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Abstract: Signs of wetness in housing are a significant obstacle to the renovation and energy rehabili-
tation of old and energy-intensive heritage buildings, especially in cold climates. Thus, in order to
avoid the numerous possibilities of degradation caused by the moisture transfer phenomena in the
building envelope, the a disruptive aeraulic process, which focuses on the ventilation of an air gap
between the thermal insulation and the wet wall, has been designed and its assessed. This system
avoids the presence of liquid water at the wall surface by maintaining the hygrothermal balance
within the wet wall. This enables the mechanical durability of the supporting structure, the absence
of biological activity and/or frost and, hence, the durability of the thermal insulation. These issues
are investigated through a case study based on a real site. Over a year of measurements, the wet wall
was constantly maintained in hygroscopic balance, around 90% RH, guaranteeing the preservation
of its mechanical performance, while the insulation layer was kept moisture free. In addition, the
proposed model for predicting the appearance and development of biological activity demonstrated
its validity, confirming experimental results.These initial results will now lead to the optimization
of the aeraulic device, as well as possible use in a summer cooling context to achieve hygrothermal
comfort for housing occupants.

Keywords: heat and moisture transfer; building materials; rising damp; innovative ventilation
system

1. Introduction

The current policies that pertain to the energy performance targets for buildings has
led to several changes in construction practices, namely by increasing the insulation of
the building envelope and improving the airtightness. In old buildings, these changes
to the envelope can induce phenomena that did not previously exist, especially those
related to humidity: mold development [1,2], deterioration of indoor air quality [3,4]
and condensation within the walls, which can lead to a decrease in the durability of the
materials [5,6] and their energy performance [7,8]. Therefore, it is now mandatory to
evaluate moisture transfers within the building walls, which could become crucial during
renovation or rehabilitation projects.

The humidity in buildings is generally a source of structural deterioration, and an
unhealthy living environment for housing occupants. The increasing number of chronic res-
piratory diseases can be explained, among other things, by the state of the indoor environ-
ment, with the presence of molds and other microorganisms as the main sources [9]. High
humidity plays an important role in the development of these biological pollutants [10].
This gives rise, even today, to many questions about the solutions to be provided, in pal-
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liative or curative form (pathology of structures), often at high costs and for which the
sustainability is not necessarily guaranteed.

Significant moisture content (especially in the form of water vapor) could be present
in a housing structure. Normally, water vapor is eliminated by air exchange, either by a
natural air leak through the building envelope, by mass diffusion through the structure
or by natural or controlled mechanical ventilation. It can also be removed with classical
dehumidification equipment, but residential dehumidifiers have limited ability to remove
moisture during winter due to low air temperatures [11]. Thermoelectric coolers and
dessicant materials-based systems can also be used, but the humidity transfer rates are
generally low [12]. Many current high-humidity and condensation problems in severely
moisture-contaminated buildings can be better resolved by controlling moisture sources
than by using a dehumidifier or increasing the air exchange rate. Moisture sources can
be: (i) rainwater diffusing through roofs and walls; (ii) leaks or bursts of water pipes;
(iif) indoor sources such as showers, cooking, washing ...; (iv) moisture in the building
materials; (v) moisture in the foundation walls; and (vi) rising capillary by mass diffusion
through the basement structure [13].

One of the most frequent sources of moisture, and the most difficult to treat, is the
rising humidity from undrained soils, commonly known as capillary rise, that occurs by
capillary suction, osmotic pressure or electro-osmosis [14]. The water rises through the
permeable building materials, progressing until there is a balance between absorption
(quantity of entering water) and evaporation of water (quantity of leaving water). This
phenomenon is governed by factors such as the amount of water in contact with the
building element, the conditions of surface evaporation, porosity, thickness, orientation
and the presence of salts [15].

Currently, the solutions used to overcome the humidity source problems consist of
creating a physical barrier that limits the progression of the water in the walls: implemen-
tation of a waterproof film on the walls, waterproofing of the basement of a building (case
capillary lifts) or installation of drains. Alternative solutions have also appeared on the
market. Examples of these include resin injection in order to reduce the porosity of the wall,
or even the installation of electric polarization devices, which repel water by electrophoresis
or electro-osmosis. However, these operations are often complex and costly and are not
guaranteed to provide a long-term solution. Indeed, due to the complexity and variability
of the factors, the results obtained may be unpredictable and/or unsustainable [14]. Choos-
ing the most appropriate technique must be based on a comprehensive diagnosis of the
origin of the problem by studying the expected effectiveness of the solution provided while
also keeping in mind the costs involved. Typical techniques for treating rising humidity
are based on four intervention principles [14]: (1) preventing water from entering the
walls, (2) removing excess water from the walls, (3) preventing rising water in the walls
and (4) hiding apparent anomalies. The technical solutions currently implemented on
the renovation market require significant work and are therefore, for most of them, very
expensive. The most efficient processes can also be difficult to apply, and may only be
viable in very specific conditions, all of which require a specialized workforce. In some
cases, an intervention may require dramatic physical changes to the building, strongly
impacting the architectural aspect of a heritage structure.

