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Abstract: This paper presents control relationships between the low voltage distribution grid and
flexibilities in a peer-to-peer local energy community using a stratified control strategy. With the
increase in a diverse set of distributed energy resources and the next generation of loads such as
electric storage, vehicles and heat pumps, it is paramount to maintain them optimally to guarantee
grid security and supply continuity. Local energy communities are being introduced and gaining
traction in recent years to drive the local production, distribution, consumption and trading of
energy. The control scheme presented in this paper involves a stratified controller with grid and
flexibility layers. The grid controller consists of a three-phase unbalanced optimal power flow using
the holomorphic embedding load flow method wrapped around a genetic algorithm and various
flexibility controllers, using three-phase unbalanced model predictive control. The control scheme
generates active and reactive power set-points at points of common couplings where flexibilities
are connected. The grid controller’s optimal power flow can introduce additional grid support
functionalities to further increase grid stability. Flexibility controllers are recommended to actively
track the obtained set-points from the grid controller, to ensure system-level optimization. Blockchain
enables this control scheme by providing appropriate data exchange between the layers. This scheme
is applied to a real low voltage rural grid in Austria, and the result analysis is presented.

Keywords: local energy communities; Blockchain; stratified control; optimal power flows; holomor-
phic embedding load flow method; model predictive control; smart grids

1. Introduction

In recent years, local energy communities (LECs) are gaining interest in Europe and
the world by introducing new regulations for its formation, operation and control. LECs’
introduction is due to increased distributed renewable energy sources (DERs) and new
loads such as electric vehicles, storage and heat pumps, hereafter referred to as next-
gen loads, in low voltage distribution grids. This is to motivate the local generation,
distribution, consumption and trading of energy. The research presented in this paper is
conducted under the Blockchian Grid project funded by the Climate and Energy Fund
and implemented in the RTI-initiative “Flagship region Energy” of the Austrian Research
Promotion Agency. The most significant limitation of a local energy market associated
within an LEC is the availability of a settlement process. Such processes are in place to
ensure no violation occurs in the grid when the bids, accepted in the market, are executed.
The need is due to the lack of controllability of DERs and next-gen-loads. In this context,
a stratified control system, which manages both the grid and various DERs and flexibilities,
could be one of the approaches.
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In the literature, stratified control for flexibility management is extensively used.
In [1], a stratified control scheme to control voltage and current is presented. It includes the
optimal reconfiguration of various systems in micro-grid based on changing conditions.
The first layer consists of the optimal sharing of load and the second level consists of
dynamic optimization of droop gains. However, this approach is not designed for three
phase systems as size of the problem will start to become large. Additionally, the second
level consists of only droop gains where flexibilities, which offer on/off behavior cannot
be included. The authors of [2] have proposed a hierarchical energy management system,
to interconnect multiple micro-grids. At the higher level, micro-grid coordination opera-
tions are performed based on energy scheduling and generation of power reference values
for other micro-grids.In the lower level, a chance-constrained MPC is applied for local
operation management. The goal to maximize the local utilization of capacities and reduce
the dependence on interconnected grids. A major limitation of this approach is that the
higher level control does not include an optimal power flow based scheduling algorithm,
leading to a sub-optimal solution. In [3], a hybrid stratified control to improve grid security
is presented. In the lower level, the controllers are responsible for coordinating each of
the individual control units. Whereas, in the higher level, continuous dynamic control of
discrete controllers and with individual lower-level controllers is presented. The authors
of [4] have presented a hierarchical iterative control algorithm to balance the grid optimally
and, at the same time, meet consumer demand. The major limitation of the control strate-
gies mentioned above is the need for detailed technical models of lower-level controllers.
Detailed models are often not available or difficult to derive, making them unrealistic
for implementation. Additionally, any change in the devices at the lower level needs to
be recorded and appropriate adjustment in the algorithm needs to be made. However,
in this paper, optimal schedules are generated at the PCC of flexibilities irrespective of
what is connected to it. Moreover, the data exchange between each layer and within each
layer needs to be sufficiently strong enough to handle a large number of variables being
exchanged. Blockchain with a 15s block speed is used in this paper to write data into the
chain, which is available in all other buses in the next sample.

The stratified controller consists of an OPF at the upper level. As discussed in [5],
OPF algorithms can be classified into two types, A and B, respectively. Type A deals with
algorithms that use load flow methods to generate a certain set of intermediate solutions
for voltages and phase angles. Since the optimal solution is close to the load flow solution,
using jacobian and other sensitivity relations, it can be sequentially determined. Various
implementations of class A algorithms are presented in [6–8]. Class B deals with algorithms
that use load flow equations as equality constraints, depending on the exact conditions and
detailed formulation. It utilizes the entire search space. Since power grids are nonlinear
and non-convex in nature, convex relaxation or non-convex solvers are to be used. It uses
optimality conditions using Lagrangian functions with objective and constraint derivatives.
In [9], a novel class C algorithm is presented in which a reliable load flow is coupled with a
heuristic optimization method. This method helps to overcome the challenges presented
by classes A and B, which are used in this paper.

