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Abstract: The generation and use of energy are significant contributors to CO2 emissions. Globally,
approximately 30% to 40% of all energy consumption can be directly or indirectly linked to buildings.
Nearly half of energy usage in buildings is linked to maintaining the thermal comfort of the inhabi-
tants. Therefore, finding solutions that are not only technically but also economically feasible is of
utmost importance. Though much research has been conducted to address this issue, most solutions
are still costly for developing countries to implement practically. This study endeavors to find a less
expensive yet straightforward methodology to achieve thermal comfort while conserving energy.
This study takes a broader view of multiple habitat-related CO2 emission issues in developing regions
and describes a hybrid solution to address them. New technologies and innovative concepts are
being globally examined to benefit from the considerable potential of PCMs and their role in thermal
energy storage (TES) applications for buildings. The current study numerically investigates the
thermal response of a hybrid building envelope consisting of PCM and local organic waste materials
for low-cost low-energy buildings. The local organic waste materials used are those whose disposal
is usually done by burning, resulting in an immense amount of greenhouse gases. In the first phase,
different waste materials are characterized to determine their thermophysical properties. In the
second phase, a low-cost, commonly available PCM calcium chloride hexahydrate, CaCl2·6H2O, is
integrated with a brick and corn husk wall to enhance the thermal storage in the building envelope
to minimize energy consumption. Temperature distribution plots are primarily used for analysis.
The results show a marked improvement in thermal comfort by maintaining a maximum indoor
temperature of 27 ◦C when construction is performed with a 6% corn husk composite material
embedded with the PCM, while under similar conditions, the standard brick construction maintained
a 31 ◦C indoor temperature. It is concluded that the integration of the PCM layer with the corn husk
wall provides an adequate solution for low-cost and low-energy buildings.

Keywords: phase change material (PCM); thermal energy storage (TES); numerical simulation;
thermal comfort; built environment; carbon emissions; sustainable materials; TRNSYS; ANSYS

1. Introduction

The buildings and construction sectors utilize one-third of global energy consumption
and are the primary source of carbon emissions globally [1]. Forty-three percent of resi-
dential building energy is utilized in heating, cooling, and lighting, while for commercial
buildings, these applications account for 39% of total energy consumption [2]. PCMs have
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several applications in refrigeration [3], air-conditioning [4], solar PV [5], and buildings [6].
The latent heat thermal energy storage capabilities of PCMs make them particularly suitable
for applications in low-cost, lightweight buildings with lesser heat storage capacity.

Passive techniques employing PCMs to minimize energy consumption in the building
sector have increased over time [7,8]. Various experimental and numerical studies have
been performed to evaluate the effectiveness of utilizing PCMs. Zhang et al., studied the
suitable PCMs with appropriate incorporation methods to assess the latent heat thermal
energy storage in buildings [9]. Gracia and Cabeza have given a thorough review of PCM in
passive TES applications in buildings [10]. Yasiri and Szabo provided a thorough analysis
of PCMs utilization in buildings and energy savings associated with the applications [11].
Cabeza et al. studied the applications of PCMs in concrete walls for energy saving [12].
The main criteria for selecting appropriate PCMs are their phase change temperature and
heat of fusion, depending on the particular applications [13].

While the built environment is also responsible for 35–40% of the greenhouse gas
GHG) emissions [14], half of the total primary energy is consumed by commercial and
residential buildings in Pakistan, while they produce about one-third of total carbon
emissions. Managing energy usage and GHG emissions has become a global challenge,
and its impact on the developing regions is causing immense problems for the population.
This has, therefore, become a critical issue needing regulation to reduce the energy being
consumed by the built environment.

It is feared that unless all countries across the globe take immediate positive action, the
world carbon emissions will double by the year 2030 [15]. For developing countries, this
ratio is expected to be even higher due to their rapid development rates. Reducing carbon
emissions is, therefore, becoming a priority in Pakistan as well. One way of achieving this
goal is to minimize the energy consumed by the buildings and provide these minimized
energy needs using renewable energy sources. In Pakistan, with a population approaching
220 million people, nearly 60% are youth [16]. Due to this, Pakistan’s education system
is costly. As per the data available from Pakistan Education Statistics 2016–2017 [17,18],
Pakistan’s education system comprises more than 317,323 educational institutions that
provide education to nearly 50.28 million students at any given time. It is, therefore,
foregone that these educational institutions are one of the leading energy consumers within
the built environment. Considering these statistics, the current study concentrates on
low-cost academic buildings as a case in point.

It has been observed that energy conservation in academic institutions can provide sig-
nificant cost savings for academic institutions and reduce carbon emissions in the country.
So far, energy expenses in academic institutions are treated as unimportant in comparison
with other priorities. However, historical trend analysis of academic institutions’ operating
budgets shows that energy bills can constitute between 10% to 15% of the total expenditure
of the academic institutions and are the subsequent highest expenditure after the salaries
of the faculty and staff. Crosby and Metzger [19] concluded that there was an increasing
focus on managing energy used in these institutions in recent times. It is considered that to
achieve higher energy efficiency and conservation, it is vital to bring awareness among stu-
dents around the globe about conserving available energy resources, the use of renewables,
and mitigating the effects of greenhouse gases on our global environment. In developing
countries, the rate of increase of GHG emissions is much higher than that of the developed
world; their rate of development is higher. The trend of Pakistan’s GHG emissions [20] in a
million tons of carbon dioxide equivalent (MtCO2e) is shown in Figure 1.

