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Abstract: Non-Intrusive Load Monitoring (NILM) techniques are effective for managing energy
and for addressing imbalances between the energy demand and supply. Various studies based on
deep learning have reported the classification of appliances from aggregated power signals. In this
paper, we propose a novel approach called a temporal bar graph, which patternizes the operational
status of the appliances and time in order to extract the inherent features from the aggregated
power signals for efficient load identification. To verify the effectiveness of the proposed method, a
temporal bar graph was applied to the total power and tested on three state-of-the-art deep learning
techniques that previously exhibited superior performance in image classification tasks—namely,
Extreme Inception (Xception), Very Deep One Dimensional CNN (VDOCNN), and Concatenate-
DenseNet121. The UK Domestic Appliance-Level Electricity (UK-DALE) and Tracebase datasets
were used for our experiments. The results of the five-appliance case demonstrated that the accuracy
and Fl-score increased by 19.55% and 21.43%, respectively, on VDOCNN, and by 33.22% and 35.71%,
respectively, on Xception. A performance comparison with the state-of-the-art deep learning methods
and image-based spectrogram approach was conducted.

Keywords: non-intrusive load monitoring (NILM); load identification; convolutional neural network
(CNN); deep learning; temporal bar graph; temporal patternization

1. Introduction

The depletion of resources owing to the continual increase in energy consumption
has been a global issue for a long time, and the efficient management of energy has
become a challenging task. An estimation of the amount of energy consumption is an
essential first step in the successful management of energy. Non-Intrusive Load Monitoring
(NILM) [1], which is a process for analyzing changes in the voltage and current entering
into a house and deducing what appliances are used in the house, will be appropriate for
efficient estimation. Consequently, various NILM techniques have be applied for appliance
classification, which is one of the main purposes of NILM.

The total power consumption measured by the main meter can be considered as a
collection of operation and usage patterns in the time sequence because the total power
is the summation of the overall power of the working appliances. If we deeply analyze
these patterns, abundant information underlying the patterns can be discovered, such as
operation routines: when and how long an appliance is used in periods. An improvement
in the recognition accuracy can be achieved by extracting the most useful patterns from
the power signatures. Therefore, it is necessary to develop a delicate strategy to obtain the
comprehensive patterns from the main power.

NILM techniques based on machine learning and deep learning algorithms have
been improved with the drastic development of the Internet of Things (IoT) and smart
meters. In terms of machine learning algorithms, the Support Vector Machine (SVM) [2,3],
k-Nearest Neighbors (k-NN) [3-5], and Hidden Markov Model (HMM) [6-10] algorithms
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are representative algorithms for the load classification of NILM. The capabilities of these
algorithms in the identification of appliances has been verified.

Numerous deep learning approaches are based on images that are preprocessed and
transformed from the total power signature because they offer the advantage of processing
two-dimensional data. Two characteristic image categories exist: the spectrogram [11,12]
and voltage-current (VI) trajectory [2,13-15]. In these methods, high frequency data (sam-
pled at kHz or higher), which consist of abundant information for appliance identification,
are preprocessed and converted into images. When the power signal is converted into an
image, a high frequency is relatively advantageous because it contains more information
as mentioned above.

On the other hand, low frequency data generally contain simple on/off patterns
and are not widely used for deep learning methods due to the simple information. This
may be the reason that, to the best of our knowledge, no image-based approaches with
low-frequency data using deep learning have been reported. Low frequency data can be
more useful for algorithms through temporal patternization. In this paper, we develop a
transformation-based method, which patternizes the operational features and time-series
characteristics together.

The main contributions of this paper are described as follows:

1. We propose a new method called the temporal bar graph, which forms new temporal
usage patterns with a circular bar graph to capture more detailed features in the
power signals. This method patternizes the characteristics in the time sequence and
usage routines of appliances.

2. We visualize the specified patterns in the time sequence by using the temporal bar
graph, from which the features can be extracted effectively by convolutional layers.

3.  We empirically show that the temporal bar graph achieved a higher accuracy and
F1-score compared with the state-of-the-art algorithms, including Very Deep One
Dimensional CNN (VDOCNN) [16] and Extreme Inception (Xception) [17], especially
when the number of appliances used was increased.

The rest of this paper is organized as follows. Section 2 explains the background
knowledge and summarizes the state-of-the-art related work. Section 3 proposes our
proposed method for temporal patternization. Section 4 explains our experimental setup.
Section 5 presents the results of the evaluation. Finally, Section 6 concludes this study.