Low voltage rural distribution grids are unbalanced due to untransposed lines and
uneven loading on their three-phases [10]. The unbalance can be heightened with increase
in single-phase DERs and next-gen loads [11,12]. They are dependent on weather pa-
rameters such as temperature and solar irradiation. Moreover, they are periodic, with
hourly, daily, weekly and monthly cycles and are dependent on seasons. Three-phase
unbalance, induces several issues in the grid. Most prominently, it increases losses in lines,
grid devices and transformers. Transformers in the distribution grids are designed for
balanced operation and would lead to uneven temperatures on the three phases, caus-
ing degradation [13]. Induction motors are significantly affected by voltage imbalance,
causing accelerated aging due to high temperatures on winding with the highest loading
and shorten the lifespan [14]. Torque fracturing can lead to permanent damage in motor
winding with the increase in voltage unbalance [15]. Protection systems can be triggered
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falsely due to the presence of negative and zero sequence currents in the lines [16]. Cur-
rently, models describing the low voltage distribution grids are based on the transmission
system’s supervisory control and data acquisition systems at the transmission level. This
host functions like load (LF) and optimal power flow (OPF), using models that are single
phased. They cannot be readily applied to distribution grids without modification to
accommodate the new changes, as discussed above. To overcome this, the LF and OPF
should include three-phase unbalance.

In the literature, various methods have been presented to minimize three-phase
unbalance, which can be consolidated into three types. Namely, phase transposition, feeder
reconfiguration, and power control. In [17], a method to minimize three-phase unbalance
for both star and delta configurations is presented. This is performed by operating various
devices connected to the IEEE 34 and 123 bus test systems. The grid is linearized to convert
non-linearity non-convexity to mixed-integer linear programming. The authors of [18] have
formulated a method to minimize three-phase unbalance by re-phasing and reconfiguration
using optimization techniques and by optimally placing DER units. In [19], re-phasing
and DER sizing are used to achieve three-phase unbalance minimization. A fuzzy multi-
objective phase balancing optimization is used to do so. Various heuristic optimization
techniques for three-phase unbalance minimization is presented in [16,20,21]. Various phase
swapping algorithms are reviewed in [22]. In [23], power balance is used to minimize
unbalance by optimally operating energy storage, and a similar method is presented in [24].
Various methods involving reactive power control for unbalance minimization are available
in the literature. In [25], static variable compensators are used to balance the three phases.
The authors of [26] describe a method to minimize zero and negative sequence current
components in distribution grids. It involves the use of reactive power management using
the online Karush–Kuhn–Tucker optimization method. This method is applied to IEEE
13-node test network. Most of the methods mentioned above are used in the planning
phase. This does not include the dynamic behavior of unbalanced loads and generation.
In this paper, the stratified controller is to minimize the three-phase voltage unbalance
in real-time.

Flexibilities are controlled using model predictive control (MPC) and, in the literature,
various implementations are available. In [27], a multi-time scale and stage optimization
method is proposed to control flexibilities such as air conditioning, heating and ventilation
systems, and plug-in hybrid electric vehicles are presented. It uses a constrained stochastic
optimization algorithm using MPC to minimize costs, peak power and consumer comfort.
Temperature data, thermal dynamics and real-time electricity pricing are included. The
authors of [28] have presented an MPC approach to shifting loads among household
devices and electric storage systems. Energy consumption is minimized by using time
of day tariff and demand-side management (DSM) by optimally scheduling loads and
charging and discharging times of the electric storage system. An appliance scheduling
method in residential buildings using MPC is presented in [29]. It involves the use of
thermal and non-thermal flexibilities by incorporating forecasts and database updates
to minimize electricity costs. It includes a thermal dynamic of the building and is used
as constraints to MPC. In [30], the MPC approach to controlling photo-voltaic combined
heat and electric storage is presented. The operational cost of the combined heat and
power unit is minimized. The authors of [31] have presented a method to control the
air conditioning system in the room, along with the PV system. Demand response is
provided using time of use tariff. Additionally, the controller is used to minimize energy
consumption. In [32], the authors present a three-phase unbalanced model predictive
control based smart building energy management system. It uses three-phase flexibility
models with mixed-integer quadratic programming. In this paper, the smart building
models and control strategies are derived from it.