The two sectors of agriculture and buildings can be seen as significant contributors
to GHG emissions. Electric power generation totaling more than 12,230 MW capacity
has been added to Pakistan’s national grid in the recent past [21], taking the total power
production to 40,000 MW in the current year. This is likely to cause a further increase
in GHG emissions in Pakistan unless immediate measures are not taken to control the
emissions of pollutants. In comparison to global carbon emissions, Pakistan’s per capita
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carbon footprint has been small in the past, but it has started to increase rapidly [20] in the
last few years due to a healthy growth rate of the economy.
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Figure 1. Emission outlook of different greenhouse gas production sectors of Pakistan [20]. This work is available online
under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/
igo/, accessed on 13 June 2021.

As a result of the increase in energy consumption, the CO2 emissions have also risen
sharply, as depicted in Figure 2.
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Figure 2. Pakistan CO2 emissions from fossil fuel burning and cement production for the last 70 years [22]. This work is
available online under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/
licenses/by/3.0/igo/, accessed on 13 June 2021.

The latest available data on CO2 emissions in Pakistan are shown in Figure 2, and the
annual variation in emissions is seen in Figure 3. Figure 2 clearly shows a sharp rise in CO2
emissions for the last decade compared to a slow increase from 1950–2010. Figure 3 shows
a step change from 2010 to 2019 while analyzing historical emissions data of Pakistan.
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the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/,
accessed on 13 June 2021.

As seen from the above data, emissions from the built environment are the highest
and increasing alarmingly. Several efforts have been made to achieve energy efficiency and
reduce the carbon footprint of different buildings in the past decade [23–26]. It has also been
observed that thermal comfort is lacking in most academic buildings available to school-
going children in developing countries, even where a significant cost is being incurred on
heating and cooling of academic buildings [27]. Thus, improving thermal comfort using
efficient temperature control techniques and designing buildings with inbuilt thermal
comfort using thermal energy storage materials [27–29], providing natural ventilation, and
using optimum building orientation are also priorities in developed countries.

Similarly, several studies have been performed on composite materials having clay,
cement, or gypsum plaster. Khabbazi et al. [30] have investigated an insulating material
based on a mixture of cement mortar and cork. Cherki et al. [31–33] and Mounir et al. [34]
have worked on materials based on granular cork mixed with different binders to achieve
better thermal properties. Mounir et al. [35] have also shown improved thermal properties
of clay by mixing it with wool. Date palm wood and fibers have also been suggested as an
ingredient to make composite reinforced building materials by several studies. Kriker et al.
studied date palm fiber-reinforced concrete properties as a function of water curing [36].
Tlijani et al. used the periodic method to determine thermal conductivity and thermal
diffusivity of the wood-scale of palm trees [37]. Agoudgil et al. report thermophysical
properties of different varieties of date palm wood [38]. Mekhermeche et al. studied
the thermal properties of date palm fiber reinforced clay bricks [39]. Benmansour et al.
examined the thermophysical and mechanical properties of date palm fibers [40]. The
experimental work shows that date palm wood and fibers mixed with binders result in
good thermal properties for use in the built environment. Laaroussi et al. [41,42] use a
hot plate and flash method to measure the thermal properties of different mixtures of clay
bricks. Mahamat et al. study the thermophysical properties of cow dung mixed with clay
and their effect on energy consumption of buildings [43]. Lamrani et al. [44] and Bhutto [45]
have worked on new ecological building materials based on peanut shells and wheat straw
mixed with plaster.

https://creativecommons.org/licenses/by/3.0/igo/


Energies 2021, 14, 3544 5 of 23

In the current research effort, authors concentrate on a novel hybrid building envelope
consisting of PCM and local organic waste materials for low-cost low-energy buildings. The
locally available sustainable materials are mixed with clay, sand, cement, and their thermal
properties. These materials are then simulated to form the building envelope. Numerical
simulation is conducted to investigate their effect on the annual energy consumption for
heating and cooling loads. The results are then compared with the energy consumption of
buildings made from standard construction materials. TRNSYS software is initially used
for simulations under local annual weather conditions. So far, the potential for use of PCMs
in these buildings has remained limited due to associated cost and accessibility in the local
market [46,47]. To overcome the economic barrier, this study proposes a reduction in the
existing construction cost by using the proposed composite material compressed bricks.
These compressed bricks are used to replace the existing brick and concrete blocks as the
primary construction material. There are many abundantly and locally available waste
materials that can be used in this sustainable construction process. This work studies the
integration of low-cost PCM and local raw materials to find whether this approach provides
a better solution that is viable to be commercialized at a large scale. Currently, fired bricks
are used as the primary construction material. The manufacturing of these bricks results in
a considerable amount of greenhouse gases (GHG). The fired brick has been replaced in
this study by locally developed compressed bricks. After experimental testing of several
materials, a mixture of clay–cement–sand was selected as the base material. To further
enhance the base material’s thermal energy storage (TES) capability, several waste materials
were added to form a composite construction material. The mixture of the said materials
was formed into a block shape using compressive forces. This study examines the TES
capability of the materials mentioned above. It also studies the possibility of introducing a
PCM layer with the best performing block replacing the bricks. CaCl2·6H2O is selected
for this study based on the melting temperature of 28–29 ◦C. For Islamabad, Pakistan,
about eight months of hot weather and cooling load are a substantial part of annual energy
consumption. CFD simulations have been performed on a typical 9 inches thick masonry
brick wall and corn husk wall with and without PCM. The authors have conducted a
comprehensive effort to study the effects of this hybrid building envelope in detail earlier,
not mentioned in the literature. Experimental and numerical analysis using TRNSYS and
CFD tools are used to study various aspects of the proposed building envelope. The authors
also consider some pressing emissions issues of the region, like burning paddy fields and
other organic waste. The study shows that a significant reduction in energy consumption
and greenhouse gas emissions is possible using the proposed comprehensive approach
while curtailing the construction cost. Section 2 presents the material and methods used
for this study; Section 3 presents the base material testing; Section 4 discusses the details of
the composite material used. Computational analysis is discussed in Section 5, followed by
Section 6, which provides a detailed comparison of all the scenarios. Recommendations
are made as per the finding of the current study in the conclusions section.