Few research works currently focus on these subjects, due to the complexity of the
physical problems involved (coupled heat and moisture transfers, aeraulics, etc.). Neverthe-
less, in several European countries, investigations have been carried-out to develop two dif-
ferent solutions: the University of Stockholm is studying the implementation of a ventilated
and heated double skin [16-19], and the Laboratory of Building Physics (LFC) of the Porto
University of Engineering proposes ventilating only the base of the wet wall [20-25]. These
technical solutions involve strengths and weaknesses linked to their mode of operation
and regulation, their implementation, their effectiveness or their long-term sustainability:
deep changes in the building envelope to create a unique ventilation network for the floors
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and walls, installation of a 15 W/m heating cable in permanent operation and intervention
on both sides of the wet walls, without any guaranteed long-term results.

In this context, this work presents an experimental campaign carried out on a novel
full-scale in situ single operation-based solution to deal with humidity problems in the
context of renovations or rehabilitations. The aim of this study is to determine the ability
of a genuine dynamic aeraulic system to sanitize the walls by extracting and controlling
humidity from the air confined between the support wall and the insulator. The specific
objectives can be summarized as follows:

¢ Ensuring the durability of rehabilitation works carried-out on renovated buildings;
e  Preventing the appearance and proliferation of biological activity;

¢ Maintaining the moisture balance of the wall in its environment;

* Providing a cheap and yet effective solution.

Here, the investigation is limited to pathological mechanisms from capillary rise
within the building envelop to ensure the conservation and the durability of historic
buildings (and avoiding the deconstruction and inherent environmental impacts) and the
durability of the building envelope, materials and their suitability. Lowering the moisture
content will have an impact on air quality, but this specific is not addressed quantitatively
in the paper. Finally, the complete energy consumption, and therefore yearly operation
cost, of the device is not monitored in this first performance assessment.

The preponderant interest of the proposed system is that the ventilation, calibrated
according to the moisture content of the air gap, which in turn depends on the water
diffusion rates, keeps the insulation linings and facings perfectly healthy. The second
interest is that renovations can be undertaken without delay and without preliminary work
to dry out the supports.

The exploratory approach proposed here is based on an aeraulic pre-dimensioning
of the used ventilation system in order to assess the dynamic and linear aeraulic pressure
losses. The system is implemented in the walls of a damp old house during its thermal
renovation. An in situ monitoring of the thermo-hygric behavior of the real wall then allows
the global efficiency of the sanitation system to be evaluated, and further investigation
into the use of this technology for other applications. This first step is the starting point
for optimizing the design of the process, based on the knowledge of thermal, hygroscopic
and aeraulic interaction phenomena, which will then be reproduced in the laboratory
and modeled to propose an efficient and sustainable solution to the problems of moisture
infiltration in the walls of buildings.

2. Materials and Methods
2.1. Principle of the Ventilation System

The proposed technology is a forced-convection aeraulic system for the sustainable
energy renovation of old buildings with damp walls. Thin buffer spaces are enabled
between each damp wall and its thermal insulation. This creates potential channels to
evacuate moisture from the wall before it reaches the insulation layer (Figure 1). Moisture
is thus removed from each buffer space by replacing the moist air with fresh air. For this
purpose, a fresh-air blowing duct (shown in red in Figure 1) and a wet-air suction duct
(schematically depicted in blue in Figure 1) are located in the buffer spaces, each of which
involves small apertures properly distributed to provide a uniform flow.

Blowing is carried out with air jets that effectively expel moisture from the bottom of
the walls. This wet air removal is performed daily in a uniform manner in each buffer space.
Thus, all thermal insulation and siding materials that usually cover the wet walls remain
completely protected from moisture, ensuring their durability. As the ventilation system
prevents vapor diffusion through the insulation layer, an almost immediate improvement
in air quality is perceived and the comfort of the occupants rapidly increases. On the other
hand, the “benefits” brought by the presence of moisture in the walls of old buildings are
preserved and even valued:
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1.  Wet walls retain their hygroscopic balance, and their operation is preserved. Special-
ists in sustainable rehabilitation advocate for letting these walls “breathe” to preserve
the integrity of old buildings and thus ensure their sustainability (the drying of some
old walls is sometimes detrimental and may even lead to premature collapse).