To overcome the limitations presented in the literature, the authors present a novel
stratified control scheme with grid and flexibility layers. The former consists of three-phase
unbalanced optimal power flow using the holomorphic embedding load flow method
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(HELM) and the latter, three-phase unbalanced model predictive control. Blockchain
handles all exchanges of control variables (see Section 2). The flexibilities are connected at
a certain number of buses which are considered controllable, and the grid level controller
generates three-phase optimal active (P) and reactive power (Q) schedules at their points
of common couplings (PCC). The grid level controller concentrates PQ consumption and
in-feed values from smart meters, from all other uncontrollable loads in the LEC over
the Blockchain for each sample time. Contrary to the methods presented in the literature,
the grid level controller does not contain any information about the devices connected at
the PCC, ensuring individual privacy. The stratified controller uses models that include
three-phase controls for both PQ flows, resulting in per-phase power manipulation. These
schedules are actively tracked by the flexibilities along with their objectives, leading to
a system-level optimization. The grid level controller uses Optimal Power Flow (OPF),
based on a three-phase unbalanced holomorphic embedding load flow method (HELM)
and genetic algorithm with certain advantages over the existing methods (see Section 4).
As discussed above, the DERs and next-gen loads are intermittent, dependent on external
factors and, therefore, model predictive control (MPC) (see Section 5), with its proven
robustness, is used to manage them optimally.

The contributions in this paper are listed below:

1. Stratified control structure for optimal scheduling of grid flexibility in an LEC using
Blockchain (see Sections 3 and 6).

2. Online three-phase unbalance minimization control scheme in low voltage distribu-
tion networks (see Section 4.1.1) in an LEC.

3. Three-phase unbalance optimal power flow with receding horizon formulation
for optimal flexibility placement (see Section 4.1.2) and voltage controllability
(see Sections 4.1.3 and 6).

4. Schedules from the grid controller are generated at the PCC, ensuring privacy. No
device information from the buildings is communicated to the grid controller.

5. Mixed integer quadratic three-phase unbalanced model predictive control hosted
in flexibilities with various electrical connection configurations and thermal
models (see Section 5.1).

6. Optimal scheduling of PQ set-points at critical buses, where smart buildings are
connected and model predictive control results from flexibilities to the reference
optimal schedules from the grid controller (see Section 7).

2. Blockchain System Architecture

The Ethereum client Open Ethereum is the basis for the Blockchain architecture
adopted in this project. Various servers and communication components are seen in
Figure 1. Any node in the network can write data into the Blockchain. In the project,
this is constrained and limited by the LEC platform manager at the infrastructure server.
Additionally, the grid controller is hosted on this server, which generates optimal set-
points for various flexibility controllers in the LEC and facilitates the market processes.
The consensus algorithm on how to agree on new blocks is Proof-of-Authority, in which
only authorized participants, called sealers, are allowed to generate blocks containing
transactions and add them to the Blockchain. Participants can also be dynamically added
or removed by the platform operator.

There are two different types of nodes, full nodes, which also perform the sealing to
add blocks, and nodes located at measurement devices, sensors and actuators. The latter
ones do not perform any sealing and can be configured to run as light clients to lower the
hardware requirements. Light clients do not keep the whole chain data, but can participate
in the network by trusting other nodes.

Every 15 s a new block is added, which is much lower than the 1 min sample time.
This way, it is guaranteed that transactions are processed in time for the next sample. Every
sample, PQ values are fed into the Blockchain at all the buses in the grid. Information for
the Blockchain, smart contracts, the role of participants and access rights are stored in the
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infrastructure server. Real customer data (name, address, customer number) is associated
with an Ethereum account address. This is managed and used by the Distribution System
Operator (DSO) for billing-relevant purposes. The data exchange between the infrastructure
server and the participants takes place via an encrypted connection. To be able to access
the data, each participant receives an access identifier (username and password). This
identifier is linked to the customer data by the infrastructure server.

Community representative 

Pro-/Consumer

Infrastructure

Pro-/Consumer

Smart Home 00

Community Battery

Protected
Control

Protected Control

Regulator, finance
ministry

Node DB

Archive DB
Infrastructure
Customer DB

Node

Client

Figure 1. Blockchain System Architecture implemented in the BlockchainGrid project at the LEC
in Austria.

3. Stratified Control Scheme for Low Voltage Distribution Networks

In this section, the authors present a stratified control scheme for voltage management
in a three-phase low voltage distribution grid, as part of an LEC. They are inherently
unbalanced, as discussed in Section 1, and the unbalance is further increased by DERs and
next-gen loads. It is paramount to minimize it for safe system operation. A methodology
to generate optimal set-points at a certain number of controllable buses at critical nodes
is presented. Flexibilities connected at these buses actively track these set-points using
model predictive control. In this research, smart buildings with various flexibilities, such
as electric storage and heat-pumps, are connected at these critical nodes (see Section 5).The
upper level controller consists of an optimal power flow model using a three-phase unbal-
anced holomorphic embedding load flow method (HELM-OPF), characterized in Section 4
and mixed-integer quadratic programming model predictive control (MiQ-MPC) is de-
scribed in Section 5. Figure 2 describes a general model schematic and Figure 3 describes
the control structure.
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Figure 2. General schematic of a three-phase unbalanced distribution grid with a medium-
voltage/low-voltage transformer, uncontrollable loads (UL), smart buildings and a community
battery system.
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Figure 3. Structure of the stratified control scheme. Inputs to the grid controller are forecasted profiles
of smart meter active and reactive (Psm

i , Qsm
i ) profiles from loads located at various uncontrollable

buses (Bus 00, Bus 01, . . . , Bus nn). Outputs are optimal Pre f
i and Qre f

i set-points that are calculated
using HELM-OPF and fed into individual flexibility controllers. Using these reference profiles,
the flexibility controller produces optimal set-points for its flexibility portfolio, which are Pact

i and
Qact

i using MiQ-MPC. Based on the available flexibility type and their sizing, the buildings may not
be able to perfectly tract the reference profiles generated by the grid controller.