2. Materials and Methods

For this study, a school building located in Islamabad, Pakistan, was selected. The
selected school was built in 2004. The school’s building is a double-story structure with
44 classrooms and a floor area of 2240 m2. The school has an enrolment of 1020 students
on average. A detailed analysis of the school building energy consumption was performed
earlier to show energy-saving opportunities and the possibility of cost savings and re-
duction in carbon emission [48]. Considering the data obtained [48], the current study
investigates the advantages of using composite materials and phase change materials
(PCMs) in the building envelope to increase the building thermal mass to improve indoor
thermal comfort.

The simplest and most cost-effective method for thermal energy storage is sensible heat
storage. Further, the amount of heat stored in a material depends on the density ρ, volume
v, temperature variation 4T, and specific heat capacity Cp and thermal conductivity k
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of the storage materials. The sensible heat storage capacity of a material is calculated
using Equation (3). The temperature difference4T across the storage material has inverse
dependence on the thermal conductivity k of the material.

Q = mass×Cp ×4T (1)

mass= ρv (2)

By replacing mass in Equation (1), it becomes:

Q = ρv× Cp ×4T (3)

2.1. Thermal Conductivity

To find out the thermal conductivity of various eco-friendly materials used in this
study, an experimental setup is designed, as shown in Figure 4.
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This experimental setup is known as the hot-plate steady-state method for finding the
thermal conductivity of materials [32,35,42,44].

A screwed rod is used to slightly press all the materials together to ensure gap-less
contact between different materials to avoid a rise in thermal conductivity due to air gaps
and any heat loss. To measure the temperatures of the testing material, heating element, and
polystyrene foam, temperature sensors are placed as shown in Figure 5. These temperature
sensors have a temperature sensitivity of 0.125 ◦C.
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A microcontroller (Arduino) is used to record the temperature values received from
the temperature sensors, and Tera Term© open-source software by PARSEC Group, Arvada,
CO, USA [51] is used for the graphical display of temperature values.

The temperature difference across test material (T2 − T1) and temperature difference
across polystyrene (T2 − T3) are calculated to find the thermal conductivity of test material
by using Equation (4).

k1 =
e1

T2 − T1

[
U2

R.S
− k2

e2
(T2 − T3)

]
(4)

where
e1 = Thickness of sample. (m)
e2 = Thickness of polystyrene. (m)
U = Voltage (V)
R = Resistance of the heating element. (Ω)
S = Surface area (m)
k1 = Thermal conductivity of the sample (W/m-K)
k2 = Thermal conductivity of polystyrene (W/m-K).

2.2. Specific Heat Capacity

The calorimetry method as described by Cengel [52] is used to measure the heat
capacity of various materials being investigated. The changes in temperature of the water
and the sample are measured and specific heat capacity is calculated using Equation (7).

Qsample = Qwater (5)

msample × Cp sample × ∆Tsample = mwater × Cp water × ∆Twater (6)

Cp sample =
mwater × Cp water × ∆Twater

msample × ∆Tsample
(7)

where
Q = heat applied (W)
m = mass (kg/m3)
Cp = Specific heat capacity (kJ/kg-K)
∆T = Temperature difference. (◦C)

2.3. Validation

The experimental setup is validated by calculating the thermal conductivity of the known
materials using this setup and comparing the measured results with the standard data of
polystyrene [35,42,44,52], clay [41,53], brick [42,54], and concrete [49,54], respectively.

After getting the temperature difference, the thermal conductivity of the samples is
calculated by using Equation (4). Fourier’s law of heat conduction for one-dimensional
heat conduction is given in Equation (8) [52].

.
Qcond = −kS

dT
dx

(W) (8)

where.
Qcond = rate of heat transfer; k = thermal conductivity; S = surface area.
dT
dx = temperature gradient.
The rate of heat transfer and the area of the material is constant. Thus, dT

dx is constant,
which means that the temperature through the test material varies linearly with e (thickness
of the material in the direction of heat flow), and the temperature distribution in the material
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under a steady state is a straight line. By integrating the above equation for change in
length and temperature, Equation (8) will become:∫ L

x=0

.
Qcond,wall dx = −

∫ T1

T=T2
kS dT (9)

.
Qcond,wall = kS

T2 − T1

e
(10)

For reference material:

.
Qcond,polystyrene = kS

T2 − T3

e
(11)

.
Q =

U2

R
(12)

where U = applied voltage and R = resistance of the heating element.
As the heating element provides equal heat on both sides, so Equation (12), in this

case, will become.
.

Q =
U2

2R
(13)

By adding both Equations (10) and (11) and using Equation (13).

