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Abstract: The paper deals with the determination and compensation of non-active torques of parallel
HEV using an auxiliary electrical PMSM or IM motor. The non-active oscillating torque generating by
the ICE engine was estimated, and consequently, the compensating torque component of the current
was determined. Based on real measured data, the four regimes of operation have been investigated:
compensating non-active torques, parallel operation, regenerating for PMSM, and both parallel
operations, together with compensation. Using of p-q theory, the power of fundamental harmonic
is presented by average values PAV, QAV of total power waveforms p(t), and q(t). Worked-out
simulation results are used for sizing and dimensioning of PMSM machine, VSI inverter, and traction
accumulator-battery. Circuit simulator Matlab/Simulink was used for all simulation experiments.

Keywords: HEV vehicle; parallel operation; active and non-active torque components; PMSM motor;
ICE engine; torque mapping; FOC control

1. Introduction

Hybrid vehicles, mild or plug-in ones, play an important role in passenger urban
traffic and/or in transport of HEV highway vehicles [1,2]. In parallel hybrids, an auxiliary
electrical machine assists the ICE engine in delivering traction power, whereas their outputs
are arranged in parallel. As a result of the operation of the ICE machine on its shaft,
oscillating moments are generated, which cause both a ripple of the total torque and
fluctuations in the speed of the device. To identifying those ripples is possible to use
different methods [3–6]. In our case, however, it is possible to use our own auxiliary electric
motor for identification. Most algorithms for minimizing torque ripple, whether due to
non-sinusoidal induced voltage or cogging torque, assume that it is necessary, either online
or offline, to identify ripple sources and their profile depending on the rotor position.

After identification, it is necessary to adjust the stator currents so that the added har-
monic components compensate for the sources of torque ripple and thus achieve a smoother
operation of the motor [7–9]. This has been achieved in the past by high bandwidth con-
trol [10,11], repetitive control [12], or the application of simple artificial networks [3,4].
Assuming a parallel HEV vehicle, we will be focused on an auxiliary electrical motor which
can serve to increase traction power and to compensate for non-active oscillating torque
generated mainly by the ICE engine. Other works [13,14] have focused on a description of
the noise vibration characteristics and corresponding suppression methods of HEVs or/and
exploring the effect of a dual-mass flywheel on the torsional vibration characteristics of a
power-split hybrid powertrain, respectively.

Generally, there are two groups of the source of oscillating torques and thus also ripple
of the rotating speed of the electric motor

• internal ones,
• external ones.

Energies 2021, 14, 2781. https://doi.org/10.3390/en14102781 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6138-3103
https://www.mdpi.com/article/10.3390/en14102781?type=check_update&version=1
https://doi.org/10.3390/en14102781
https://doi.org/10.3390/en14102781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14102781
https://www.mdpi.com/journal/energies


Energies 2021, 14, 2781 2 of 26

Among the internal sources, from the point of view of auxiliary electric machines, we
can introduce these as cogging torque, the shape of back emf, mechanical and electrical
failures caused by construction, and as the shape of the current, dead-time, etc. Among
the external sources, from the point of view of HEV, there are torques caused by the ICE
engine, gears, mechanical resonances, etc. In this paper, mainly external sources of the
oscillating torques will be investigated.

Unlike the aforementioned previous works, the paper describes, besides the compensa-
tion of non-active oscillating torques, an investigation of all functional procedures needed:

- estimation external torques by auxiliary PMSM/IM motor;
- compensation of non-active oscillating ones;
- power circumstances calculation;
- dimensioning needs of the auxiliary PMSM motor, VSI converter, and accu-battery.

The first task in this investigation is the identification and/or estimation of these
non-active oscillating torques. The second, is the compensation of identified oscillating
torque using an auxiliary electric motor (PMSM/IM). The next one, parallel cooperation
of ICE and e-motor and compensation torque and speed ripple can be provided. The
main task is to determine the size of the auxiliary electric motor, which would work in
parallel with the ICE machine and at the same time compensate for torque and speed
ripple. The instantaneous reactive power method [15,16] is used to determine the power
components on input motor terminal although it is also possible to use more accurate
methods to calculate motor losses [17]. Based on the received result we can provide a sizing
and dimensioning of the PMSM motor, VSI converter, and Accu-battery.