It is to be noted that the grid level controller does not directly provide set-points to
the individual flexibilities as it does not have any device model information. It instead
generated set-points at the buses where they are connected (at the PCC). This leads to the
preservation of sensitive flexibility information and helps protect consumer privacy.

4. Grid Controller Formulation

Power grids are nonlinear and non-convex and it is strenuous to solve the OPF problem
associated with it. Various methods have been presented to handle such non-linearity
and non-convexity. In this paper, a solution to OPF using the non-convex optimization
method is chosen. This is based on the method developed in [9]. It uses a three-phase
unbalanced holomorphic embedding load flow method (HELM) with a genetic algorithm
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to generate optimal set-points, a HELM-OPF method. The reason for using HELM is due
to its robustness and ability to converge to a high voltage operable solution irrespective of
its initial conditions (very high or low loading conditions) [9]. Using HELM, OPF is given
access to the entire search space.

Three-phase unbalanced low voltage distribution network models are adopted from [33].
OPF is formulated as,

minimize
u

J = F(x, u)

subject to H(x, u) = 0,

G(x, u) ≤ 0,

(1)

where, x and u are state and input variable sets. Input variables are the active and reac-
tive power injections at controllable buses; state variables are voltage and phase angles
(see Figure 3).

F(x, u) is the objective function for the HELM-OPF problem. Typical objectives are
total generator cost and loss minimization in the network.

4.1. Objective Functions

In this paper, three objective functions are used. Objective Section 4.1.1 is used to
minimize three-phase unbalance and is used online. Objective Section 4.1.2 is used to
choose the best number of controllable buses where flexibilities are needed. Objective
Section 4.1.3 is used to determine the voltage controllability.

4.1.1. Three-Phase Unbalance Minimization

The objective function is chosen to minimize three-phase voltage unbalance. There
are various methods to realize the objective and, in this paper, balanced voltages are used
as a reference, which is illustrated in Equation (2).

minimize J = ∑
t∈T

∑
k∈Υ

∑
p∈P

(real(Vp,t
k,balanced)− real(Vp,t

k ))2

+ (imag(Vp,t
k,balanced)− imag(Vp,t

k ))2,
(2)

where Υ represents buses in the network (see Section 4.1.3 for various scenarios), T repre-
sents simulation time and P ∈ phases(a, b, c). The rectangular coordinate system is used to
represent voltages and to balance both magnitudes and phase angle; therefore, both real
and imaginary parts of complex voltages are used. In Section 7, three different forms of the
objective function are defined.

G(x, u) and H(x, u) are the equality and inequality constraints. Three-phase unbal-
anced HELM developed in [9] is used as equality constraints.

Inequality constraints with respect to distribution grids are as follows,

Pp
Lowi
≤ Pp

PVi
≤ Pp

Highi
(3)

|Vp
Lowi
| ≤ |Vp

i | ≤ |V
p
Highi
| (4)

tLowi ≤ ti ≤ tHighi
(5)

θLowi ≤ θi ≤ θHighi
(6)

sLowi ≤ si ≤ sHighi
(7)

Qp
Lowi
≤ Qp

PVi
≤ Qp

Highi
(8)

Pp
i,j ≤ Pp

Highi,j
(9)

Pp2
i,j + Qp2

i,j ≤ Sp2
Highi,j

(10)

|Ip
i,j| ≤ |I

p
Highi,j

| (11)

Θp
Lowi
≤ Θp

i −Θp
j ≤ Θp

Highi
. (12)
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The variables in the equations above are defined in the Table 1.

Table 1. Nomenclature.

Variable Definition

P Active power
Q Reactive power
V Voltage
t Transformer tap position
θ Transformer phase shift angle
s shunt reactances or capacitances
I Branch current magnitudes
Θ Voltage phase angle

4.1.2. Optimal Placement of Flexibilities

It is essential to optimally place the flexibilities in the grid to have the maximum
impact on voltage control. Various methods are used to determine the location where
flexibility is connected.

Most predominantly, they can be broadly classified into two types. Firstly, the voltage
sensitivity method, like the quasi-dynamic simulation, is used similarly to those in [4]. This
method is limited since it only provides information about the buses where most voltage
violations occur for a given period. This method had several limitations since power grids
are nonlinear and non-convex.