2. Background and Related Work

In this section, we review the concepts of NILM and the literature related to our
work. Figure 1 presents some basic concepts of NILM. The appliances in the household
are connected to the sub-meters, which are linked to the main meter, and these meters can
monitor the overall operational events of the appliances. The aggregated power can be
represented as follows:

M-

Il
_

P(t) =} Pi(t) +e(t) ©)
P(t) is the total power read from the meter at time ¢, P;(t) is the load of a single active
appliance i at time f and e(t) is a small noise or error term. The NILM technique was
first introduced by Hart in 1992 [1], and many studies have been conducted since its
introduction, including machine learning-based, deep learning-based, and spectral graph-
based research. In general, deep learning and machine learning-based approaches exhibit
effective performance in load classification.

Numerous machine learning algorithms have been applied to NILM, including the
Support Vector Machine (SVM) [2,3], k-Nearest Neighbors (k-NN) [3-5], and Hidden
Markov Model (HMM) [6-10] algorithms, which are well-known machine learning algo-
rithms that have achieved high performance. However, these traditional machine learning
techniques exhibit several limitations in NILM. In the SVM, the classes in the classification
are normally restricted to two, which can be increased by applying non-linearity.
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Figure 1. A Non-Intrusive Load Monitoring (NILM) system [18]. Reprinted from ref. [18].

However, the increased computational complexity will be a problem when training
with a larger dataset [19]. The k-NN algorithm is not efficient in recognizing new appliances.
Moreover, as the number of classes increases, the classification accuracy of the method
decreases [20]. Finally, in the HMM, the entire structure must be retrained if a new class is
added. Moreover, the computational complexity increases exponentially as the number of
appliance classes increases, which restrains the performance of the algorithm [21].

Over the past several years, various issues in NILM have been examined using deep
learning-based approaches, which have frequently outperformed conventional methods,
especially in load classification [22]. Kelly and Knottenbelt [23] proposed three deep neural
network architectures to extract operational features from the total power: Long Short-Term
Memory (LSTM), Denoising Autoencoders (DAE), and a network called Rectangles. The
networks with convolutional layers exhibited superior performance, particularly on unseen
data. This means that a convolutional layer is capable of extracting the inherent patterns
from the total power. De Baets [15] proposed voltage-current (VI) trajectory images that
were weighted and reformed for appliance recognition.

De Baets used a simple and light CNN architecture, and the approach achieved novel
results overall for a large number of appliances. Subsequently, Concatenate-CNN and
spectrogram images that were preprocessed by Short-Time Fourier Transform (STFT) were
suggested to eliminate noise and background loads from the target appliance to improve the
classification performance. The results demonstrated that Concatenate-CNN outperformed
the methods of previous works [11].

However, the above image-based approaches only consider the operational events of
appliances without temporal characteristics, which is an important factor for making the
on-off events more valuable. The concatenate-CNN and spectrogram image approach were
tested primarily in single-load cases. Thus, the results in the paper [11] are not guaranteed
in multi-load classification using this technique. In contrast, the method proposed in this
paper can easily patternize the temporal features of the total power, which is the sum of the
operational patterns, and CNN can capture the features in the created pattern. Moreover,
the method can be used effectively in multi-load as well as single-load cases.

3. Temporal Bar Graph

We propose a temporal bar graph transformation, which patternizes the power sig-
nature in the time sequence. This transformation converts original time series data to a
sequence of graphs. Each graph represents a temporal pattern of data in a specific time win-
dow, and this can be adopted in the training of various image-based deep learning techniques.

Our main idea of the temporal bar graph is as follows. Figure 2 shows the power
signature in a time sequence. Whenever an appliance is switched on or off, the power signal
moves up or down with the power signature below. Apart from on—off events, no further
useful features can be visually observed. With on—off events solely, it is difficult to identify
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which appliance is turned on or off particularly when several appliances are activated at
the same time. Hence, the enhancement of the performance in load classification is limited
with the on—off events especially in the multi-load case.

To address these limitations of using the on-off status, we propose the temporal bar
graph. First of all, the temporal bar graph is converted from power signal as shown in
Figure 3 and offers an advantage in single-load and multi-load classification since the
bar graph patternizes on—off events and the operational times together. This means that
the temporal bar graph reorganizes the features of the on states as well as off states and
determines how long the on and off states last. Below, we explain the details of the temporal
patternization.

5000
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(=]
(=)

2000 -
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Figure 2. A power signature in a time sequence.

The temporal bar graph consists of 10 bars in this paper. Each bar has 6 s of temporal
features. Therefore, one temporal bar graph has 60-s temporal features and appliance
usage patterns. The time gap of 6 s in this paper can be changed depending on the
domains or experimental circumstances. The length of a bar expresses the amount of
energy consumption, with a longer bar indicating that more energy is consumed. Every
bar graph is labeled at the Labeling Point, which is the last point among 60-s data, and the
starting point is next to the Labeling Point bar as shown in Figure 3.