2. In hot weather, especially during heatwaves, cooling should be ensured in the
premises by evaporation of moisture from the walls. The discomfort to occupants,
which is usually created by the moisture produced by evaporation and by the direct
presence of the cold wall surfaces, should not exist. The effective cooling is of course
less than that produced by air conditioning installation, but the energy consumed is
negligible with respect to such systems.

Suction Ceiling
LLLLLLLL L LS L L s s d 8L Ll d
Outdoor ? Indoor
-
« |, Thermal
Moist wall + 8 msulation

Capillary nise

Flooring

Blowing

«—— Mass Transfers
Figure 1. Principle of ventilation technology.

2.2. Aeraulic Dimensioning

The removal of moisture between the wall and the thermal insulation is carried out
by periodically renewing all humidity-laden air in the buffer space with fresh air taken
from outside. This periodic use allows one to avoid continuous operations that would lead
to important ventilation costs. Figure 2 schematically depicts the elements of the system
installed on a damp wall (1) between the floor (9) and the ceiling (10) of a room to be
rehabilitated. The sanitation (buffer) space (7) is located between the surface of the wall
and a screen (2) with an appropriately selected water vapor permeability. This screen is
covered by a thermal insulation layer (8). In this space (7), an inflow pipe (3) with small
blowing apertures (5) is located on the floor, and an outflow pipe (4) with small suction
apertures (6) is located right under the ceiling.
|_ A

2114
STN6

I 1\10

Figure 2. Arrangement of the elements of the blowing and suction system.
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The pressure in the blowing line is controlled such that a vertical air jet is created at
each blowing aperture. With appropriately distributed jets (5) and suction apertures (6)
as shown in Figure 2, the evacuation of moist air is carried out uniformly throughout the
sanitation space thanks to two complementary phenomena: the Coanda effect and the
induction phenomenon [26].

In order to calculate the blowing and suction networks, the ventilation system pro-
ceeds successively with the following calculations:

¢  Calculation of each perforated pipe of the network carried out “step by step” for each
of its segments, taking into consideration the air side pressure losses caused by the
blowing and suction networks;

APs  ApV?

AL~ 2D )

¢ Calculation of the overall aeraulic characteristics of the pipes thanks to series and
parallel approaches, in particular the characteristic of the volumetric air flow rate Q at
the inlet as a function of applied input pressure P : Q(P) = gP";

e Direct calculation of the whole network flows, Q(P), for pressures of 100 Pa and
400 Pa;

e Direct calculation of global characteristics of the whole network Pt = aQt?;

¢  Establishment of the operating point Pt, and of the associated volumetric air flow rate
Qt regarding the choice of the fan;

e Direct calculation of the pressure P and the volumetric air flow rate Q for each segment
regarding operation of the current network;

*  “Step-by-step” calculation of blowing and suction air flows with respect to the opera-
tion of the current network during sweep scan;

*  Determination of the daily sweep time Dj, for the whole network.

This iterative calculation allows the determination of the operating point of the net-
work and provides the appropriate blowing or suction flow rate values for each perforated
pipe section, as well as the corresponding sweeping times. The sequence of operations
required to calculate a network occurs automatically, according to the nature and configura-
tion of the various perforated pipes in it and based on all the data relating to the constituent
perforated pipes and their connection technology.

2.3. Experimental Validation

An aeraulic measuring bench was realized to validate the chosen methodology and
the calculation of operating point and volumetric air flow rate (Figure 3). This experimental
device consists of a fan with adjustable blowing pressure, from 0 to 5 kPa (HELIOS SlimVent
SVV80). The flow/pressure torque is controlled by 4 shunt by-pass exhaust valves at the
entrance which allow the regulation of the volumetric air flow rate from 0 to 72 m3/h.
The pressures are measured using 4 water column manometers (500 mm high), and the air
flows are measured by 2 genuine custom venturis.

Water column

By-pass
yp manometers

valves

Tested aeraulic
network

Venturis
Fan

Figure 3. Aeraulic apparatus used for the experimental validation for the design methodology.
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The characteristic of custom venturis is assessed from blowing tests at different vol-
umetric air flow rates, from 5 to 90 m3/h as presented in Figure 4. The volumetric air
flow rate vs. differential pressure of venturis is fitted according to the following function,
from the principle of energy conservation of Bernoulli’s theorem:

Q =K x VAP )

where K represents a coefficient taking into account the density and compressibility of
the fluid, the coefficients of discharge and approach velocity, gravity and the cross-
sections of the venturi. The custom venturis used in the aeraulic apparatus show
K =5.20 + 0.01 m®/(h-(mm H,0)!/2).