U2

2R
+

U2

2R
= k1S

T2 − T1

e1
+ k2S

T2 − T3

e2
(14)

k1 =
e1

T2 − T1

[
U2

R.S
− k2

e2
(T2 − T3)

]
(15)

Equation (15) is used in this study to calculate the thermal conductivity of test materi-
als, as given in Table 1 below. Polystyrene is taken as the reference material with known
thermal conductivity k2.

Table 1. Validation of results for thermal conductivity experiments.

Material Voltage (V) Material
Thickness (m)

Polystyrene
Temp (◦C)

Material
Temp (◦C)

Expt. Value of
k (W/m-K)

Known
Value of k
(W/m-K)

% Difference

Polystyrene 1.9 0.011 17.20 19.00 0.0413 0.04 [42] 3.34%
Clay 3.5 0.060 21.38 24.01 0.9670 0.957 [41] 1.05%
Brick 4.0 0.077 33.00 56.88 0.6624 0.6–1.0 [42] -

Concrete
block 3.9 0.095 23.13 45.5 1.168 1.0–1.8 [52] -

2.4. Specific Heat Capacity

The calorimetry method [52,53] is used to measure the heat capacity of the various
materials. The changes in temperature of the water and the sample and specific heat
capacity are calculated by using Equation (7).

3. Base Material Testing

One of the aims of this study was to compare different waste organic materials to
formulate a new eco-friendly construction material that can reduce energy consumption
and GHG emissions. For that purpose, different sustainable materials were selected for the
study. First, a base material was taken, which is locally available and itself environmentally
friendly. Clay was selected as the base material, as it is abundantly available in nature,
low-cost, and environmentally friendly. Fired clay bricks are most commonly used in
Pakistan as a building construction material. A large amount of waste rubber and coal is
burned during the brick manufacturing process. According to the EIA report, this is not an
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eco-friendly manufacturing process; one pound of coal produces 2.86 pounds of carbon
dioxide [54]. Therefore, in this study, 20 kN compression force is used to produce clay
bricks for thermal properties testing, using the ©G.U.N.T. Hamburg, Germany, Gerätebau
GmbH compression equipment. To improve the structural strength of brick and improve its
binding properties, sand and cement were added in different samples [55]. After preparing
the samples, they were sundried for a week to allow mechanical stabilization. Then thermal
conductivity and specific heat of the clay samples were calculated using the experimen-
tal setups described earlier. The thermal conductivity and the specific heat results are
shown in Table 2.

Table 2. Specific heat capacity, density, thermal conductivity, and thermal diffusivity of the samples.

Sample Cp (kJ/kg-K) ρ (kg/m3) k W/(m-K) α m2/s

Clay 1.0034 1686.2745 0.9670 0.00057
Clay–Cement 0.8767 1666.6667 1.0112 0.00069

Clay–Cement–Sand
(CCS) 0.6868 1916.6667 0.7612 0.00058

Base Material Selection

The clay–cement–sand sample was considered to possess better thermal properties
than other samples. It displayed better strength, much smaller thermal conductivity, greater
density, and thermal diffusivity equal to clay. Hence, clay–cement–sand brick was selected
as the base material for the formation of composite eco-friendly sustainable materials.

4. Composite Materials
4.1. Wheat Straw

Wheat is the main agricultural crop in Pakistan; around nine million hectares of area
are used for the growth of wheat, which is almost 40% of the country’s total cultivated land.
In the 2016/2017 season, the total wheat production was around 25.6 million metric tons in
Pakistan [56]. After harvesting the wheat crop, a considerable amount of wheat residue is
produced, which is used for various purposes. However, many farmers are unable to use it
fully and burn a significant portion. This crop residue burning produces a considerable
amount of harmful emissions, causing breathing difficulties and atmospheric pollution.
Wheat straw, being abundantly available, was selected in this study as the first composite
material. Wheat straw is a natural material and environmentally friendly, and its use in
building materials can avoid the pollution created due to its burning. Samples of the first
sustainable building material were prepared by adding 2%, 4%, and 6% wheat straw by
weight in the base material while reducing the same amount of clay.

4.2. Corn Husk

Corn is the second-largest agricultural crop in Pakistan after wheat; around 1.350 million
hectares of area are used to grow corn. In the 2017/2018 season, the total corn production
was around 5.8 million tons [56]. After harvesting the corn crop, a considerable amount
of corn residue is left over as waste material. Thus, corn husk is selected as the second
composite material for mixing in the base material. The exact mixing ratio, as in the case of
wheat straw, is used.

4.3. Rice Husk

Rice is the third-largest crop in Pakistan after wheat and cotton in terms of area sown.
The total production of rice in Pakistan is 10.351 million metric tons [56]. For every 1 ton of
rice, about 1.5 tons of waste crop residue are produced [57]. The burning of this crop residue
produces a vast amount of GHG emissions, estimated at 0.9 kg CO2/kg-rice husk [57]. This
crop burning practice has a harmful impact not only on humans but also on animals and
birds. Due to residue burning, a very lightweight particulate matter is generated, which
causes massive smog, as it can stay in the air for a long time and travels along with the
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wind for hundreds of kilometers [58]. In October 2017, crop fires in and across the border
in Indian provinces produced a considerable amount of smoke. This smoke mixed with fog
with cooler weather in November and resulted in dangerous amounts of pollution. The
smoke particles and fog, industrial pollution, and dust formed a particularly thick haze for
several days in November 2017. On 7 November 2017, the Moderate Resolution Imaging
Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a natural-color image of
haze and fog blanketing the region, as shown in Figures 6 and 7 below.
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Figure 7 shows the effect of airborne particles on absorption and reflection of light by
the atmosphere, with the aerosol pollution shown in red-brown color.