The starting and labeling points are automatically set since the first data point becomes
the starting point and the last data point becomes the labeling point when the graph
is generated.

Thus, rotating or pivoting of the graph does not change the starting and labeling
points and consequently, it does not lead to performance degradation. When the last
point is labeled, it refers to the history of nine previous statuses, and, as the labeling is
carried repeatedly, the labeling becomes the usage patterns in the time sequence. Therefore,
the temporal bar graph itself becomes a combination of operational features and time
characteristics. We call this temporal patternization. Subsequently, a convolutional layer
can efficiently detect and obtain meaningful patterns by managing the weights of each
bar. For convolutional layers, each 60-s bar graph is transformed into an image for the
input data.

Figure 4 depicts two representative graphs of five appliances in a single load: Dish
Washer (DW), Kettle, Washing Machine (WM), Microwave (MW), and Fridge. DW and
Fridge in Figure 4a,e exhibit round patterns, Kettle and MW in Figure 4b,d exhibit fan-
shaped patterns, and WM in Figure 4c exhibits square-like patterns. Figure 5 represents
temporal bar graphs in a multi-load combination (MW + WM). Figure 5a shows a pattern
in which both MW and WM are not activated. However, the round shape and the graph
size that exhibits the level of power consumption are somewhat similar to Figure 4e, and
we can assume that the Fridge is operated in Figure 4a.
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Figure 3. Power signal (a) transformed into a temporal bar graph (b).
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Figure 4. Characteristics of the temporal bar graph patterns with a single load. (a) DW, (b) Kettle, (c) WM, (d) MW, and

(e) Fridge.
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Figure 5. Representative temporal bar graph patterns in a multi-load combination (MW + WM). (a) Both appliances are off,
(b) WM s on, (c) MW is on, and (d) Both appliances are on.
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Likewise, Figure 5b,c are analogous with Figure 4c,d since these graphs were made
from the same appliance usage patterns. When MW and WM are working together, the
shape of a graph is more likely to be a combined form Figure 4c,d. Figure 5d is similar to
the combined form. Naturally, these shapes depend on the operational characteristics of the
appliance and the usage routines of its user. If the bar graph shape is analogous to a shape
of another bar graph in certain periods, we consider these two patterns as the same usage
patterns to enhance the model performance during training. If the graph is converted into
an image, the proposed concept offers the advantage of energy management of the features,
which can be extracted efficiently using deep learning techniques, including CNNs.

Two representative image-based approaches using deep learning methods exist: the
spectrogram and VI trajectory. These methods preprocess high frequency data and trans-
form the preprocessed data into images for appliance classification. Hence, the classification
performance is highly affected by the data preprocessing and the time-series characteristics,
which can be useful as the operational patterns are not considered important in these
approaches when the data are converted into the image.

However, the proposed method does not require complicated preprocessing and
provides a graphical visualization that is understandable by sight. Moreover, our method
is advantageous for extracting the detailed patterns of a power signature because it patt-
ernizes the operational patterns and temporal features together. The simple application of
our approach to raw data can enhance the load identification performance for both single
and multiple loads.

4. Experiments

In this section, we demonstrate the performance of the proposed temporal bar graph
on state-of-the-art deep learning techniques, namely the VDOCNN and Xception. To verify
the proposed approach, experiments were conducted using three cases: (1) a single-load
performance comparison between the original current data (raw data) and the bar graph;
(2) a multi-load performance comparison between the raw data and bar graph; and (3) a
performance comparison of the bar graph with the spectrogram.

4.1. Dataset and Data Preprocessing

The UK Domestic Appliance-Level Electricity (UK-DALE) [24] dataset was used to
confirm that the application of the bar graph could enhance the classification performance
based on the same models and data. The UK-DALE dataset consists of five UK houses. The
mains in each house were sampled at 1 Hz, and the data were measured every 6 s. The
total duration of the five houses was 786 days, and the total number of appliances was
54. Houses 1, 2, and 5 were selected for our experiments because they had more realistic
power signals. We used House 1 as training data and Houses 2 and 5 as test data. The
House 1 data from 01-01-2014 to 11-01-2014 (11 days, date in the format DD-MM-YYYY)
were used as the training dataset, whereas the House 2 data from 20-05-2013 to 31-05-2013
(11 days) and the House 5 data from 29-06-2014 to 10-07-2014 (11 days) were used as the
test datasets.

The Tracebase dataset was sampled at 1 Hz, and the data points were measured
every 1 s from German households. This did not contain the aggregated power. In our
experiments, we used the sum of the power consumption of selected appliances as the
aggregated power. The total duration of the data was 1883 days with 43 different types of
appliances. We used the complete data of Tracebase and chose 7 days where there were
the five appliances in common. Table 1 shows the number of events of UK-DALE and
Tracebase in the training and test sessions.