Secondly, an optimal heuristic technique uses flexibility models and OPF to determine
the best location using a non-convex solver. Variations of this method are detailed in [34–36].
In this paper, the authors present a method that is based on the heuristic technique but does
not need any flexibility models, which need to be included in the HELM-OPF formulation.
They are determined based on only active and reactive power injections at the buses.
This method applies to any flexibility or DER unit without including any information
about it. Mixed-integer programming, along with the HELM method from the previous
Section, is used, and the associated objective function is presented in Equation (13). This is
a modification of Equation (2), where an additional integer term is added to determine the
best location.

minimize J = ∑
k∈Ω

(DCk + E ∑
p∈P

(real(Vp
k,balanced)− real(Vp

k ))
2

+ (imag(Vp
k,balanced)− imag(Vp

k ))
2),

(13)

where Ck represents the binary variable associated with each bus in the network leading to
a set of optimal controllable buses. D and E are weights associated with the objectives.

4.1.3. Voltage Controllability

During the research, the voltage unbalances minimization at the buses, directly de-
pending on the optimal schedule.

In other words, voltages at all the buses are controlled by PQ powers at flexibilities and
at only certain controllable buses (Case 01). Therefore, using Equation (2), the following
three scenarios are chosen:

Υ =


Ω all buses (Case 01)
V voltage violation buses (Case 02)
C optimal controllable buses (Case 03),

(14)

where V represents all the buses where voltage violation was observed. C represents opti-
mal controllable buses from Section 4.1.2. The results of the three scenarios are discussed
in Section 7.



Energies 2021, 14, 3290 9 of 19

5. Flexibility Controller Formulation

Flexibilities in this paper are mostly hosted in smart building energy management
systems with the addition of a large community battery.

5.1. Smart Building Thermal Model

Smart building models are derived from [32]. Various smart building models with
varying degrees of complexity are used in this paper. Figure 4 represents a three-phase
unbalanced smart building energy management system with various single and three-
phase loads.

Figure 4. Schematic of three-phase HEMS with various electrical and thermal components. It can be
observed that the electric appliances can have single, two or three-phase connection configurations.

Thermal models of smart buildings are based on typical buildings in Austria and are
derived from [32] and are represented as a discrete state-space system with a sampling
time of 15 min.

xroom(t + 1) = Aroom xroom(t) + Broom uroom(t). (15)

Room and structure temperatures are the state variables in xroom (see Equation (16)).
Tstructure is the temperature of the floor, walls and ceiling. Aroom and Broom are the system
matrices of the building.

xroom =

[
Tstructure

Troom.

]
(16)

Equations (17) and (18) are the lower and upper limits of the temperatures in
Equation (16).

Tmin
structure ≤ Tstructure(t) ≤ Tmax

structure (17)

Tmin
room ≤ Troom(t) ≤ Tmax

room. (18)
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uroom describes the input vector of the state–space system. The only controllable
variable is qroom, which is the heat flowing into the room.

uroom =



qroom
Tambient temperature

inorth
ieast

isouth
iwest

ginternal gain
gventilation losses,


(19)

where Tambient temperature is the outdoor temperature, solar irradiation from all directions
is inorth, east, south, west and ginternal gain, ventilation losses are the internal gains and ventilation
losses, respectively.

Equation (20) represents the limits on qroom. In this paper, only heating is assumed
and therefore, qroom is greater than zero.

0 ≤ qroom(t) ≤ qmax
room. (20)

5.2. Constraints on Heat-Pump

Equations (21) and (22) are the single and three-phase powers of the heart pump, respec-
tively. Coefficient of performance (copheat pump) is assumed to be time-invariant and constant.

Pheat pump(t) =
qroom(t)

copheat pump
(21)

Pp
heat pump(t) =

qroom(t)
3 copheat pump

, (22)

where Pheat pump is the active power and copheat pump is the coefficient of performance.
p ∈ phases(a, b, c). In order to model the on-off heat-pump model of certain house models,
a binary variable Bheat pump is used. This can be observed in Equation (23).

Pheat pump(t) = Bheat pump Prated
heat pump. (23)

The pump in the heat pump consists of an induction motor and is assumed to be
lossless. Additionally, it is assumed to be operating at constant power factor (p fheat pump)
as described in Equation (24), using which, the reactive power (Qheat pump) is calculated.

Qheat pump(t) = tan(cos−1(p fheat pump))

Pheat pump(t).
(24)

Pheat pump and Qheat pump ≥ 0, since the heating period is considered, are described in
Equations (25) and (26)

0 ≤ Pheat pump(t) ≤ Pmax
heat pump (25)

Constraints on heat pump reactive power limits,

0 ≤ Qheat pump(t) ≤ Qmax
heat pump, (26)

where Pmax
heat pump and Qmax

heat pump are rated active and reactive powers, respectively.