As shown in Figures 6 and 7, the immense pollution caused by carbon emissions is
a real danger to achieving the global warming and emission control goals. This disaster
in the past became a primary reason for selecting wheat straw, rice husk, and corn husk
as waste for the composite construction material. The burning of organic waste materials
is a common practice [60] that is followed in the region. The literature presents the work
related to these composites. Saman et al. determined the fired clay brick composite
thermophysical properties with rice husk, corn cob, and waste tea [61]. Phonphuak et al.
experimentally determined the physical and mechanical properties of fired clay brick
samples with different percentages of rice husk [62]. Using these materials in construction
will help mitigate the emissions. If these waste materials become a sellable commodity
for construction, it will provide the farmers with an incentive to avoid burning. This
work, therefore, studies the disposal of the said organic waste materials by using them in
construction to achieve the following two significant advantages.

• First, the improvement in thermal comfort of the buildings with reduced energy usage.
• Second, a significant reduction in greenhouse gas emissions volume resulted from

burning these waste materials.

These aims align with the targets set by the IEA-COP26 Net Zero Summit of realizing
net zero emissions by 2050 [63].
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Brick samples using 2%, 4%, and 6% of these three organic waste material ratios by
weight were produced. The waste residues of wheat straw, corn husk, and rice husk used
in this study are shown in Figure 8, while the compressed brick samples produced are
depicted in Figure 9 below.
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The method described earlier was used to calculate the thermal properties of these
brick samples and the results are shown in Table 3.

Table 3. Comparison of specific heat capacity, density, thermal conductivity, and thermal diffusivity
of clay, clay–cement, and clay–cement–sand samples.

Sample Cp (kJ/kg-K) ρ (kg/m3) kW/(m-K) α (m2/s)

Clay–Cement–Sand
(CCS) 0.6868 1916.6667 0.7612 0.00058

CCS + 2% Rice 0.9526 1874.0280 0.6979 0.00039
CCS + 4% Rice 1.2342 1733.3333 0.5379 0.00025
CCS + 6% Rice 1.4545 1546.4334 0.4041 0.00018

CCS + 2% Wheat 0.9748 1747.7876 0.6702 0.00039
CCS + 4% Wheat 1.1222 1442.8044 0.5089 0.00031
CCS + 6% Wheat 1.2313 1254.4484 0.3445 0.00022
CCS + 2% Corn 1.0224 1680.8511 0.6269 0.00036
CCS + 4% Corn 1.2550 1563.0252 0.4592 0.00023
CCS + 6% Corn 1.3742 1479.3578 0.3424 0.00017

5. Computational Analysis

The thermal properties established during the above detailed experimental study
were used for computational analysis to calculate the heating and cooling loads for a
selected building. The computational analysis also established how much energy use
and GHG emissions due to energy saving can be reduced. The computational analysis
was performed using TRNSYS simulation software [64]. The local weather conditions
were used to calculate the annual heating and cooling loads for a two-story building of
an academic institute located in Islamabad. To conduct the simulations, the building was
designed using TRNSYS plugin TRNSYS3D in Google SketchUp. The modeled building
design is shown in Figure 10.
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The selected building envelope building properties with the selected materials are
defined in TRNSYS using the TRNBuild tool. The heating and cooling loads using each of
the selected envelope materials are obtained for the entire year. The simulation results are
compared to show the thermal efficiency of the designed materials. The thermal behavior
of the building is simulated using building envelope properties for a nine-inch-thick brick
wall of experimentally studied materials, with half-inch plaster on both sides. Properties
of plaster used are thermal conductivity 0.5 W/m-K, heat capacity 1.00 kJ/kg-K, and
density 1300 kg/m3 [23]. The ground floor ceilings are designed as four-inch concrete slabs
with half-inch plaster on both sides. The thermal properties of concrete used are thermal
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conductivity of 1.30 W/m-K, the specific heat capacity of 1.13 kJ/kg-K, and a concrete
density of 2240 kg/m3 [29]. Properties of plaster are the same as those used in the case of
the wall.

Properties of the external roof of the building are defined as a four-inch concrete
slab whose properties are with half-inch plaster covered with one inch of granite having
thermal conductivity 1.87 W/m-K, specific heat capacity 0.71 kJ/kg-K, and density of
2200 kg/m3 [23].

For the winter months, the required 20 ◦C temperature is set to calculate the heating
load. During the summer months, 26 ◦C temperature is set as the requirement to calculate
the cooling load. The reference building is an academic institute building, so heating and
cooling loads are calculated according to the institute work timing of 08:00 AM to 06:00 PM
for working days, while Saturday and Sunday are considered the closed weekend. The
heating load is calculated for January, February, March, October, November, and December,
while the cooling load is calculated for March, April, May, June, July, August, September,
and October.

6. Results and Discussion
6.1. Heating Load

The heating load of the schedule mentioned above is simulated in TRNSYS simulation
software. As an example, the heating load of the last week of January using rice husk
composite bricks in the building envelope is shown in Figure 11. The school is in session
from Monday to Friday and hence the heating load on weekends is negligible. It is clear in
Figure 11 that heating load decreases with the increase of composite material mixing ratio.
Higher room temperature is kept on both floors when composite bricks with a 6% husk
composition are used for construction. The above results show that the rice husk mixing
increases the heat storage capacity of the building envelope. The detailed results for the
heating load calculated are given in Table 4.
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Figure 11. Ground (a) and first floor (b) heating loads using rice husk composite bricks.