In each of the above datasets, we chose the following five common appliances for our
experiments: Fridge, Washing Machine (WM), Dish Washer (DW), Kettle, and Microwave
(MW). These five appliances were selected since they were present in the three houses
of UK-DALE and Tracebase. Additionally, the five appliances are commonly used for
evaluating NILM methods [25]. Each 60-s temporal bar graph was converted into an image
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for the input data since a convolutional layer can efficiently extract the useful features from
a graph image. For 60-s intervals, we used 10 data points for UK-DALE and 60 data points
for Tracebase.

Table 1. The number of events in the training and test datasets.

UK-DALE Tracebase
Appliance Training Test Training Test
DW 1967 1642 12,424 6761
Fridge 23,503 11,674 70,342 42,054
Kettle 311 216 313 137
MW 99 107 664 315
WM 1687 1429 10,188 5181

The detailed procedure of generating a temporal bar graph for single cases was
as follows:

1.  The total power is sliced into 60-s intervals.

2. Each sliced interval of the data is labeled by the activation status of each single
appliance on the last data among the 60-s points, and labeling is based on the threshold
listed in Table 2.

3.  thelargest value among the entire dataset is the maximum value, and the minimum
value is set to 0.

4.  Each labeled interval is converted into temporal bar graph images with 50 x 50 X 3 size.

The procedure of generating a temporal bar graph for multi-load cases is as follows:

1. The total power is sliced into 60-s intervals.

2. Each sliced interval of the data is labeled by the activation status of the appliances
on the last point. For instance, in the DW+Fridge case, when both appliances are not
activated on the last point, the label will be 0, and, when only DW is activated on
the last point, the label will be 1. Likewise, when only Fridge is operational on the
last point, the label will be 2, and when both appliances are operational on the last
point, then the label will be 3. The three and five combinations are labeled in this way
on the basis of the operational threshold listed in Table 2 and the graph images are
generated for the different combinations.

3. Set the largest value among the entire set of data points as the maximum value, and
the minimum value is set to 0.

4.  Each labeled interval is transformed into graph images with the size of 50 x 50 x 3.

Table 2. Threshold of the appliances.

Appliance Threshold (q)
DW 10
Fridge 50
Kettle 20
MW 200
WM 10

We determined the ON (APPyn) and OFF (APP,) states of the appliances by using the
operational threshold g of each appliance and the total power Py, as indicated in Table 2.
Note that APPy, is equivalent to Piot > g, and APPyg is Piot < q for each appliance.
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4.2. Experimental Setup

Every experiment in this study was carried out using the TensorFlow framework and
Keras. The learning rate and optimizer were 0.001 and Adam, respectively. For the loss
function, we used binary cross-entropy in the single-load case and categorical cross-entropy
in the multi-load case. The configuration for the experiments was as follows:

e CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
e RAM:64GB

e  GPU: GeForce GTX 2080 Ti

e OS: Windows 10.

4.3. Evaluation Metrics

True positive (TP) was indicated when the working state of an appliance was classified
as ON. True negative (TN) was stated when the not-working state was classified as OFF.
False positive (FP) was indicated when the not-working state was classified as ON. False
negative (FN) was stated when the working state was classified as OFF. The Precision,
Recall, F1-score, and Accuracy were used for evaluation in this study and are defined
as follows:

Precision = %EFP 2
Recall = TPiiPFN ®3)
Frocon = 2 Pt e 0
Accuracy = % ®)

4.4. Network Architecture

VDOCNN [16] and Xception [17] are commonly used CNN architectures that yield
state-of-the-art performance in image classification tasks. We deployed VDOCNN, which
consists of a 1-dimensional (1D) convolutional layer, as illustrated in Figure 6 and Xception,
which consists of a 2-dimensional (2D) convolutional layer, as depicted in Figure 7. The
reason for selecting VDOCNN and Xception is that they are state-of-the-art networks
consisting of 1D and 2D convolutional layers and show a solid performance in the image
classification tasks. We can evaluate that our method showed stable performance on the
dimension changes of the convolutional layers.

VDOCNN is a 1-dimensional convolutional neural network that can efficiently con-
duct 2-dimensional image classification tasks. However, there will be some missing values
since VDOCNN converts 2-dimensional data to 1-dimensional data. Xception is motivated
by the Inception model and showed more efficient performance over the Inception network
on the ImageNet dataset. Specifically, 1 x 1 convolutional layers in Inception were replaced
with 3 x 3 convolutional layers, and more 3 x 3 layers were added in the Xception model.
Xception considerably reduced the convolutional computing cost. However, only a few
performance demonstrations are reported since it is a new model.

