 1081

Table 6. Results of measurements of the density of the sintered carbide insert of the pick for roadheaders (Figure 12a).

No. Temperature of Water
Used for Weighing, ◦C

Water Density,
g/cm3

Carbide Mass in
Air, g

Carbide Mass in
Water, g

Insert Density,
g/cm3

1 21 0.9975 149.1258 138.9177 14.572

Based on Tables 5 and 6 and the standard [43]—carbide type B45.
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are not knocked out. On the other hand, the values of padding welds hardness were much 
higher, exceeding 60 HRC. 

Measurements of the hardness and density of the WC-Co inserts allowed for deter-
mining their grade. B23 cemented carbide inserts are recommended for cross-bits and 
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G30 (pick 7) carbides are recommended for insert bits and discs [17,19,34,44]. 
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Figure 14. Examples of samples prepared for padding weld hardness tests from tested picks: (a) pick for shaft-boring road-
headers (Figure 11d); (b) pick for shaft-boring roadheaders (Figure 11e); (c) pick for shaft-boring roadheaders (Figure 11f);
(d) hardfaced pick for roadheaders (Figure 11b).

Table 7. Summary of the results of material tests for individual picks.

List of Picks

No. Pick
HRC of the
Gripping

Part

HRC of the
Working

Part

Steel
Grade

HV30 of the
Carbide

Carbide
Density

Type of
Carbide

HRC of the
Padding

Weld

1 Figure 11a 41 35 100CrMn6 1081 14,572 B45 –
2 Figure 11b 45 35 100CrMn6 1127 14,408 B45 62
3 Figure 11c 40 43 100CrMn6 1143 14,378 B40 –
4 Figure 11d 46 46 36Mn5 1326 13,959 G15 56

5 Figure 11e 44 47 36Mn5 1168 14,629 B23 65 *
59 **

6 Figure 11f 47 43 100CrMn6 1158 14,197 G30 51
7 Figure 11g 38 38 100CrMn6 1155 14,821 B23 –
8 Figure 11h 41 44 100CrMn6 1124 14,483 B40 –

* Padding weld on the carbide. ** Padding weld on the working part flange.

The test results contained therein show that, with the exception of picks 5 and 6 whose
bodies were made of manganese alloy steel (36Mn6), the remaining picks were made of
chrome–manganese (100CrMn6) steel. The hardness of the working part of the picks was
mostly above 40 HRC; its value was lower—38 HRC only in the case of pick No. 8. A similar
situation was observed in the case of the tested picks’ gripping parts. The hardness values
of the gripping parts of picks 1 and 2 (35 HRC) were lower than that of the working parts
(over 40 HRC), which is an advantage because the pick-holder sockets are not knocked out.
On the other hand, the values of padding welds hardness were much higher, exceeding
60 HRC.

Measurements of the hardness and density of the WC-Co inserts allowed for deter-
mining their grade. B23 cemented carbide inserts are recommended for cross-bits and drills
(picks 6, 8). The properties of these carbides were intermediate, between those of B2 and
B45 carbides. B40 carbides are intended for reinforcing the tips of radial tools and rotary
drilling tools (drill bits, multi-step bits, picks 3 and 8), whereas B45 carbides are used to
reinforce the tips of conical picks, cross-bits and drills (picks 1, 2). G15 (pick 5) and G30
(pick 7) carbides are recommended for insert bits and discs [17,19,34,44].

For WC-Co cemented carbide inserts, quantitative analysis of the WC carbide phase
was also performed. For this purpose, the test specimens were prepared by the traditional
method of grinding and polishing metallographic specimens using polish suspensions
with a diamond grain, with coarseness values of 3 µm, 1 µm and 0.25 µm. The prepared
specimens were subjected to chemical etching in order to reveal the boundaries of WC
carbide grains (Figure 15) [45].
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WC grains were measured for all tested WC-Co inserts. The average WC particle size
ranged from 4.78 µm to 6.15 µm, and the cobalt content from 8.4% to 9.5%.

Analytical and empirical studies have shown that the best properties of WC-Co inserts
for mining tools are 9% cobalt content (hardness, impact toughness). The size of the WC
grains is also important. Based on the literature [24] and our previous work, the average
grain size should be above 3 µm.

5.3. Determination of the Rate (Intensity) of Wear

To determine the rate (intensity) of wear of the tested picks, first, the values of their
mass before and after the test were determined. Next, the cutting parameters (advance
speed, revolutions) were set, and efforts were made to ensure the same conditions for each
set of picks. On the same sand–cement sample with uniaxial compressive strength equal to
35 MPa, all picks were tested. The results of the tests and the determined values of the C2
index for individual picks are summarised in Table 8. Based on these results, a table of C2
index values was prepared depending on the pick’s location in the test drum (Figure 10,
Table 8). Similarly, Figure 16 shows the C2 index point values for individual picks as a
function of the test drum’s location.

Table 8. Summary of C2 index values for the tested picks depending on the location on the test drum.