] 00 T T T T T T T T T T
1 |Equation y=ax®
904 |a 520481 +0.01
1 |b 05+0
80+ Reduced Chi- 0.45204 .

R-Square (CO 0.99937
| |Adj. R-Square 0.99937

Volumetric air flow rate (m*/h)
=S

0 25 50 75 100 125 150 175 200 225 250 275 300
Differential pressure (mm H,0)

Figure 4. Characteristics of the custom venturis expressed as volumetric air flow rate vs. differen-
tial pressure.

The measurement of the differential pressure between the inlet and the outlet of the
aeraulic network leads to the establishment of the operating point of the experimental
device. The measurement precision using water column manometers is 1 mm, which leads
to an experimental precision of the network operating point of the order of 10 Pa, and of
the volumetric air flow rate of 3.5 m3/h.

Tests are carried out on four different aeraulic networks (diameter, internal surface
roughness) with different drilling configurations:

¢ IRL 25 tube unperforated (Length = 1 m, external diameter = 25 mm and internal
diameter = 21.7 mm)

e IRL 25 tube with a length of 1.8 m consisting of 30 sections of 6 cm delimited by 5 mm
diameter holes.

¢ TPC 40 unperforated ringed sheath (length = 24 m, external diameter = 40 mm and
internal diameter = 32 mm)

e TPC 40 ringed sheath (4.5 m long unperforated followed by 15 m made up of 30 sec-
tions of 50 cm delimited by 5 mm diameter holes)

The experimental results are compared with the corresponding results obtained from
the analytical approach in Figure 5, where the evolution of the network operating point ac-
cording to the imposed flow is presented for the four tested configurations. The correlation
coefficient (R?) is close to 1 in all four cases, which tends to demonstrate the robustness
of the aeraulic approach formulated herein. Nevertheless, results show a small differ-
ence between experimental and analytical data in the case of non-perforated TPC40 tubes,
for relatively high flow rates, greater than 50 m3/h. Although the error is non negligible
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(in the order of 10% maximum), the ventilation system used in the case of the sanitation of
the walls never reaches these high rates.

9000 T T T T T T T &
—_ 1 TPC40 sheath R2=0.968 1
£ 7500 Design (unperforated)
SN— 1 .
2 60004 ®  Experimental (unperforated) |
‘3 1---- Design (perforated) ]
cgo 4500 4 A Experimental (perforated) i E N
.8 ] & E
& 3000 & _
= oA
g 1 R?=10.994
S 1500+ y
0 T t T T t T t } t } |
= ] IRL2S5 tube R2=10.998 -
& 4000 - Design (unperforated) - -
‘é‘ m  Experimental (unperforated) - A
& 3000 4 — -~ Design (perforated) e & B
g) ] A Experimental (perforated) o -A ]
S 2000 kT -
5 ] & R2=0.999 {
& 1000 -
0 4

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Volumetric air flow rate (m>/s)

Figure 5. Evolution of the network pressure operating point, according to the volumetric air flow
rate for the for aeraulic configurations tested.

2.4. Case Study Using the Ventilation Device

After laboratory validation, the experimental device was implemented in a detached
old house located in Puiseux-en-Retz in the Picardie region of Northern France. The dwelling
equipped with the aeraulic system is a two-floor stone house and comprises two buildings
arranged in an L-shape. Semi-buried walls facing south (on the left in Figure 6) are the
most affected by water infiltration and risk of frost. The system is implemented on both
floors, but only the cellar, on the bottom floor, was subject to hygrothermal monitoring
(Figure 6).

Figure 6. Building in which the aeraulic device is located.

Figure 7 shows traces of moisture and biological activity visible on the partly-buried
stone wall of the cellar. Before renovation, the water beaded directly onto the surface of
the wall, forming a thin film of water on the surface; the relative humidity on the inside
surface of the wall can therefore be considered equal to 100%. Signs of biological activity
are also visible on the surface of the wall, particularly through mold that develops in this
environment (mild temperature and liquid water).
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Figure 7. Moist wall with development of the biological activity.