2. Identification of the Total Active Torques of Traction Power Transmission

One possibility for identification of the load torque is the use of the auxiliary motor
itself. Unlikely internal sources, when we investigate the motor in no-load operation [9,18],
the external sources should be investigated under full load operation or in the entire region
of the load and speed, respectively.

An example of the oscillating torque course and corresponding speed is shown in
Figure 1.
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The torque consists of an active mean value component Tav and non-active oscillating
components Tosc. The total torque course may change depending on rotating speed and
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loading (loaded torque). Therefore, it is necessary to map these changes and create a
two-dimensional map at the whole range speed and load (Figure 2). This all can be done
using measuring apparatus placed on the shaft of the HEV engine, but it is not a simple
matter, and is, in fact, a rather complex one [19].
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Figure 2 shows the extraction of the torque ripple Tpk-pk from the measured torques of
the internal combustion engine at different loads.

Another way how to get these courses is to use an auxiliary traction electrical motor.
This can be either synchronous or induction (asynchronous) one. From measured and
estimated currents, rotating speed and its derivative we can reconstruct these courses. Both
solutions will be demonstrated.

2.1. Torque Estimation Using Embedded Auxiliary Motor

Generally, the motor torque Equation (1) applies

telmg = Tl + tacc = Tl + Jm
dωm

dt
(1)

where in the load moment Tl can have both unidirectional (constant) and oscillating
components and includes the friction moment in the bearings of the machine (rolling and
viscous friction).

The additional acceleration torque tacc is required to start the machine at the required
speed at a given load torque. The internal electromagnetic torque of the electric motor
depends on the machine parameters and is a function of the motor current, as well as the
speed and position of the rotor (for AC machines). The load moment is usually given as in
Equation (2);

tl = Tav + tosc + t f ri (2)

however, if we do not know it or it may change, it is possible to determine its size by
measuring with a dynamometer with a torque sensor.

Another method of determination is its reconstruction using the measured values of
the motor (current, speed) and the given parameters of the machine. From Equation (1) we
express the moment of the load as an unknown required quantity, i.e., the reconstructed
estimated moment is shown in Equation (3).

tl,est = telmg − Jm
dωm

dt
(3)
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where the internal electromagnetic moment is expressed by means of the measured cur-
rent(s) and, the measured motor speed, Equation (4);

telmg = f (im, ωm) (4)

The reconstructed torque will therefore be a function of the motor currents, the motor
speed and their derivative, Equation (5).

tl,est = f
(

im, ωm,
dωm

dt

)
(5)

Any other required quantities, such as the current and the position of the rotor, can be
estimated from these measured quantities. Of course, for each type of motor, the equation
for the electromagnetic torque will have a different shape and the relationship for the
reconstructed load torque.

2.2. Estimation of Electromagnetic Torque for PMSM Synchronous Motor with
Permanent Magnets

PMSM model in d, q coordinates is described in [20–22], while here we introduce the
main equations required for further modeling. The voltages in d, q coordinates are defined
by (6) and (7);

ud = Rsid + Ld
did
dt
−ωLqiq (6)

uq = Rsiq + Lq
diq

dt
+ ω(Ldid + ΨPM) (7)

The internal electromagnetic torque and mechanical quantities are given by (8)–(9).

telmg =
3
2

Pp(id·iq ∗
(

Ld − Lq
)
+ ΨPMiq (8)

dωm

dt
=

Pp
Jm

(
telmg − Tl

)
ϑm =

∞∫
0

ωmdt
dϑm

dt
= ωm (9)

Load torque could be specified as follows:

tl = Tav + tosc + t f ri (10)

Estimated reconstructed torque will be

tl,est = telmg − Jm
dωm

dt
= − Jm

τmech
ωm +

3
2

Pp(id·iq ∗
(

Ld − Lq
)
+ ΨPMiq − Jm

dωm

dt
(11)

where the friction component of the load moment was expressed explicitly, together
with the internal electromagnetic telmg and the acceleration tacc of the motor torque. The
components of the motor stator current vector-the quantities isα, isβ, Equations (12a) and
(12b), are determined, resp. measured indirectly, from measured currents isα, isβ:

isα = ia (12a)

isβ =
1√
3
(isb − isc) =

1√
3
(2isb + isα) (12b)

The dq component of the stator current isd and isq can be calculated using transforma-
tion from αβ to dq frame.
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The mechanical angular velocity ωm and the position of the rotor ϑ are directly
measurable quantities, also stator currents ia, ib. The rotor position ϑ can also be calculated
(estimated) as a time integral of the rotational mechanical angular velocity of the motor ωm.