(

ConvlD ConvlD Max ConvlD ConvlD Max ConviD ConvlD ConvlD Max
32.3 32.3 Poolmg 32.3 32:3 Pnolmg 64.3 64.3 64.3 Poulmg
RelLU RelLU ReLU RelLU RelLU RelLU RelLU
ConviD ConviD ConvlD Max ConvlD ConviD ConviD Max Dense D(’HSE Dense
64.3 64.3 64.3 Poolmg 64.3 64.3 64.3 Poolmg N=16
RelLU RelU RelLU RelLU RelU RelLU ReLU RCLU Softmax

Figure 6. The network architecture of VDOCNN.
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Figure 7. The network architecture of Xception.

5. Results and Discussion
5.1. Raw Data and Temporal Bar Graph
5.1.1. Single Load

In this experiment, we compared the accuracy and F1-score of appliances using raw
data (without our method), which were the original signal data and the graphs (with our
method) on VDOCNN and Xception. As the images are 2D, we converted the graph images
into 1D vectors in this experiment to verify that the innate patterns in the graph images
did not disappear. We used the array method in the NumPy library to convert 2D graph
images into 1D vectors.

Table 3 indicates that the proposed approach moderately enhanced the performance
of the VDOCNN model on Tracebase, and our method slightly reduced the performance of
VDOCNN on UK-DALE. In detail, for UK-DALE, Kettle and WM showed a slight enhance-
ment in performance while DW, Fridge, and MW recorded slight decreases in performance.
For Tracebase, although DW and Fridge showed huge performance improvements, Kettle
and WM exhibited slight reductions in performance. On average, the proposed method
improved the performance. Table 4 shows that the bar graph resulted in higher scores,
especially for Fridge, on the Xception model in UK-DALE and Tracebase.

When 2D image data were embedded into 1D vectors, data and feature loss was
unavoidable. Accordingly, this loss can negatively affect the performance. Likewise, since
the 2D graph images were embedded into 1D vectors and we used 1D convolutional
layers (VDOCNN), we expected a decline in performance. However, the Accuracy and
F1 score were only dropped by 0.2% each on UK-DALE. On the other hand, the scores
were increased by 3.18% and 3.17% each on Tracebase as listed in Table 3. Conversely,
when 1D raw data were converted into 2D data, the scores often dropped in single and
following multi-load cases. A comparison of the results in Tables 3 and 4 supports that the
loss derived from embedding can cause a performance decrease.

We tested on VDOCNN to confirm the robustness in dimensional changes. Even
though our method slightly decreased the scores on UK-DALE in the VDOCNN model,
we checked that the most inherent features in the graphs did not disappear after the
1D embedding.

According to the tests, the bar graph was robust to the dimensions of the convolutional
layers and input data, which indicates that the bar graph retained the innate patterns even
if the dimensions of the data were changed. Correspondingly, we could confirm the
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performance improvement of the networks when applying the bar graph in the single-
load case.

Table 3. The results of a single appliance with VDOCNN.

UK-DALE Tracebase
w/o Our Method with Our Method w/o Our Method with Our Method
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
DW 94.62 94.62 94.53 94.52 83.73 83.72 96.47 96.46
Fridge 61.52 61.51 61.41 61.40 75.97 75.97 81.20 81.20
Kettle 99.27 99.26 99.30 99.29 99.92 99.92 99.73 99.72
MW 99.68 99.68 99.67 99.66 99.23 99.23 99.27 99.26
WM 95.16 95.15 95.26 95.26 99.02 99.01 97.08 97.08
AVG 90.05 90.04 90.03 90.02 91.57 91.57 94.75 94.74
Table 4. The results of a single appliance with Xception.
UK-DALE Tracebase
w/o Our Method with Our Method w/o Our Method with Our Method
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
DW 94.62 94.62 94.53 94.52 98.06 98.05 98.77 98.76
Fridge 44.43 44.42 65.47 65.47 71.62 71.61 94.65 94.64
Kettle 99.26 99.26 99.30 99.29 99.68 99.67 96.47 96.46
MW 99.68 99.68 99.67 99.66 99.87 99.86 96.47 96.46
WM 95.15 95.15 98.56 98.56 90.76 90.76 99.06 99.05
AVG 86.62 86.62 91.50 91.50 91.99 91.99 97.08 97.07

5.1.2. Combination of Two Appliances

In this experiment, we investigated a combination of two appliances on the VDOCNN
and Xception networks. Table 5 displays the results of the mixed load of two appliances
with the VDOCNN. Without the proposed approach, in UK-DALE, the accuracy and F1-
score decreased by 9.26% and 9.32%, respectively, whereas, with the proposed method,
the scores decreased by only 4.46% and 4.28%, respectively, compared to the results of the
single-load case. In Tracebase, the scores slightly increased with our method by 1.04% and
1.35%. The bar graph exhibited a significant improvement in the Fridge + WM case with
UK-DALE and Tracebase.