The thermal renovation project consists of the installation of a 6 cm fibrous insulation
with 13 mm plasterboard interior panelling. The ventilation of the air gap between the sup-
porting structure and the thermal insulation was carried out by means of PVC perforated
tubes (PVC DN40, internal diameter of 34 mm) located at the top and at the bottom of the
wall. With calculations carried out with the above-mentioned methodology, the average
blowing and suction volumetric air flow rates for each aperture is 0.00018 m3/s, which
leads to an operating pressure of around 286 Pa. A ventilation period of 30 min of opera-
tion per day is required in order to carry out 4 air exchanges each day. Hence, the energy
requirement for the system remains quite negligible for the whole year at 6.3 kWh yearly.
All relevant calculation results are summarized in Table 1.

Table 1. Specifications of the aeraulic device.

Blowing Suction
Ducts PVC DN 40
- Lenght (m) 255 25.5
- Internal diameter (mm) 34 34
- Spacing between holes (cm) 50 50
- Hole diameter (mm) 5 5
- Average air flow rate (m3/h) 0.65 0.65
Fans SlimVent SVV80 (HELIOS)
- Operating pressure (Pa) 286 286
- Volumetric air flow rate (m3/h) 33 33
- Operating time (min/day) 30 30
- Consumed energy (kWh/scan) 0.017 0.017
- Consumed energy (kWh/year) 6.3 6.3

Figure 8 shows the installation of the blowing and suction piping. In order to avoid
dust in the air gap and ensure durability, an HPV screen (High Water Vapor Permeability
flexible screen) is also installed between the air gap and the insulation layer. Finally,
a structure composed of metal rails is used to fix the thermal insulation and to support the
plasterboard interior paneling.

The overall cost of the whole system is 250 euros, excluding insulation and insulation
structure. The annual energy cost for the ventilation system is below one euro, while
the extra heat cost, based on the expelled mass flow rate, induced by the half-hour daily
operation is less than 20 euros per year, making this solution affordable. Maintenance costs
(cleaning or replacement of the filter) after about 180 h of yearly operation have not been
accounted for in the preliminary work.
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Figure 8. Instrumentation of a semi-buried wet wall.

The buried wall of the cellar was instrumented with different calibrated temperature
(T-type thermocouples) and relative humidity (VAISALA HMP60) probes. The latter were
arranged at various heights and depths in the wet wall and in the ventilated air space,
as presented in Figure 9. Additional probes were installed inside the cellar and outside
the house (sensors 1 and 8). Temperature sensors were located on the surface of the stone
wall and on the interior finishing plasterboard (respectively Ty,,; and T;). The sensors were
connected to a Graphtec GL 800 mini data logger. Data recording followed a frequency of
1.67 x 1073 Hz. Data acquisition was carried out over a period of more than a year.

8

0.80m
Thermocouples
and relative
humidity probes

Cellar
Tsis

1.60m

1.00m

j

0.40m

v

0.80m -

Figure 9. Schematic of the installation of the aeraulic dehumidifying system.

3. Results and Discussion
3.1. Outdoor Climate and Indoor Ambiance

Figure 10 presents changes in indoor and outdoor relative humidity and temperature
over the entire measurement period. In summer (left part of Figure 10), the temperature
varied between 10 °C and 30 °C, while the relative humidity fluctuated between 40%
and 80%. In winter, the temperature and relative humidity varied between —5 °C and
10 °C and between 70% and 90%, respectively. This case study was then performed with
a temperate climate and significant rainfall. In Figure 10, solid lines show daily mean
temperature and relative humidity, indoor (grey) and outdoor (black). The shaded areas
represent variations in temperature and relative humidity measured by sensors 1 and 8,
which recorded these environmental data with a frequency of 10 min. As expected, these
variations were significant outside the building, especially in summer. This can impact
the operation of a smart ventilation system, self-regulated by the use of instantaneous
environmental data. A regular operation was chosen, independently of the external climate,
as specified in Table 1 (30 min per day). During the fall and winter seasons, the relative
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humidity reached 90% enabling much mass transfer through the wet wall. In summer,
although the relative humidity was lower (around 70%), the high temperature caused a
significant increase in the saturated water vapor pressure, resulting in a high water content
in the outside air. These conditions can also govern substantial mass transfer by diffusion
within the walls.

——— Mean indoor ambiance Mean outdoor climate

;\;\ 100 I I 1 1 1 1 - I 1 I
2z
=
E
=
o
2
=
=
&’ summer autumn winter
0 1< 2 — >< > 40 6
; &
Bad °
- | =
S g
4 o
g
(]
—~

Time (day)

Figure 10. Evolution of the outdoor (black) and indoor (grey) relative humidity and temperature.
Solid lines represent the daily mean measurements while shaded areas represent variations measured
each day by sensors 1 and 8.