ϑ =

∞∫
0

ωmdt (13)

Using a PMSM motor is the easier solution (due to PMSM rotor), as the induction
motor IM is characterized by greater moment of inertia helping to reduce speed ripple, but
we need to estimate also rotor currents.

2.3. Estimation of Electromagnetic Torque for Cylinder Asynchronous Motor with
Squirrel-Cage Armature

Internal electromagnetic torque of the induction motor (IM) is defined as follows:

telmg =
3
2

Pp
Lm

Jm

(
irα·isβ − isα·irβ

)
(14)

where isα, isβ are alfa, beta stator currents and irα, irβ rotor currents.
Load torque could be defined as:

tl = Tav + tosc + t f ri (15)

while estimated torque is as follows:

tl,est = telmg − Jm
dωm

dt
=

3
2

Pp
Lm

Jm

(
irα·isβ − isα·irβ

)
− Jm

dωm

dt
(16a)

where in the stator components of the current vector isα, isβ are determined, resp. measured
indirectly, from measured stator currents isα, isβ, Equations (16a) and (16b), and recalculated
using Clarke transform:

isα = isa
isβ = 1√

3
(isb − isc) =

1√
3
(2isb + isa)

(16b)

Rotor currents irα, irβ are calculated according to the relations from the IM motor model:

irα = irα + dT·Kr

(
Rs

Lm

Lr
isα − Rrirα −ωm

(
Lmisβ + Lrirβ

)
− Lm

Ls
Uα

)
(17)

irβ = irβ + dT·Kr

(
Rs

Lm

Lr
isβ − Rrirβ + ωm(Lmisα + Lrirα)−

Lm

Ls
Uβ

)
(18)

where Kr is the rotor constant (see Blondel’s coefficients)

Kr =
Ls

LsLr − L2
m

(19)

and the components of the stator voltage vector Uα, Uβ can be measured, similarly to the
currents isα, isβ, or the reference voltage from FOC control can be used.

The quantity ωm is being measured, while the position of the rotor ϑ can be calculated
(estimated) as a time integral of the rotational mechanical angular velocity ωm:

ϑ =

∞∫
0

ωmdt, thus ϑ = ϑ0 + dT·ωm (20)
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3. Model Development within Matlab Environment

In all cases of program implementation of PMSM and IM motor, the speed derivative,
resp. mechanical angular velocity of the engine is replaced by its first derivation:

dωm

dt
≈ ωm(k + 1)−ωm(k)

∆T
(21)

wherein it is necessary to remember the value of revolutions from the previous step ωm(k)
and calculate the new value ωm(k + 1) according to the appropriate relation from the
discrete mathematical model of the machine. As an example, we can follow the calculation
of the reconstructed torque of the PMSM motor (Figure 3). The directly measurable
quantities of PMSM are ωm, ia, ib, calculated quantities are id, iq, ϑ, ωm(k + 1), ωm(k).
The principle waveforms of ωm, ia, tl and tl,est are shown below.
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The model development of IM estimation in Matlab environment is like PMSM one.