Table 6 presents the results of the two appliances with Xception. Without the pro-
posed method, in UK-DALE, the accuracy and F1-score decreased by 13.91% and 15.15%,
respectively, whereas, with the proposed method, the scores decreased by 8.32% and 8.47%,
respectively, compared to the single-load results. In Tracebase, with our method, the scores
dropped by only 0.15% and 0.2%, respectively. In the MW + Fridge case, the results without
our method exhibited poor performance in UK-DALE and Tracebase, while the bar graph
shows superior performance in the MW + Fridge tests in both datasets.

The overall F1-score and accuracy were reduced compared to those of the single-load
case because an additional appliance was added. However, the scores of the bar graph
were observed to be higher and more stable compared with those of the raw data.
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Table 5. The results of combinations of two appliances with VDOCNN.
UK-DALE Tracebase

w/o Our Method with Our Method w/o Our Method with Our Method

Accuracy  F1-Score  Accuracy  F1-Score  Accuracy  F1-Score  Accuracy  F1-Score
DW + Fridge 58.42 58.42 61.18 61.29 90.33 90.12 94.24 97.03
DW + Kettle 93.95 93.94 96.24 96.31 94.82 94.80 94.53 94.76
DW + WM 92.04 92.03 94.17 94.19 91.17 91.17 98.47 98.11
Fridge + Kettle 60.87 60.26 62.59 62.58 87.95 87.95 94.59 94.64
Fridge + WM 58.76 58.75 92.02 90.87 70.17 72.03 94.30 94.28
Kettle + WM 94.47 94.46 96.30 96.30 96.09 96.08 94.36 94.57
MW + DW 94.30 94.29 97.37 97.37 97.10 97.61 99.24 99.23
MW + Fridge 61.25 61.24 62.83 62.83 83.98 87.11 94.83 94.84
MW + Kettle 99.04 99.03 99.07 99.06 99.88 99.89 94.53 94.58
MW + WM 94.85 94.84 96.70 96.69 88.18 87.64 98.82 98.86
AVG 80.79 80.72 85.84 85.74 89.96 90.44 95.79 96.09

Table 6. The results of combinations of two appliances with Xception.
UK-DALE Tracebase
w/o Our Method with Our Method w/o Our Method with Our Method

Accuracy  F1-Score  Accuracy  F1-Score  Accuracy  F1-Score  Accuracy  F1-Score
DW + Fridge 5491 54.34 63.88 63.51 91.41 91.40 93.76 95.92
DW + Kettle 88.61 88.31 96.24 96.01 86.33 85.14 99.23 99.23
DW + WM 58.51 61.17 94.17 93.58 96.27 96.28 95.59 97.01
Fridge + Kettle 53.32 53.09 63.01 63.22 48.49 48.49 94.35 94.35
Fridge + WM 40.73 26.79 62.89 62.50 97.91 97.88 94.41 94.17
Kettle + WM 93.66 93.66 96.30 96.33 97.41 97.41 98.88 98.91
MW + DW 94.41 94.41 97.41 97.41 96.93 97.10 99.11 99.08
MW + Fridge 46.52 46.53 63.28 63.16 20.89 34.22 95.47 95.51
MW + Kettle 98.06 98.06 99.22 99.21 99.19 99.19 99.70 99.76
MW + WM 98.42 98.42 95.45 95.45 98.21 98.21 98.82 98.82
AVG 72.71 71.47 83.18 83.03 83.30 84.53 96.93 97.27

5.1.3. Combination of Three Appliances

In this experiment, a combination of three appliances was tested on the VDOCNN and
Xception models. Without our method, in UK-DALE, the accuracy and F1-score decreased
by 11.37% and 11.41%, respectively, whereas, with our method, the scores decreased by
13.80% and 13.68%, respectively, compared to the scores of the two-appliance case on
VDOCNN as indicated in Table 7. In Tracebase, the scores with our method were higher
than the scores without our method.

On Xception with UK-DALE, the accuracy and Fl-score decreased by 12.32% and
11.24%, respectively, for the raw data, whereas the scores decreased by 11.05% and 11.01%,
respectively, for the bar graph compared to the results of the two-appliance case, as reported
in Table 8. In Tracebase, the scores decreased only 1.2% each. The graph exhibits improved
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performance in several tests on both networks, such as DW + Fridge + Kettle, DW + Fridge
+ MW, DW + Fridge + WM, DW + Kettle + MW, and Fridge + MW + WM in UK-DALE
and Tracebase. However, there are some cases where our method showed the worse
performance on VDOCNN with Tracebase, such as Fridge + Kettle + MW, Fridge + Kettle
+ WM, and Fridge + MW + WM, as listed in Table 7. As in the previous cases, the 1D
embedding of data can negatively affect the performance.