5.3. Constraints on Electric Storage

Distributed energy resources are inherently intermittent and it is essential to use their
productions to the fullest extent. Therefore, electric storage is gaining importance in recent
years. In this paper, the authors have used linear models for electric storage and inverters.
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This model is also used to represent the community battery along with the inverter model
in Section 5.4. The state of charge (SOC) is described in Equation (27), represents the energy
balance in electric storage.

soc(t + 1) Cbattery = soc(t) Cbattery

+ ∆t ηbattery Pbattery(t).
(27)

SOC, battery charging and discharging power limits are as follows,

socmin ≤ soc(t) ≤ socmax (28)

Pmin
battery ≤ Pbattery(t) ≤ Pmax

battery. (29)

5.4. Constraints on Inverter

The electric storage described in Section 5.3 is connected to a three-phase inverter. Due
to the non-linearity and non-convexity of the three-phase inverter with both active and
reactive control along with binary control variable from Section 5.2. In order to maintain
the linearity, only active power control is chosen, described in Equations (30) and (31).

(Pbattery(t))2 = (Pinverter(t))2. (30)

Per phase inverter is modeled as follows,

Pinverter(t) = ∑
p

Pp
inverter(t). (31)

5.5. Constraints on Controllable Loads

Controllable loads are defined as simple dump loads, which are both single and three-
phased. This is done due to the lack of data related to the presence of controllable loads in
the field. In the future, this is to be replaced with realistic controllable load models. The con-
straints on limits of active and reactive powers are defined in Equations (32) and (33). They
work with constant power factor (p fcontrollable load), described in Equation (34).

0 ≤ Pp
controllable load(t) ≤ Pmax

controllable load (32)

0 ≤ Qp
controllable load(t) ≤ Qmax

controllable load (33)

Qp
controllable load(t) = tan(cos−1(p fcontrollable load))

Pp
controllable load(t).

(34)

Real smart meter profiles from the Blockchain are used for uncontrollable loads and
PV systems for each sample.

5.6. Constraints at Grid Connection Point

The bus at which a smart building is connected is referred to as a grid connection
point. Pp

grid and Qp
grid takes both positive and negative values. Constraints on active and

reactive powers are constrained in Equations (35) and (36).

Pp
grid(t) = Pp

inverter(t) + Pp
heat pump(t)

+ Pp
controllable load(t) + Pp

uncontrollable load

(35)

Qp
grid(t) = Qp

heat pump(t) + Qp
controllable load(t)

+ Qp
uncontrollable load.

(36)
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Forecasting of disturbances is carried out using neural networks [37,38]. This method
is not described in the paper since it is not the focus. Weather data, such as temperature,
are sourced from weather stations in Austria. Irradiation, ventilation losses and internal
gains are collected from local sensors and sourced from the iWPP-Flex project. Forecast-
ing uncertainties lead to an issue with the optimal set-points. However, for the sake of
simplicity, these conditions are ignored in this paper.

5.7. Objective Function

The objective function used in the smart building is to provide grid support. The three-
phase optimal power flow formulation from Section 4 produces optimal active and reactive
power schedules, based on an objective function, for various controllable buses. Each smart
building can support the grid by tracking the optimal schedules and by controlling various
flexibilities, as described in Equation (37).

Jgrid support = ∑
t

∑
p
(Pp

grid optimal schedule(t)− Pp
grid(t))

2

+ (Qp
grid optimal schedule(t)−Qp

grid(t))
2 + .

(37)

Equation (38) represents the objective function of a smart building, Jgrid support, the in-
dividual flexibility objective function, G and F are the respective weight. For the sake
of simplicity, Jgrid support is to maximize comfort for all smart buildings (Keeping Troom
at 22 °C).

minimize J = G Jgrid support +F J f lexibility objective. (38)

Variables Pheat pump, Pbattery and Pcontrollable load are controllable. Grid support is maxi-
mized while maintaining comfort with respect to temperature and load demands are being
completely met.

6. Control Strategy

The smart buildings that are described in Section 5.1 are controlled hierarchically [32].
Inputs to the stratified controller are the smart meter active and reactive power forecasts
(Psm

i , Qsm
i ). The forecasting method is based on convolutional neural networks, and details

about it are not presented in this paper. Three-phase unbalanced optimal power flow
from Section 4.1.1 generates optimal active and reactive power set-points to controllable
buses. The locations of these buses are chosen based on Section 4.1.2 and Equation (13).
Since DERs are intermittent in nature, follow daily, weekly and seasonal cycles, these
changes are reflected in the optimal set-points. The flexibility controller must be robust
enough to accommodate these changes. The authors have chosen a model predictive
control to schedule them optimally. MiQ-MPC receives set-points and is used as reference
input signals.

Chronological control functions at grid and house level are presented below.

6.1. Grid Control

Grid control performs HELM-OPF described in Section 4 and broadcasts the optimal
set-points to various smart buildings in the network. The chronological control events are
presented in Algorithm 1.