3.1. Reconstruction of Oscillating Torque

After estimation of the total load moment tl,est, it is necessary to determine which part
of it represents the oscillating moment tosc. From the equation for the load torque, we get:

tosc = tl,est − Tav − t f ri (22)

where terms Tav , t f ri are known.
To evaluate this waveform tosc as a periodic time function f (t), we can use Fourier

analysis to obtain the magnitudes of the amplitudes of the individual harmonic components.
Equations apply to Fourier coefficients:

ck =
2
T

T∫
0

tosc(t)·ejkωtdt (23)

resp. ak =
2
T
∫ T

0 tosc(t)· cos(kωt)dt, bk =
2
T
∫ T

0 tosc(t)· sin(kωt)dt ; ck =
√

ak
2 + bk

2, where

ck is the amplitude and kωt is the angular frequency ( fk =
kω
2π ) of the corresponding k-th

harmonic component.
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The largest harmonic components can then be compensated by introducing them into
the reference value of the torque regulator, with the opposite phase [17,23]. To determine
the total course of the oscillating moment (with all harmonic components), we need to
calculate the mean value Tav using the relation from Fourier analysis

Tav =
1
T

T∫
0

tl,est(t)dt (24)

and subtracting this value from the total reconstructed load torque tl,est in Equations (11) and (17).
In order not to have to calculate the integral for the whole time period, it is advanta-

geous to use the moving average method (MAM) with shifting the integration window
off width T with the appropriate integration step ∆T, whereby the mean value of the
load moment Tav is determined continuously in each calculation step k∆T—if we use the
on-line method.

3.2. Machine Power Calculation

Estimated total torque on a shaft using PMSM motor will be considered as a torque
sensor. The total torque measured and calculated on the shaft without compensation is
given in Figure 4.

iq(ϑ) =
2
3

Ttot(ϑ)

PpΨPM
=

2
3

Tav(ϑ) + tosc(ϑ)

PpΨPM
(25)

where iq calculated is given by
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one (orange); (c) rotating angular speed.

Regarding the terms of increasing the motor power, its value should be increased by
the reactive part needed for compensating of oscillating torque, whose average (mean)
value is zero. The total apparent power of the motor taken from the main 3-phase network
will be:

S = Ua,rms Ia,rms + Ub,rms Ib,rms + Uc,rms Ic,rms =
3
2
(
Uα,rms Iα,rms + Uβ,rms Iβ,rms

)
(26)
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or
S(av) =

√
P2

1(av) + Q2
Σ(av) + D2

Σ(av) (27)

Since the active power P1(av) is clearly given as:

P =
Tav,nom

ωm
(28)

to know the reactive one, we need to determine phase shift ϕ1

Q1(av) = U1rms I1rms sin ϕ1 QΣ(av) = UΣ,rms IΣ,rms sin ϕν (29)

therefore, we can use the instantaneous p_q reactive power theory [13,14].
Instantaneous power p_q components in alfa, beta coordinate system is defined as in

(31). We left alfa, beta to be not interfered with the d, q control system:[
p
q

]
=

3
2

[
uα uβ

−uβ uα

][
iα

iβ

]
=

[
Pav+ pac
Qav+ qac

]
(30)

where

Pav =
1
T

∫ T

0
(uαiα + uβiβ)dt; Qav =

1
T

∫ T

0
(uαiβ − uβiβ)dt (31)

while required phase shift ϕ1 of fundamental harmonic component is:

ϕ1 = atan
Qav

Pav
(32)

whereby Pav and Qav mean values are defined by (34).

Pav = U1rms I1rms cos ϕ1; Qav = U1rms I1rms sin ϕ1 (33)

and pac, qac components represent the reactive power of higher harmonics.
Knowing Sav, Pav, Qav, we are able to determine distortion power using (35).

Dav = U1rms

√
∑ Ik,rms

2 =

√
Sav

2 − Pav
2 −Qav

2 (34)

where
Sav =

3
2
(
Uαrms Iαrms + Uβrms Iβrms

)
(35)

and knowing pac, qac [
pac
qac

]
=

[
p− Pav
q− Qav

]
(36)

Then distortion power is defined as follows:

Dav = U1rms I∑ rms = U1rms

√
I∑ p,rms

2 + I∑ q,rms
2 =

√
pac,rms2 + qac,rms2 (37)

and we can also determine the total apparent power using (39)

Sav =

√
Pav

2 + Qav
2 + Dav

2 (38)

4. Compensation of the Oscillating Torque and Speed Ripple Considering One
Independent PMSM Motor

Based on the previous analysis and calculations regarding reconstructed oscillat-
ing torque, it is possible to compensate the load oscillating torque by introducing it
within the torque controller reference value with the opposite phase position, i.e., negative
sense [17,18]. Unfortunately, the identification and compensation of oscillating torque is
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not possible at the same time by the same motor. The main principle of the used method
consists of the compensation technique given in Figure 5.
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Figure 5. Block scheme of PMSM motor under FOC with oscillating torque compensation.