Trends of energy consumption for rice husk, wheat straw, and corn husk with different
mixing ratios are shown in Figure 12. These results indicate that increasing the mixing
density of all three composite materials causes an appreciable decrease in the energy
required to heat the building. Among the three materials selected for this study, it is found
that the mixing of corn husk provides the best results, and the energy needed to maintain
thermal comfort level is decreased substantially by approximately 15.6% when compared
with the standard brick construction.
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Table 4. Heating load comparison using different composite materials and mixing ratios.

Material January (GJ) February (GJ) March (GJ) October (GJ) November (GJ) December (GJ)
Total

End-Use
Energy (GJ)

Total
Primary

Energy (GJ)

Brick 69.14 34.37 0.37 0.00 12.33 53.31 169.52 508.56
CCS + 2%

Rice 69.45 34.59 3.64 0.00 12.32 53.53 173.53 520.59

CCS + 4%
Rice 66.59 33.04 3.26 0.00 11.24 51.16 165.29 495.87

CCS + 6%
Rice 64.05 31.64 2.96 0.00 10.43 49.09 158.17 474.51

CCS + 2%
Wheat 69.08 34.37 3.61 0.00 12.22 53.24 172.52 517.56

CCS +4%
Wheat 66.38 32.80 3.28 0.00 11.33 51.04 164.83 494.49

CCS +6%
Wheat 63.12 30.96 2.92 0.00 10.32 48.41 155.73 467.19

CCS +2%
Corn 68.37 33.96 3.51 0.00 11.97 52.65 170.46 511.38

CCS +4%
Corn 65.27 32.25 2.77 0.00 10.88 50.12 161.29 483.87

CCS +6%
Corn 62.87 30.93 2.38 0.00 10.13 48.15 154.46 463.38

Energies 2021, 14, x FOR PEER REVIEW 14 of 23 
 

 

Trends of energy consumption for rice husk, wheat straw, and corn husk with 

different mixing ratios are shown in Figure 12. These results indicate that increasing the 

mixing density of all three composite materials causes an appreciable decrease in the 

energy required to heat the building. Among the three materials selected for this study, it 

is found that the mixing of corn husk provides the best results, and the energy needed to 

maintain thermal comfort level is decreased substantially by approximately 15.6% when 

compared with the standard brick construction. 

 

Figure 12. Heating load comparison using different composite materials and mixing ratios. 

6.2. Cooling Load 

The cooling load for the building ground and the first floor of the days mentioned 

above and the schedule are simulated in TRNSYS simulation software. For example, the 

cooling load of the first week of July using rice husk composite bricks in the building 

envelope is shown in Figures 13 and 14. The results show that cooling load decreases with 

the increase of composite material mixing ratio. Lower room temperature is kept on both 

floors when composite bricks with a 6% husk composition are used for construction. This 

shows that the rice husk mixing increases the building envelope's heat storage capacity, 

thus allowing lesser heat to be transmitted from the surroundings to inside the building. 

The results for cooling load are calculated for different density ratios of three selected 

waste materials and are given in Table 5. 

Figure 12. Heating load comparison using different composite materials and mixing ratios.

6.2. Cooling Load

The cooling load for the building ground and the first floor of the days mentioned
above and the schedule are simulated in TRNSYS simulation software. For example, the
cooling load of the first week of July using rice husk composite bricks in the building
envelope is shown in Figures 13 and 14. The results show that cooling load decreases with
the increase of composite material mixing ratio. Lower room temperature is kept on both
floors when composite bricks with a 6% husk composition are used for construction. This
shows that the rice husk mixing increases the building envelope’s heat storage capacity,
thus allowing lesser heat to be transmitted from the surroundings to inside the building.
The results for cooling load are calculated for different density ratios of three selected waste
materials and are given in Table 5.
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Table 5. Cooling load comparison using different composite materials and mixing ratios.

Material March (GJ) April (GJ) May (GJ) Jun (GJ) Jul (GJ) Aug (GJ) Sep (GJ) Oct (GJ)

Total
End-Use
Energy

(GJ)

Total
Primary
Energy

(GJ)

Brick 0.00 24.34 74.87 83.89 81.73 69.01 49.14 5.15 388.13 1164.39
CCS + 2%

Rice 0.00 24.47 74.95 84.06 81.82 69.11 49.10 5.08 388.59 1165.78

CCS + 4%
Rice 0.00 24.39 73.99 82.92 80.54 68.27 48.84 5.07 384.02 1152.06

CCS + 6%
Rice 0.00 24.27 73.01 81.72 79.30 67.40 48.42 5.06 379.18 1137.55

CCS + 2%
Wheat 0.00 24.68 74.86 83.92 81.70 69.02 49.11 5.08 388.37 1165.12

CCS + 4%
Wheat 0.00 24.55 74.16 82.94 80.72 68.35 48.97 5.08 384.77 1154.30

CCS + 6%
Wheat 0.00 24.32 73.19 81.65 79.42 67.46 48.66 5.07 379.77 1139.31

CCS + 2%
Corn 0.00 24.65 74.67 83.67 81.44 68.85 49.10 5.08 387.46 1162.39

CCS + 4%
Corn 0.00 24.58 73.68 82.44 80.12 67.96 48.77 5.07 382.62 1147.86

CCS + 6%
Corn 0.00 24.39 72.74 81.29 78.93 67.12 48.36 5.06 377.89 1133.68
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As seen in the graph, cooling load is decreasing with the increase of the compos-
ite material mixing ratio. The detailed results for the cooling load calculated are given
in Table 5.