Figure 10 shows also the evolution of temperature and relative humidity inside the
measurement room (sensor 1 is located in the cellar) where the boiler serving the entire
house was installed. The impact of the heating system on the indoor temperatures and
relative humidity is not negligible. After installation of the boiler, the indoor temperature
remains relatively stable and high (around 23 °C £ 4 °C). In addition, the relative humidity
was low, less than 40%. Relative humidity was strongly influenced by the boiler, which
radiates heat and dries the indoor ambiance. This observation is confirmed by the fact that
the relative humidity of the cellar increases up to 60%RH in summer, when the boiler is not
in use.

3.2. Analysis of the Hygrothermal Behavior of the Wall: Efficiency against Water Transfers

First, the temperatures and relative humidities were measured in the wet or damped
wall using probes 4 to 7. Probes 4, 5 and 7 were located close to the inner surface, while
probe 6 was about 32 cm deep. The initial observations highlighted the presence of liquid
water on the inner surface of the wall due to liquid flow transfers within the wet wall,
and condensation due to the temperature difference between the heated room and the
wet wall. The ventilation system then makes it possible to suppress the presence of liquid
water, as can be seen in Figure 11, where relative humidity levels are always well below
100%, regardless of the season. The relative humidity at the core of the wall was higher,
above 92%, while the relative humidity at the surface was kept below 90% (probe 7 was
damaged during the renovation phase; the data collected are unfortunately not usable).
The measured temperatures inside the wall are relatively homogeneous (see Figure 11)
and highly dependent on the outside temperature. Thus, the evolution of the relative
humidity represents the hygroscopic flows in the wall: an equilibrium appears to have
been reached, helping to maintain the mechanical performance and to suppress liquid
water on the wall surface. Moisture content is higher during colder periods due to the
impact of temperature on the water storage capacity of moist air.
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Figure 11. Evolution of relative humidity (left) and temperature (right) in various depths of the wet
wall: Probe 4 is placed at the bottom of the wall, probe 5 at 1 m height, probe 6 at 32 cm depth and
probe 7 at 1.6 m height.

Probes 2 and 3 made possible to record the changes in temperature and relative
humidity in the air gap, in the lower and upper part, respectively. Figure 12 shows a higher
relative humidity in the upper part of the air gap. Nevertheless, in view of the significant
temperature differences between the top and bottom, it cannot be concluded that the air
becomes loaded with moisture as it moves along the wet wall. Indeed, in spite of the fact
that the air intake is located on the roof, the ventilation system will generate a heating of
the air blown in, as it progresses through the blowing network. The air blown is then a
little warmer than the wall, and cools on contact with the cooler surface. The temperature
drop will then change the water vapor storage capacity, which explains the increase in
relative humidity shown in Figure 12.

95% T T T T T T T T 25 T T T T T T T T
g Dew point temperature:
—-—- Probe 2
2 90% n Probe 3
= —_ .
E o
.
o
> 85% §
g 2
[}
80% T \_~\ . 4
N ryT TN
Probe 2 Probe 2 \" ATy
Probe 3 > Probe 3 1 1
75% . T T T T T T T T T T T : T T T
0 50 100 150 200 0 50 100 150 200
Time (day) Time (day)

Figure 12. Evolution of relative humidity (left) and temperature (right) in the ventilated air space:
Probe 2 was placed at the bottom of the air space while probe 3 was fixed at the top of the air space.

On the other hand, the absence of water vapor condensation in the ventilated air gap
is addressed by calculating the dew point temperature, expressed as follows [27]:

T, = /¢ - [112+ (0.9T)] + (0.1T) — 112 ®)

It was found that the temperature in the ventilated air space was always higher than
the dew point temperature, both at the top and bottom, thus guaranteeing no condensa-
tion. In the lower part, the average difference between the dew point and the measured
temperature was about 3 °C, while a difference of 1.9 °C was calculated in the upper
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part. The hygrothermal dynamics in the air gap can then be approached by studying the
evolution of the absolute humidity ¢’ [28]:

abs Ulw 1'1)
— v 4
M, % P, @

where My, and M, are the molar mass of water and air, respectively, P, the vapor partial
pressure and P, the dry air pressure. P, depends on the vapor saturation pressure P5%:

Py = ¢ x P"(T) Q)

and

T —37.58 ©)