In this figure the compensating current iq,comp(ϑ) is estimated using the iq which is
defined by the next equation:

iq(ϑ) =
2
3

Ttot(ϑ)

PpΨPM
=

2
3

Tav(ϑ) + tosc(ϑ)

PpΨPM
(39)

while it is a function dependent on speed and load of the motor generating torque (ICE
engine and/or PMSM).

Simulation results using the Matlab/Simulink environment [24] are shown in Figure 6,
in which it depicts the total torque measured and calculated on the shaft with compensation.
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Figure 6. Total torque measured and electromagnetic one with compensation tosc. (a) iq measured
(orange) and iq generated by speed controller (blue); (b) load torque course (blue) and electromagnetic
one (orange); (c) rotating angular speed.

Resulting power components Pav, Qav, and pac, qac are given in Figures 7–9. Based on
the received result, we can provide a sizing and dimensioning of the PMSM motor.
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Figure 9. Time waveforms of pac,, qac and Pac,rms, Qac,rms—case of compensating.

The compensation starts at 1 s. It is interesting that under compensation, the oscillating
(AC) components pac, qac of p, q stay unchanged, but DC components Pav, Qav are changing.

5. Application in Parallel HEV Powertrain

Unlike the above description, the ICE engine and auxiliary electric motor (PMSM)
cooperate together, while the electric motor can simultaneously compensate for oscillating
torque generated by ICE and also secure the transfer of traction power. Regarding the
compensation, the approach has been described above.

Firstly, we need to know the measured total torque on the joint shaft of ICE and PMSM.
One of the real examples is shown in Figure 10a,b [23].
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As mentioned, it consists of the mean torque value and the oscillating parts of the
torque. So, we need to calculate them using Fourier analysis. Knowing the mean value
and oscillating part, we can begin to simulate compensation action using the model from
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Figure 5. Results of Fourier analysis are shown in Figure 11. Mean value of the torque and
rotating speed of the ICE during one testing cycle of the engine is shown in Figure 12.
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Figure 12. Mean value of the torque (a) and rotating speed of the ICE (b) during one testing cycle of the engine.

Since we did not have the parameters of the internal combustion engine, only the
measured torque characteristics, we used the replacement of ICE by an electric machine.
Then for further simulation analyses, the ICE engine was substituted by the electrical
machine. We have used synchronous PM machine but with limited (finite) power. Within
the next simulation, it analyses all components of measured torque’s courses that have
been transformed regarding the power of the electric motor as follows:

• Transformed nominal torque (mean value) 200 Nm
• Transformed amplitude of dominant harmonic 150 Nm
• Auxiliary compensating PMSM motor has the same parameter rates as the traction

PMSM simulating ICE engine.

All simulations have been provided in the Matlab/Simulink environment. The simu-
lation model is shown in the next Figure 13. Regarding the stator voltage of PMSM, the
calculations of the reference waveforms and their RMS values have been considered.
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Figure 13. Simulation model in the Matlab/Simulink with two PMSM controlled by FOC (field-oriented control).

The simulation model in the Matlab/Simulink [20] comprises a model of both PMSM
motors with FOC control. The presented concept is a parallel hybrid as it is shown in
Appendix A, [13]. Using the p-q theory, the power of fundamental harmonic is presented
by average values Pav, Qav of total power waveforms p(t), and q(t).