Trends of energy consumption for rice husk, wheat straw, and corn husk with different
mixing ratios are shown in Figure 15 below. These results indicate that increasing the
mixing density of all three composite materials causes a decrease in the energy needed
to cool the building. Among the three materials selected for this study, it is found that
the mixing of corn husk provides the best results, and the energy needed to keep thermal
comfort level is decreased and a saving of 36 GJ is achieved by using 6% corn husk bricks
for the building envelope when compared with the standard brick construction.
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6.3. CO2 Emissions

CO2 emissions during the production of the materials and building life cycle (assumed
to be 40 years) are shown in Table 6. CO2 emission during the production of 1000 bricks
is 427.985 kg [60]. The total wall area of the building is 2043 m2 (excluding windows
area; the total number of bricks for that area is calculated by taking the brick size of
9 × 4.5 × 3 inches, and the size of the in-between plaster layer of 0.12 inch (3 mm). The
total number of bricks used during the construction of the building comes out to be
258,427 and the total CO2 emission during the production of a standard brick used in the
building is calculated to be 0.12 MtCO2e, while the emission during the production of
proposed samples is almost zero because manual compression is used for their preparation.

Table 6. Carbon dioxide emission during production and building life cycle.

Material Energy Consumption Primary
Energy (GJ)

Emission during Brick
Production (MtCO2e)

Total Building Lifecycle
Emission (MtCO2e)

Brick 1333.91 31,011.24 37,260.84
+2% Rice 1339.31 - 6250.17
+4% Rice 1317.34 - 6147.65
+6% Rice 1295.72 - 6046.73

+2% Wheat 1337.63 - 6242.34
+4% Wheat 1319.13 - 6155.97
+6% Wheat 1295.04 - 6043.55
+2% Corn 1332.85 - 6220.03
+4% Corn 1309.15 - 6109.39
+6% Corn 1288.14 - 6011.34
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7. Introducing PCM Layer

The above analysis showed the advantage of using composite building blocks; by finding
a significant reduction in energy consumption and GHG emissions and to further consoli-
date this advantage and avoid the use of cooling altogether while providing better thermal
comfort for the dwellers in low-cost housings, the use of PCMs was considered. BenZaid
et al. experimentally determined the thermal advantage of using PCMs in clay–straw walls
in Morocco [65]. Usually, as already mentioned, the cost of PCMs is high [66]. Paraffin is one
choice available to be used as a PCM in the human thermal comfort range. However, paraffin
is considered a fire hazard and still expensive for use in low-cost housing. Hydrated salts are
not a fire hazard coupled with higher volumetric storage abilities and are among the least
expensive PCMs available [67]. Considering this, calcium chloride hexahydrate CaCl2·6H2O
was selected for this study. The thermophysical properties of CaCl2·6H2O are given in Table 7.
As thermophysical properties given in Table 7 of selected PCM include both solid and liquid
phases of material along with the melting temperature around 29 ◦C, it shows that when the
temperature reached this threshold, the PCM would change its phase from solid to liquid by
using heat to change its phase at a constant temperature.

Table 7. The thermophysical properties of CaCl2·6H2O.

Material Density (kg/m2) Thermal Conductivity
(W/m-K) Specific Heat (J/kg-K) Melting Temperature (◦C)

Latent
Heat

(kJ/kg)

Calcium
Chloride
hexahy-

drate

1710 (solid) 1710
(liquid)

1.088
(solid)

0.539
(liquid) 1460 (solid) 2130

(liquid)
29.7

(lower)
29.9

(upper) 187.4

To prove the relative advantage of incorporating PCMs and composite material blocks
in the construction of low-cost housing, a wall was modeled in ANSYS software. Simu-
lation of heat transfer through the wall was conducted for the full-fired brick wall, entire
composite 6% corn husk block wall, fired brick wall with embedded PCM, and composite
6% corn husk block wall with embedded PCM.

Simulations were conducted for weather conditions of the first ten days of June. In
simulations, the time-dependent energy equation is solved for fired brick and 6% corn
husk composite block case, while for PCM, the enthalpy porosity-based energy equation
is used. SIMPLE (semi-implicit method) pressure velocity coupling and second-order
upwind formulation for energy are used. A time step size of 60 s is selected.

7.1. Wall Geometry

The wall geometries for all four wall configurations are given in Figure 16. A 10 mm
layer of PCM is embedded at the horizontal center of the 220 mm wall thickness used
in this study. Configurations for fired brick and 6% corn husk composite block are con-
sidered. Comparison for indoor temperature is obtained for all configurations for the
climatic conditions of the first ten days of June of Islamabad, Pakistan. It is character-
ized as humid subtropical weather with all four seasons, including a hot summer typi-
cally from May to August. The latitude and longitude of Islamabad are 33.6844◦ N and
73.0479◦ E, respectively.

The outdoor transient temperature profile is input in all the cases, and free convection
with a heat transfer coefficient of 5 W/m2 at the outlet boundary is used to simulate the
typical wall loading of a hot climate. The top and bottom sides are set as adiabatic for
1-dimensional heat transfer.
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Figure 16. Model of fired brick and 6% corn husk composite block walls (a–d) with and without PCM.