No. Pick
Location of the Pick on the Test Drum

4 1 2 3

1 Figure 11a 41.958 112.020 78.657 9.486
2 Figure 11b 32.150 84.470 72.652 12.317
3 Figure 11c 3.148 22.155 17.946 0.965
4 Figure 11d 55.756 89.902 103.275 13.029
5 Figure 11e 0.055 0.254 0.038 33.744
6 Figure 11f 2.241 18.187 42.907 3.832
7 Figure 11g 29.350 74.907 38.679 3.831
8 Figure 11h 17.050 56.395 53.592 1.082

Average value 18.515 46.881 41623 8.165
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Figure 16. C2 index values for individual picks and their locations on the test drum.

The above comparisons clearly show a strong correlation between the pick’s wear rate
and their position on the test drum. The wear rate was the fastest for picks in position
one and two, followed by picks in position four, whereas picks in position three wore the
most slowly. It can also be observed that a specific pick wears differently depending on the
position on the test drum, as already mentioned, although this wear expressed by C2 index
correlated with its quality.

The average values for individual picks are summarised in Table 9 (C2, the presence
of padding weld, type of cemented carbide insert, and the hardness of the working part).

Table 9. Summary of the results of average values for individual picks.

List of Picks

No. Pick C2 Index Padding Weld Type of
Carbide

HRC of the
Working Part

5 Pick for shaft-boring roadheaders
(Figure 11e) 8.513 padding weld B23 44

3 Pick for roadheaders (Figure 11c) 11.054 missing B40 40

6 Pick for shaft-boring roadheaders
(Figure 11f) 16.792 padding weld G30 47

8 Pick for longwall shearers (Figure 11h) 32.030 missing B40 41
7 Pick for longwall shearers (Figure 11g) 36.692 missing B23 38
2 Pick for roadheaders (Figure 11b) 50.397 padding weld B45 41
1 Pick for roadheaders (Figure 11a) 60.530 missing B45 45

4 Pick for shaft-boring roadheaders
(Figure 11d) 65.490 padding weld G15 46

It can be observed that the tested picks considerably differed in their wear rate, which
is puzzling and does not depend or depends only to a minimal extent on the protective
layer of the working part (padding weld). The lowest wear (C2 index) was observed in
the case of the pick in position 1 (Table 9). The next pick in the table had a 30% higher
C2 index value. In contrast, the C2 index value of the third pick was twice as high. The
C2 index values for the fourth and fifth pick were almost four times higher. The C2 index
value for the sixth pick was six times higher, and for the seventh and eighth pick, this rose
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to eight times higher. It is also worth noting that the padding weld and carbide grade do
not determine the wear rate of the pick, as with the hardness of the working part.

Generally, it is possible to use the C2 index to assess the pick’s wear resistance.
The lower the C2 index value, the longer the pick should cut while meeting the cutting
process requirements. As a result, it is possible to forecast the value of picks’ wear and,
consequently, their purchase cost. In this case, it is easy to determine the maximum price
of a pick with a lower C2 index value by referring it to the price of picks with a higher
C2 index value. It is enough to multiply the prices of the picks by the ratio of their C2
index values.

6. Conclusions

In the presented method of assessing the quality of conical picks, a three-stage testing
process was adopted, consisting of measuring geometric and material parameters and the
wear rate, expressed by the C2 index. The tests carried out on eight types of conical picks
from different manufacturers have shown that their geometric and material parameters
are in accordance with the manufacturers’ declarations and users’ requirements. However,
based on these data, it is only possible to assess the correctness of their manufacture, not
their quality. Only when a complete procedure is carried out can the quality of the pick
be assessed.

This strategy was confirmed by comparing two picks for shaft-boring roadheaders
(Figures 11d and 12e). Both picks were made of the same 36Mn5 steel, their working part
hardness was the same, and both were welded, although the pick for the shaft-boring
roadheader in Figure 11d had a C2 index value as much as eight times greater than the
pick for shaft-boring roadheaders in Figure 11e, which means that its quality is eight
times lower.

It follows that particular attention should be paid to the C2 index because, as a result
of this research, it does illustrate the wear rate of the pick and thus its durability (quality).
However, carrying out a complete procedure also allows conclusions in the future and
indicates further research directions to improve the quality of conical picks. For example, it
was noticed that further attention should be paid to the correlations between the hardness
of the working part and padding weld and the value of the C2 index.

Determining the C2 index, it can also be observed that the position of the pick on the
test drum and, presumably, the sequence of entering the cut have a significant influence on
the pick wear process. Moreover, the C2 index enables defining various causes related to
the value and the price of the picks, as well as the costs of their replacement and reduced
cutting efficiency. In most cases, it has been established that picks of better quality (the
lowest value of the C2 index) should be used regardless of the price. However, there are
cases where a pick’s choice depends on its price and losses in cutting.

The C2 index is the parameter that best describes the quality of the pick; therefore, it is
recommended that the proposed method and procedure should be used to evaluate picks
both when placing orders and to file complaints, but also in other cases, whenever cutting
tools need to be selected.
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