Compared to the combination of two appliances, the average F1-score and accuracy
were reduced as one more appliance was included. However, the application of the bar
graph still outperformed the results of the raw data in UK-DALE and Tracebase.

Table 7. The results of combinations of three appliances with VDOCNN.

UK-DALE Tracebase
w/o Our Method with Our Method w/o Our Method with Our Method
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

DW + Fridge + Kettle 59.21 59.21 63.57 63.66 82.15 90.20 94.47 94.70
DW + Fridge + MW 59.15 58.14 63.87 63.87 91.27 91.29 93.64 93.79
DW + Fridge + WM 57.29 57.28 62.19 62.19 7991 87.10 93.53 95.10
DW + Kettle + MW 58.15 58.13 60.96 60.96 99.43 97.76 96.36 99.11
DW + Kettle + WM 95.65 95.65 92.51 92.61 95.54 93.52 98.30 98.29
DW + MW + WM 91.72 91.72 93.88 93.92 95.19 93.17 98.24 96.92
Fridge + Kettle + MW 62.04 62.01 63.63 63.57 79.28 79.28 77.95 77.95
Fridge + Kettle + WM 58.24 58.23 60.53 60.53 79.28 79.28 77.19 77.18
Fridge + MW + WM 58.49 58.49 63.27 63.26 79.86 79.85 77.25 77.24
Kettle + MW + WM 94.26 94.25 96.02 96.05 97.07 97.58 98.77 98.76
AVG 69.42 69.31 72.04 72.06 87.89 88.90 90.57 90.94

Table 8. The results of combinations of three appliances with Xception.

UK-DALE Tracebase
w/o Our Method with Our Method w/o Our Method with Our Method
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

DW + Fridge + Kettle 45.05 4391 60.19 60.15 94.38 94.39 93.41 95.95
DW + Fridge + MW 46.37 45.95 63.38 63.71 46.37 45.95 93.29 90.59
DW + Fridge + WM 49.13 49.16 63.23 62.65 64.72 65.46 93.23 95.46
DW + Kettle + MW 46.74 47.18 63.87 65.84 97.91 97.91 98.94 97.82
DW + Kettle + WM 95.52 95.52 94.67 93.76 95.94 95.71 98.35 98.29
DW + MW + WM 89.71 89.71 95.00 94.98 94.36 94.37 97.06 97.64
Fridge + Kettle + MW 43.95 44.02 63.92 62.62 22.27 22.27 94.82 95.86
Fridge + Kettle + WM 50.87 50.87 60.32 60.64 86.00 86.00 93.88 95.11
Fridge + MW + WM 38.67 38.17 62.09 61.96 82.86 82.93 95.59 95.20
Kettle + MW + WM 97.95 97.89 94.67 93.91 97.24 97.24 98.76 98.79
AVG 60.39 60.23 72.13 72.02 78.20 78.22 95.73 96.07
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5.1.4. Combination of Five Appliances

In this experiment, we examined a combination of five appliances with VDOCNN and
Xception for the UK-DALE and Tracebase datasets. The results are shown in Tables 9-12.
The results show that our method significantly improved over all the baselines in terms
of the accuracy, Fl-score, recall, and precision. On the VDOCNN with UK-DALE, the
accuracy and Fl-score for the raw data decreased by 15.72% and 15.62%, respectively,
whereas the scores for the bar graph decreased by 8.74% and 8.35%, respectively, compared
to the results of the three appliances case.

In Tracebase, the scores increased by 2.38% and 3.88% with the proposed method.
For Xception with UK-DALE, the accuracy and F1-score decreased by 30.22% and 30.91%,
respectively, for the raw data, whereas the scores for the bar graph decreased by 8.74% and
6.99%, respectively, compared to the results of the three appliances test. In Tracebase, the
scores decreased 5.85% and 3.17% with the proposed approach.

Table 9. The results of combinations of five appliances with VDOCNN (UK-DALE).

UK-DALE
w/o Our Method with Our Method

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision

53.70 53.69 53.70 53.70 63.30 63.71 62.83 63.62

Table 10. The results of combinations of five appliances with VDOCNN (Tracebase).

Tracebase
w/o Our Method with Our Method

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision
73.40 73.39 73.40 73.40 92.95 94.82 92.83 96.90

Table 11. The results of combinations of five appliances with Xception (UK-DALE).

UK-DALE
w/o Our Method with Our Method

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision
30.17 29.32 23.17 39.93 63.39 65.03 63.30 66.86

Table 12. The results of combinations of five appliances with Xception (Tracebase).