7.2. Simulation Results for PCM Wall

The outdoor boundary condition and the indoor temperatures for the first ten days
of June and the simulation results depicting indoor temperature variation with outdoor
ambient conditions are shown in Figure 17. It can be seen from these results that standard
fired brick wall performs quite poorly, and much higher temperatures are experienced
indoors, at times reaching as high as 31 ◦C, which is considered beyond the human thermal
comfort range. The fired brick wall without PCM integration shows a high sensitivity to
the outdoor temperature, showing that it does not protect the inhabitants from the varying
weather conditions. Even with a PCM layer, the fired brick wall does not perform too well,
and the performance of the 6% Corn Husk composite block wall even without any PCM
layer is better than a brick wall. In comparison, the 6% Corn Husk composite block wall
with the PCM layer is very stable and can keep an indoor temperature of 27 ◦C throughout
the day, even on scorching days when the outdoor ambient temperatures are reaching
close to 38 ◦C. For the first three days, the indoor temperature for PCM-based fired brick
wall fluctuates between 27–28 ◦C, showing temperature fluctuating within the 1 ◦C range,
whereas the fired brick shows temperature fluctuation of 4 ◦C. The trend is continued for
fired brick with and without PCM for days 4–7. For days 8–10, both simple fired brick and
embedded PCM exhibit more significant temperature variation, as the outdoor temperature
peaks lower than preceding days.
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Furthermore, the 6% Corn Husk configuration without PCM maintains a lower tempera-
ture than the PCM-based fired brick configuration but fluctuates throughout ten days, while
PCM based configuration keeps a constant temperature for days 1–8. This shows PCM’s latent
heat thermal energy storage capability, which makes them a potential candidate for energy
storage in buildings at a constant temperature. Moreover, this implies integrating PCMs with
alternative sustainable materials solutions for construction to give a better trade-off with energy
consumption and construction cost. It can thus be concluded that the 6% Corn Husk composite
block with integrated PCM can provide reasonable thermal comfort and is a good choice as a
construction material for low-cost housing projects.

8. Conclusions

Sustainable and organic waste materials like corn husk, rice husk, and wheat straw
are abundantly available in Pakistan. Experimental and simulation studies show how they
can help save energy when used in construction materials. Thermo-physical properties and
thermal energy storage of base materials are improved by mixing the suggested organic
waste materials in different weight ratios. The overall result shows that mixing of corn
husk in base material improves its thermo-physical properties and thermal energy storage
better than rice husk and wheat straw, but rice husk and wheat straw can also help reduce
the consumption of energy in building sectors. The use of waste agri-materials to create the
suggested building material can save energy consumption of buildings by up to 3.5% and
reduce carbon dioxide during production and usage. Standard fired bricks used for the
construction of the buildings are baked using coal or other harmful fuels. CO2 emission to
produce 1000 bricks is 120 MtCO2e, while in the production of sustainable material bricks
using manual compression, no emission of CO2 occurs during the production. Similarly, a
considerable amount of CO2 emissions is also saved by preventing the burning of waste
agri-materials and using them as building materials.

PCMs using their thermal characteristics can store and use heat to change their phase at
a constant temperature, which provides a better opportunity for building design primarily
from a thermal comfort point of view. However, a low-cost PCM should be integrated with
new and innovative construction materials such as those derived from agriculture waste
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materials to be possible. This unique combination not only reduces energy consumption
and cost but also has an impact on GHG emission reduction. It is further concluded
that integrating PCM within the Corn Husk composite block wall stabilizes the indoor
temperature and provides reasonable thermal comfort for humans. This combination
can keep a constant 27 ◦C temperature indoors without cooling even when the outdoor
temperatures are very high. Therefore, the corn husk composite blocks with integrated
PCM are recommended as good construction material for low-cost low-energy buildings. In
future work, it is envisaged that a detailed error analysis of experiments may be performed.
Furthermore, samples of these agriculture waste-compressed composite bricks need to
be characterized for structural and mechanical properties. Experimental testing of a
building with a PCM-integrated composite wall may be conducted to find the heat transfer
characteristics of the building envelope and the level of thermal comfort achieved. A
detailed economic analysis including life-cycle costing and emissions of construction using
the compressed composite bricks in comparison to energy savings when compared to fired
brick structures may be conducted.
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Nomenclature
PCM Phase Change Material
TES Thermal Energy Storage
CaCl2·6H2O Calcium Chloride Hexahydrate
MtCO2e Million tons of carbon dioxide equivalent
PV Photovoltaic
GHG Green House Gases
MW Megawatt
CFD Computational Fluid Dynamics
ρ Density (kg/m3)
v Volume
4T Temperature difference
Cp Specific Heat Capacity (kJ/kg-K)
k Thermal Conductivity (W/m-K)
e1 Thickness of sample
e2 Thickness of polystyrene
U Voltage
R Resistance of heating element
S Surface area
k1 Thermal conductivity of the sample
k2 Thermal conductivity of polystyrene
Q Applied heat
.

Qcond Heat Conduction Rate
dT
dx Temperature gradient
U Applied voltage
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R Resistance of the heating element
EIA Energy Information Administration
kN Kilonewton
α Thermal diffusivity (m2/s)
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
GJ Gigajoule
CCS Clay Cement Sand
CO2 Carbon dioxide
Agri Agriculture
m meter
mm millimeter
Ω ohm
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