5.1. Operation Regime of PMSM for Compensation—#R1

Simulation results for the case when the electric motor is just compensating the
oscillating torque of ICE are shown in Figures 14–16 (compensation switched on at 0.2 s).
Figure 14 shows the detailed waveform of angular speed, angular acceleration, and PMSM
mechanical torque and torque of ICE, respectively. Until 0.2 s, the PMSM motor does
not produce any electromagnetic torque. The oscillation of the ICE angular speed (also
PMSM) is not compensated. It is also shown in the angular acceleration waveform. After
the time of load of the ICE engine was set to 200 Nm. In Figure 14 below is seen that the
torque produced by the PMSM motor compensates the oscillating torque of the ICE. This
operation is presented by the significant reduction of the angular speed ripple and angular
acceleration ripple, respectively. The angular acceleration represents the overall vibration
of the proposed drive. The PMSM active and reactive power component and their average
values are shown in Figure 15. It is shown that the average value of the active power PAV
is minimal due to not contributing the PMSM torque to the load. It contributes only to
the compensation of the oscillating torque. The RMS value of the oscillating parts of p, q
components are shown in Figure 16. In this regime is seen that the PMSM motor must be
designed to the peak value of p component.
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Figure 14. Speed, angular acceleration, and torques during compensation of ICE engine torque oscillations.
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Figure 15. Active and reactive power during compensation of ICE engine torque oscillations.
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Figure 16. AC components of power during compensating of oscillating ICE engine torque.

Parameters:

• Nominal load torque = 200 Nm
• Oscillating torque amplitude = 150 Nm
• Frequency of oscillating = 85 Hz
• Actual rotating speed = 210 rad/s
• Apparent power = 21,334 VA
• Active power = 544 W
• Power factor cosϕ1 = 0.088 (ϕ1 = 84 ◦el.)

• P—time waveform of the power in p-axis (PAV + pac)
• Q—time waveform of the power in q-axis (QAV + qac)
• PAV—average value of active power
• QAV—average value of reactive power

• pac—ripple of the power in p-axis
• qac—ripple of the power in q-axis
• pacrms—rms of the power ripple in p-axis
• qacrms—rms of the power ripple in q-axis

In this operating regime, the PMSM motor compensates for oscillating torque gener-
ated by the load. Waveforms of speed and torque of PMSM applied to the shaft have been
interpreted together with power component waveforms (apparent, active, and reactive
ones) on its input terminals. Note that compensation is provided mainly by reactive power.

5.2. Operation Regime of PMSM for Parallel Cooperation with ICE—#R2

This case represents the operation of the ICE engine with a damping element. There-
fore, the oscillating torque are compensated and only the cooperation of ICE and auxiliary
PMSM machine as a booster machine are presented. Simulation results for the case when
the e-motor and ICE motor cooperate in parallel are shown in Figures 17–19 (parallel coop-
eration at 0.2 s). From Figure 17, it is seen that the oscillation in angular speed and angular
acceleration are suppressed by the mechanical damping element. Therefore, the oscillating
components of power p,q, and their rms values do not occur significantly in investigated
waveforms (Figure 19), mainly in the transient state, when the parallel operation is applied.
The main power is in this regime used to contribute power components PAV and QAV to
cover the load, Figure 18.



Energies 2021, 14, 2781 16 of 26

Energies 2021, 14, x FOR PEER REVIEW 16 of 26 
 

 

ones) on its input terminals. Note that compensation is provided mainly by reactive 
power. 

5.2. Operation Regime of PMSM for Parallel Cooperation with ICE—#R2 
This case represents the operation of the ICE engine with a damping element. There-

fore, the oscillating torque are compensated and only the cooperation of ICE and auxiliary 
PMSM machine as a booster machine are presented. Simulation results for the case when 
the e-motor and ICE motor cooperate in parallel are shown in Figures 17–19 (parallel co-
operation at 0.2 s). From Figure 17, it is seen that the oscillation in angular speed and 
angular acceleration are suppressed by the mechanical damping element. Therefore, the 
oscillating components of power p,q, and their rms values do not occur significantly in 
investigated waveforms (Figure 19), mainly in the transient state, when the parallel oper-
ation is applied. The main power is in this regime used to contribute power components 
PAV and QAV to cover the load, Figure 18. 

 
Figure 17. Speed and torques of parallel cooperating of both PMSM motor and ICE engine with 
damper. 