Figure 13 presents the evolution of the absolute humidity with respect to time for
probes 2 and 3, respectively. The absolute humidity was higher in summer than in the
fall and winter periods, leading to higher moisture transfers during summer. In the case
of a semi-buried wall, moisture transfers were horizontal and vertical but capillary rises
were stronger during summer, as shown by the significant difference between probes 2
and 3. During this season, a greater amount of water in the lower part of the ventilated
air gap was observed, as outside temperatures were at their highest. The air blown from
the roof has a high temperature (between 20 °C and 30 °C) and a daily relative humidity
of more than 60%. The absolute amount of water present in the air was then significant,
greater than that present on the wall surface. The overall system was balanced with water
vapor transfers towards the wet wall. Nevertheless, during the summer period, the risk
of condensation remained low (see Figure 11). These mechanisms would then limit the
temperature rise of the wall and could generate surface cooling, contributing to summer
comfort for building occupants. Condensation risks are stronger during winter period,
when temperature is low, with a weak moisture holding capacity of air. A refined analysis
of the ventilation system impact is thus proposed on the 150th day when a sudden fall of
temperature within the air gap is shown.

P5™(T) = exp (23.5771 _ 4049 )

17.5 — T T T T T 1 T T T T 1

15.0 - i

12.5 summer ’k_ A autumn winter :
—————> %A

10.0 WW 7

7.5 //”f/\"\\m

v
A
A

Absolute humidity (g/m”)

Probe 2 /
Probe 3
5.0 — T T T T " T T T T T T 1
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Time (day)

Figure 13. Evolution of absolute humidity in the ventilated air space: Probes 2 and 3 are fixed at the
bottom and the top of the air space, respectively.

Figure 14 shows the changes in absolute humidity in the wet wall during operation
of ventilation device on a much smaller time scale. The absolute humidity content in the
wall (probes 4, 5 and 6) was relatively constant, which is a sign of hygroscopic equilibrium.
The absolute humidity of the air blown into the air gap also showed very small variations,
with a noticeable increase in absolute humidity a few minutes after switching on the
aeraulic system, between the 100th and 150th min (probe 2). On the other hand, probe 3
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shows a different behavior: before ventilation of the air gap, hygroscopic balance is visible
with a relatively stable absolute humidity content, followed by a sudden increase in the
absolute humidity content for about 40 min after t = 100 and then a return to equilibrium.
An increase in absolute humidity is synonymous with an increase in the amount of water,
in the form of vapor, in the ventilated air space. On contact with the wet wall, the air is
charged with water molecules, which are then evacuated by the suction system at the top
of the wall. This phenomenon shows the dynamics induced by the system that produces
a water transfer towards the ventilated air gap. This is caused by the modification of
the hygroscopic exchange coefficient at the interface between the wall and the air gap.
The forced convection of air will increase this exchange coefficient and thus evacuate the
water vapor present on the internal surface of the wall. The absolute humidity within
the air gap increases at an average speed of around 4.86 g/kg 4ir-h, thus ensuring the
absence of surface condensation. The low ventilation speeds used then govern this low
rate of water vapor evacuation.

—=— Probe 2 Probe 4 --x- Probe 6
—=— Probe 3 --%-- Probe 5
635 T T T PASE SR
-//\\// \\/, \\\// N J/ \\,’ \\/5 ]
6.30 % i % X% % % %
—~ 625
V. g
oy 6.20 '/‘/.\{ 'A.\’/\ . s ! b 3
= " % X= X%
= . ) .
2 615 A "
E 610 =
= =
2 1, .= 1 M
S 6.05 [ =N . N\
E 4 \/ . / \\
2 .
< 6.00 . . \
1 |\/ Evacuated water 1
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Figure 14. Evolution of absolute humidity in the wet wall during ventilation of the air space.

3.3. Approach of the Health Sustainability: Mould Growth and Development

The prediction of the development of biological activity cannot be carried-out with a
single absolute humidity threshold. A number of studies have been carried out to propose
biological activity models that are, for the moment, deterministic. Models such as the
IEA Annex 14 [29], the Time-Of-Wetness model (TOW) [30] or the Johansson model [31]
are based on relatively simple predictive parameters, while VIT models [32,33], iso-
proliferation (Ayerst [34], Smith et Hill [35], Clarke et Rowan [36], Hens [37], etc.) or
bio-hygrothermal [38] models are more advanced deterministic models. All of these
models still involve weaknesses, predict physically unrealistic phenomena, and/or show
contradictions [39]. However, Johansson’s model was chosen here because of its indepen-
dent development of the nature of mold and its extensive testing campaign on facades with
different thermal inertia, colors and orientations. Johansson studied the formulation of
three indicators of mold growth: the first takes into account only the influence of relative
humidity. The second adds a temperature-dependent element. Finally, the third indicator
shows a function reflecting the delay in the growth of biological activity under unfavorable
conditions. The Johansson indicator is defined as follows [31]:
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with fr and f, being two functions that are dependent on temperature and relative humid-
ity, respectively. The function f, takes the value 0 over the delay time ¢, of the appearance
of biological activity after unfavorable conditions, while the value 1 is assumed in all
other cases. A recovery time (¢,) of 24 h has been used herein [39]. Table 2 summarizes
the results obtained for the three seasons investigated. Johansson’s indicator shows low
biological growth when ventilating the air gap during all three seasons with I3 values less
than 1. On the other hand, data preceding the start-up of the ventilation system predict a
higher bacteriological coverage area of up to 30% of the wall (I3 = 2.9). Thus, the ventila-
tion device of the air space also seems to ensure the quality of the indoor air against the
development of fungi and other moulds on the surface of damp walls.