Tracebase

w/o Our Method with Our Method

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision
48.77 48.95 47.62 50.36 89.88 92.90 89.12 97.02

Overall, we conducted tests on a single appliance as well as on combinations of two,
three, and five appliances. The results verified that the performance of the two models
was improved by implementing the proposed approach, as illustrated in Figures 8 and 9.
The figures indicate that the performance gap between with and without our method
increased as the number of appliances increased, and the gap reached the maximum value
in the five-appliance case. Therefore, if various commonly used appliances are operating
simultaneously, simply applying the bar graph to the raw data can make the models more
efficient, leading to enhanced performance.
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Figure 8. The Fl-score corresponding to the number of appliances on UK-DALE with the (a) VDOCNN model and
(b) Xception model, respectively.
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Figure 9. The Fl-score corresponding to the number of appliances on Tracebase with the (a) VDOCNN model and

(b) Xception model, respectively.

5.2. Spectrogram and Temporal Bar Graph

In this experiment, we compared the temporal bar graph with the spectrogram on
Concatenate-DenseNet121 [11], which has previously exhibited strong performance in
image classification tasks. We selected the spectrogram method because it is a state-of-the-
art image-based approach. The size of the spectrogram images in this test was 224 x 100 x 3,
and the images were preprocessed by STFT for feature exposure. An image consisted of
10 data points, which were 60-s long, and it was labeled following the final (10th) data point.

The preprocessing procedure was the same as that of the bar graph image. We selected
House 1 and used data from 15-03-2014 to 20-03-2014 (5 days) for training and data from
19-04-2014 to 23-04-2014 (4 days) for testing. The number of images for training and testing
were 5900 and 3000, respectively.

The structure of Concatenate-DenseNet121 is shown in Figure 10. The background
features and mixed features in Figure 10 were extracted from an embedded network, which
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is denoted as DenseNet121 in this paper. The results for between the spectrogram and
graph are listed in Table 13. Four appliances exhibited slight improvements: DW, Fridge,
Kettle, and MW. Although the spectrogram achieved a higher score in the WM test, the
graph exhibited an improvement in the overall scores. Thus, we can confirm that the graph
provided superior performance compared to the spectrogram.

Table 13. The results with Concatenate-DenseNet121.

Spectrogram Temporal Bar Graph
Accuracy F1-Score Accuracy F1-Score
DW 95.64 95.64 96.67 96.66
Fridge 57.61 57.61 58.29 58.28
Kettle 99.51 99.51 99.63 99.63
MW 99.42 99.42 99.50 99.49
WM 98.11 98.11 97.17 97.16
AVG 90.05 90.05 90.25 90.24

AvgPool
(7,2)

FC
256 = 64
Conv
(7, 2), 256

[ Concatenate feature J

Similarity learning
(=]

FC
256 x 256

Background Mixed
feature feature FC
256 * 256

L Difference leaming — L—— Classifir —1

Figure 10. The network architecture of Concatenate-DenseNet121 [11]. Reprinted from ref. [11].

5.3. Comparison with State-of-the-Art Techniques

To validate the proposed method, the Fl-scores of other recent deep learning meth-
ods using the UK-DALE dataset were compared as listed in Table 14. However, direct
comparisons between the results should be carefully conducted since all the experimental
configurations were different. In comparison with the latest deep learning techniques, the
proposed method showed the highest F1-score among the deep learning methods using
low frequency data with regard to appliance identification, and this indicates that the
convolutional layers actually detected our temporal patternization and extracted useful
features from the patterns.
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Table 14. The performance of the appliance classification on the UK-DALE dataset.

Method Frequency # Appliances F1-Score
SVM [26] high (16 kHz) 11 83.00
Concatenate-Xception [11] high (2 kHz) 5 89.20
Concatenate-DenseNet121 [11] high (2 kHz) 5 91.74
ML-LSTM [12] low (6's) 5 80.32
RNN [27] low (6 s) 14 86.34
GRURNN [27] low (6's) 15 87.64
Our result low (6 s) 5 91.50

6. Conclusions

In this paper, we proposed a novel approach for improving the classification of
operating appliances with temporal patterns using the bar graph. We demonstrated its
usefulness through experiments with single and multiple loads. The proposed method
was robust to network structures and the dimension reduction of data, and we confirmed
that the temporal patternization actually contributed to enhancing the NILM performance.
Additionally, our method can be broadly applied to other image-based temporal topics,
and other papers dealing with application classification could be improved by applying
our method. However, further verification using more datasets and appliances is required
to disaggregate real-world data and to determine a means of applying the method in more
complicated situations.

We will conduct further research on approaches using images in appliance classifi-
cation and will compare the advantages and disadvantages of the techniques. We will
continue to identify state-of-the-art approaches in artificial intelligence to determine better
solutions for NILM issues.
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