Parameters: 
• Nominal load torque = 200 Nm 
• Elmagnetic torque (PMSM) = 100 Nm 
• Mechanical torque (ICE) = 100 Nm 
• Actual rotating speed = 210 rad/s 
• Apparent power = 21,889 VA 
• Active power = 20,867 W 
• Power factor cos𝜑ଵ = 0.95 (𝜑ଵ = 17 °el.) 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

150

200

250

PMSM
ICE

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

-4000
-2000

0
2000
4000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

0
100
200

TmechPMSM TICE

Figure 17. Speed and torques of parallel cooperating of both PMSM motor and ICE engine with damper.
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Figure 18. Active and reactive power during parallel cooperating of both PMSM motor and ICE
engine with engine damper.
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Figure 19. AC components of power during parallel cooperating of both PMSM motor and ICE
engine with dumper.

Parameters:

• Nominal load torque = 200 Nm
• Elmagnetic torque (PMSM) = 100 Nm
• Mechanical torque (ICE) = 100 Nm
• Actual rotating speed = 210 rad/s
• Apparent power = 21,889 VA
• Active power = 20,867 W
• Power factor cosϕ1 = 0.95 (ϕ1 = 17 ◦el.)

• P—time waveform of the power in p-axis (PAV + pac)
• Q—time waveform of the power in q-axis (QAV + qac)
• PAV—average value of active power
• QAV—average value of reactive power

• pac—ripple of the power in p-axis
• qac—ripple of the power in q-axis
• pacrms—rms of the power ripple in p-axis
• qacrms—rms of the power ripple in q-axis

In this regime of operation, the PMSM motor delivers one-half (50%) energy for the
load torque. It is supposed that the torque generated by the ICE engine does not comprise
the oscillating component due to ICE including a damper of rotating mass. Waveforms
of speed and torque of PMSM on the shaft have been presented together with power
components waveforms (apparent, active, and reactive ones) on its input terminals. Note
that delivered power is provided by active power generated by PMSM.

5.3. Operation Regime of PMSM for Oscillating Torque Compensation and Energy Recovery—#R3

Simulation results for the case when the ICE engine drives PMSG as a generator are
shown in Figures 20–22 (PMSG switched on at 0.2 s). In this regime of operation, the
PMSM motor regenerates energy of the load to the battery via a VSI inverter. There are
shown courses of speed, angular acceleration, and torque of PMSM on the shaft, power
components waveforms (apparent, active, and reactive ones) on its input terminals. Note
that delivered power presented mainly by PAV, QAV is negative one. This means that these
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components represent the power delivered back to the battery. The p and q component
represent the power which is needed to compensate the oscillating torque.
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Figure 20. Speed, angular acceleration and torques when PMSM loaded ICE engine as generator.
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Figure 21. Active and reactive power when PMSM loaded ICE engine as the generator.



Energies 2021, 14, 2781 19 of 26

Energies 2021, 14, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 21. Active and reactive power when PMSM loaded ICE engine as the generator. 

• P—time waveform of the power in p-axis (PAV + pac) 
• Q—time waveform of the power in q-axis (QAV + qac) 
• PAV—average value of active power 
• QAV—average value of reactive power 

 
Figure 22. AC components of power when PMSM loaded ICE engine as the generator. 

• pac—ripple of the power in p-axis 
• qac—ripple of the power in q-axis 
• pacrms—rms of the power ripple in p-axis 
• qacrms—rms of the power ripple in q-axis 

  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

-5

0

5
104

P
Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

-4

-2

0

2

4 104

PAV
QAV

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

-5

0

5
104

pac
qac

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

0

2

4

6
104

pacrms
qacrms

Figure 22. AC components of power when PMSM loaded ICE engine as the generator.

Parameters:

• Nominal load torque = 200 Nm
• Oscillating torque amplitude = 150 Nm
• Frequency of oscillating = 85 Hz
• Actual rotating speed = 210 rad/s
• Apparent power = 22,738 VA
• Active power regenerated = 19,189 W

• P—time waveform of the power in p-axis (PAV + pac)
• Q—time waveform of the power in q-axis (QAV + qac)
• PAV—average value of active power
• QAV—average value of reactive power

• pac—ripple of the power in p-axis
• qac—ripple of the power in q-axis
• pacrms—rms of the power ripple in p-axis
• qacrms—rms of the power ripple in q-axis

5.4. Operation Regime of PMSM for Compensation and Parallel Cooperation with ICE—#R4

Simulation results of compensation and parallel cooperation of ICE engine and PMSM
motor are shown in Figures 23–25 (compensation and cooperation switched on at 0.2 s).