6.2. Flexibility Control

Quadratic programming with mixed-integer is used with continuous and on/off
heat-pumps, respectively (see Section 5.2). The chronological control events are presented
in Algorithm 2.
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Algorithm 1: Control actions performed at grid level controller
Result: Generate optimal schedules and transmit to flexibility controllers
while time t = end time do

At time t, various smart meters in the grid write active and reactive power values into the Blockchain.
Communication channels are assumed to be functioning ideally with no losses and is validated with a
state estimator;
PQ are forecasted are generated for an appropriate prediction horizon using the updated data from the
flockchain for (t/t + tgrid prediction horizon) ;
Setup constraints based on Equations (3) to (12) (see Section 4.1.1).
Setup objective function using Equation (2) (see Section 4.1.1).
OPF is run and optimal PQ set-points are generated at certain critical buses where smart buildings are connected;
These optimal set-points are written into the blockchain;

end

Algorithm 2: Control actions performed at flexibility level controller
Result: Generate optimal schedules by tracking references from grid level controller.
while time t = end time do

At time t, smart meter data written into the Blockchain ;
Acquire ambient temperature, irradiation and ventilation data from various sensors in smart buildings
along with PQ data from smart meter;
Update the database with these new data points;
Perform forecasts for various disturbances for a given prediction horizon and using an appropriate
algorithm such as convolutional neural networks forecasts (t/t + t f lexibility prediction horizon) ;
Apply user defined weights and reference temperature profiles;
Setup constraints and objectives described in Section 5.1;
Get optimal PQ set-points at that particular bus from the blockchain.
MPC generates various set-points for controllable variables;
The process is repeated for the next sample period, (t + 1);

end

7. Simulation and Results

The grid selected for the analysis is a 264 bus three-unbalanced low voltage distribu-
tion network (three-phase four-wire) in Austria, represented in Figure 5. It contains single
and three-phased loads along with DER units. The network is simplified by summing all
the loads and generations at each bus to obtain one load per bus. Loads are active and
reactive power profiles from real smart meters in the grid. For the sake of privacy, the data
are not visualized or presented in this paper.

A simulation is performed to determine the optimal buses at which flexibilities are to
be placed as mentioned in Section 4.1.2 and by using the objective function in Equation (13).
The optimal buses are presented in Table 2 and are represented in Figure 5. At these buses,
simple single-phase uncontrollable loads are replaced with three-phase flexibilities, smart
building or a community battery. Having determined the optimal buses where flexibilities
are to be placed, the simulation is performed based on the three cases mentioned in
Section 4.1.2. These simulations are benchmarked against real smart meter active and
reactive power profiles at the controllable buses where flexibilities are to be placed, and
their forecasts and optimal schedules are to be produced by the grid level controller. The
simulation is performed for two days between 2019-04-01 00:00:00 and 2019-04-02 23:45:00
with 29 smart buildings and one large community storage (Bus 077). Smart buildings are
comprised of single and three-phased flexibilities as described in Section 5 and in Figure 4.
Table 2 presents various limits on certain controllable variables for optimal buses.
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Figure 5. Topology of a real network in Austria with various smart buildings and a community battery.

Figure 6 presents the voltage magnitude results for three scenarios and benchmarks. It
can be observed that under and over-voltages (0.95 pu. < voltage < 1.05 pu.) are observed
for real and forecasted profiles. The optimal profiles from the grid-level controller have
resulted in no voltage violation. The same can be observed for case 01 and 03, as flexibilities
are tracking the optimal profiles. The reason for Case 02 to observe over-voltage is because
voltage controllability is limited to only controllable buses, as described in Section 4.1.3.
In case 01, since all the buses are included, the optimizer is able to mitigate violations.
In case 03, since the voltage controllability is the optimal controllable buses, under voltage
violation was observed. This is due to the fact that not all the buses are included in the
voltage controllability. This enforces that the voltage is a local effect due to power flows
in multiple directions. To mitigate voltage violations in all buses, voltage controllability
should extend to all buses.

Figure 6. Voltage magnitude distributions for benchmarks, optimal and three cases with under and over voltages for each
of the cases.
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Table 2. Simulation parameter limits for optimal buses.

Optimal Buses Bus 020 Bus 031 Bus 038 Bus 042 Bus 045 Bus 055 Bus 058 Bus 067 Bus 069 Bus 077

Pmax
heat−pump (kW) 5 9 8 9 5 9 5 6 9 -

Pheat−pump phase (kW) 1P 1P 3P 1P 3P 1P 1P 1P 1P -
Pmax

battery (kW) 20 20 27 24 26 27 21 20 22 30
Cbattery (kWh) 42 31 32 29 36 49 39 34 41 120
Pmax

controllable load (kW) 19 16 10 6 15 10 9 16 13 -
Pcontrollable load phase (kW) 1P 3P 3P 1P 3P 1P 3P 3P 1P -

Optimal Buses Bus 081 Bus 091 Bus 092 Bus 094 Bus 099 Bus 112 Bus 117 Bus 118 Bus 140 Bus 148

Pmax
heat−pump (kW) 6 6 5 5 8 8 7 8 7 8

Pheat−pump phase (kW) 3P 1P 1P 1P 1P 1P 3P 1P 3P 1P
Pmax

battery (kW) 24 22 27 26 26 23 20 27 26 21
Cbattery (kWh) 28 32 26 29 41 30 43 44 31 31
Pmax

controllable load (kW) 13 8 9 9 16 5 11 5 15 9
Pcontrollable load phase (kW) 3P 3P 3P 1P 3P 3P 1P 1P 1P 1P