Table 2. Coverage area obtained from Johansson’s mould growth indice.

Ventilation Operating I3 Coverage Area
Summer off 29 10% < Coverage < 30%
Summer on 0.9 Coverage < 1%
Autumn on 0.8 Coverage < 1%
Winter on 0.5 No mould growth

4. Conclusions and Perspectives

Signs of dampness through infiltration and capillary rise are major obstacles to energy
renovation projects in old buildings. Several solutions are currently proposed on the
renovation market. However, these solutions are generally expensive and not sustainable
(decrease in efficiency over time, impacting the load-bearing structure). Hence, this paper
describes and validates a system that creates an appropriately designed ventilated air gap
between the wet walls and the thermal insulation of buildings in order to maintain the
hygroscopic balance of the wall and to prevent water transfers to the insulation. This system
involves both blowing and suction systems to mechanically ventilate the aforementioned
air gap.

As a first step, an aeraulic dimensioning methodology was developed and validated.
The general principles, calculations in series and in parallel of the intake and discharge flow
rates, considering the linear and dynamic aeraulic pressure losses, have been validated
by an experimental approach. The system was then implemented on a pilot site. This in
situ experimental work allowed us to observe the superficial drying of the wet wall on a
large scale. The absence of surface condensation on the wet wall ensured that the thermal
performance of the internal insulation was maintained. The mechanisms of interaction
between relative humidity and temperature, particularly at the interface between the
cold and humid wall and the ventilated air space, were found to govern the efficiency of
the aeraulic process. Over a full year of measurements, the wet wall was maintained in
hygroscopic balance, around 90% RH, guaranteeing the preservation of its mechanical
performance, while the insulation layer was kept moisture-free. In addition, a model for
predicting the appearance and development of biological activity has been proposed but is
yet to be validated quantitatively.

Hence, results can allow us to state that the proposed system satisfies the four specific
objectives formulated in the introduction of this paper. Moreover, with respect to the fourth
objective, a capital expenditure or cost of about 250-300 euros and operative expenditure
or annual operation costs of less than 20 euros (ventilation and consequent heating cost)
per dwelling make the proposed solution economically attractive.

These preliminary results show the interest of deepening the investigations in order
to optimize such a system (increase performance, improve control and ensure lower
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installation and low maintenance costs). On the one hand, additional laboratory studies
must be carried out to identify the main factors governing the effectiveness of the device
while limiting the measurement inherent biases in on-site instrumentation. The conditions
of temperature and relative humidity of the cellar were relatively favorable for water
transfers due to the presence of the boiler. Moreover, the influence of various parameters,
such as the physical-mechanical properties of the materials, the solar radiation on the wall
and the rain, were not taken into account in this approach. On the other hand, a refined
and extended modeling of the global unsteady behavior of the integral wall will allow a
versatile design method to be set up for engineers and installers. This numerical model will
be based on material data sets from an experimental analysis platform to study capillary
rise in a laboratory and under a controlled environment. In order to make this ventilation
system autonomous, some additional probes could automatically switch on the system
when a pre-selected humidity threshold is reached. This development will guarantee the
performance of the system and the optimization of the operating times.
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Nomenclature

Greek

A head loss coefficient

0 air density, kg/m3

@ relative humidity, %

@b absolute humidity, g/kggy sir
Roman

D segment inner diameter, m
Dy, sweep time, s

L segments length, m

M molar mass, g/mol

P pressure, Pa

P, vapor partial pressure, Pa
psat vapor saturation pressure, Pa
static pressure, Pa

operating point

volumetric air flow rate, m3/s
temperature, K

mean air velocity, m/s

<=o3F
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Subscripts
a air
i indoor
m wall
5 surface
w water
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