Optimal Buses Bus 168 Bus 169 Bus 171 Bus 184 Bus 207 Bus 217 Bus 225 Bus 234 Bus 238 Bus 241

Pmax
heat−pump (kW) 8 9 5 7 5 5 7 8 8 6

Pheat−pump phase (kW) 3P 3P 3P 1P 3P 3P 1P 3P 1P 1P
Pmax

battery (kW) 22 28 23 27 21 29 27 23 20 24
Cbattery (kWh) 35 31 26 26 33 38 42 40 27 28
Pmax

controllable load (kW) 16 16 6 11 14 13 12 7 5 11
Pcontrollable load phase (kW) 1P 1P 3P 3P 1P 3P 1P 3P 1P 3P

The performance of the flexibilities directly depends on how well they can track
the optimal grid schedules. In Figure 7 Pgrid, Pgrid optimal and their absolute difference is
presented for a smart building connected at Bus 020. Similarly, Qgrid, Qgrid optimal and their
absolute difference is presented in Figure 8. It can be observed that the smart building can
track the optimal grid schedule. This depends on the flexibility composition available in the
smart building. Therefore, due to this reason, the global optimum cannot be guaranteed.
However, from Figure 9, it can be observed that the results are close to the global optimum.

Figure 9 presents the function values for all the scenarios based on the objective in
Equation (2). As discussed earlier, it can be observed that the unbalance is minimized for
each case when compared to the benchmarks. There is an 85.92%, 64.27%, and 77.02%
reduction in three-phase unbalance for Cases 01, 02, and 03, respectively (the imbalances are
in Voltage (p.u.) values). Stratified controllers are written in Python, including three-phase
unbalanced optimal power flow and model predictive control.

Time (15m)
5

0

5

Ac
tiv

e 
Po

we
r (

kW
) a). Phase A

Pgrid

Pgrid optimal

|Pgrid Pgrid optimal|

Time (15m)

5

0

5

Ac
tiv

e 
Po

we
r (

kW
) b). Phase B

Pgrid

Pgrid optimal

|Pgrid Pgrid optimal|

04-01 00 04-01 12 04-02 00 04-02 12 04-03 00 04-03 12 04-04 00
Time (15m)

5

0

5

Ac
tiv

e 
Po

we
r (

kW
) c). Phase C

Pgrid

Pgrid optimal

|Pgrid Pgrid optimal|

Figure 7. Per phase active powers at point of common coupling, grid optimal schedule and absolute
difference between them at Bus 020.
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Figure 8. Per phase reactive powers at the point of common coupling, optimal grid schedule and the
absolute difference between them at Bus 020. Due to the lack of reactive power control in flexibility
models and devices working at a fixed power factor, reference profiles are not being followed when
compared to active power tracking in Figure 7. This is done for the sake of simplicity, to maintain the
linearity of flexibility models and their controllers.
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Figure 9. Objective function values for the three scenarios (see Section 4.1.3). Objective function values from Equation (2)
are reduced to voltage (p.u.) for better understanding of results.

8. Conclusions and Outlook

In this paper, the authors present a stratified control scheme in a peer-to-peer local
energy community (see Section 3). It uses a three-phase unbalanced optimal power flow
based on holomorphic embedding load flow method and receding horizon control as
described in Section 4. Blockchain acts as an enabler by making the data available at
all the buses in the grid. Three-phase optimal active and reactive power set-points are
generated for controllable buses, which are found using the objective function in Equa-
tion (13) in Section 4.1.2. Mixed integer quadratic model predictive control is hosted in
flexibility controllers with various electrical connection configurations and thermal models
(see Section 5).
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An objective function to minimize three-phase voltage unbalance with three use cases
is presented in Section 6. Voltage magnitudes for the simulation duration for all the scenar-
ios are presented. It is observed that cases 01 and 03 have completely mitigated the voltage
violations. Is observed that there is an 85.92%, 64.27%, and 77.02% reduction of phase
unbalance for the three cases. In the context of local energy communities, such a system can
provide services to the distribution system operator. Additionally, the objectives defined
by the community operator can be included in the grid level control. One other advantage
is the ability of individual flexibilities to have their own objectives and simultaneously
support the grid. One of the limitations is the intense communication needs as all the
measurement devices and the controllers are to be connected to the blockchain to send and
receive data.

In future work, the stratified control structure needs to be integrated with the peer-to-
peer energy market and modified accordingly to perform the market settlement process.
Additionally, a control scheme should be tested with various other real networks for
stability and replication analysis. The smart building models used in this paper are linear.
More realistic, nonlinear models are to be used to obtain a better optimal profile tracking
along with appropriate sizing of various flexibilities. Additionally, reactive power control
is limited in flexibility models. By implementing them, better tracking of set-points is
possible, leading to a solution being closer to a global optimum.
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