In this regime of operation, the PMSM motor delivered one-half (50%) energy for
the load torque, and at the same time, it compensated the oscillating component of the
torque. Waveforms of speed, acceleration, and torque of PMSM on the shaft are being
shown together with power components waveforms (apparent, active, and reactive ones)
on its input terminals. Using p-q theory, the power of fundamental harmonic is presented
by average values Pav, Qav of total power waveforms p(t) and q(t). From Figure 23, it
is shown that angular speed and acceleration ripple is reduced as in other regimes. The
amplitude of the angular acceleration/vibration was before compensation 2000 rad/s2.
After compensation, the value is reduced to 500 rad/s2. It is shown that the mean torque
value is equally divided between the ICE and PMSM. The oscillating torque component
is also reduced. From Figure 24, it is seen the P, Q component and their average values
PAV, QAV. It is evident that the active power is increased due to contributing to the load
torque. The p, q component and their RMS values are shown in Figure 26, which represent
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power components of the oscillation. Then, PAV and QAV are positive ones and represent
the power that are utilized to contribute to the load torque. Therefore, the motor must be
designed to sum PAV and pac values.
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Figure 23. Speed and torques during parallel cooperation and compensation oscillating torques.
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Figure 24. Active and reactive power during parallel cooperation and compensation oscillating torques.
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Figure 25. AC components of power during parallel cooperation and compensation oscillating torques.
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Parameters:

• Nominal load torque = 200 Nm
• Oscillating torque amplitude = 150 Nm
• Frequency of oscillating = 85 Hz
• Actual rotating speed = 210 rad/s
• Apparent power = 36,558 VA
• Active power = 22,037 W
• Power factor cosϕ1 = 0.86 (ϕ1 = 30 ◦el.)

• P—time waveform of the power in p-axis (PAV + pac)
• Q—time waveform of the power in q-axis (QAV + qac)
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• PAV—average value of active power
• QAV—average value of reactive power

• pac—ripple of the power in p-axis
• qac—ripple of the power in q-axis
• pacrms—rms of the power ripple in p-axis
• qacrms—rms of the power ripple in q-axis

Note that besides parallel cooperation the oscillating component of the torque is
compensated by the electromagnetic torque of PMSM. The battery current and voltage is
shown in Figure 26. The current from the battery is the mean value of the total current
flowing from the DC-bus. The higher frequency component of the current is taken from
the DC-bus capacitors, which is shown in Figure 27. At this point, a new technical problem
arises with the selection of a suitable battery and DC-bus capacitor pack, which is not the
topic of this article.
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Thereby, the active power taken from the accu-battery

• PAB = 22,9 kW
• UABnom = 600 V
• IABav = 38.2 A
• IABpk-pk = 105 App

Therefore, the consumption of electric energy taken from traction accumulator battery
will be:

(PAB)av =
1
T

∫ T

0
uABiABdt (40)

The power taken from the battery P(AB)av corresponds to the PAV power component
in #R4. Therefore, the selection/design of the battery depends on the fluctuation current
IABpk-pk and mean power PAV of the PMSM.

6. Discussion about Potential Application in Parallel HEV Powertrain

In all 4 regimes #R1, #R2, #R3 and #R4 the power of the machine depends on the P
power component. In a state where only the compensation of oscillating torque is provided,
the pac component is mandatory to PMSM selection. On the other hand, in a cooperation
mode, the mean value of active power PAV is decisive.
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At first, it is evident that the speed and torque ripple of the HEV shaft has been
significantly reduced due to compensation of non-active oscillating torque as can be seen
in Figures 14, 20 and 23 (from 5% to 1% in case of speed ripple and from 95% to 23% in
case of torque ripple).

Further, worked-out simulation results. shown in Figures 14–26 have shown all
parameters needed to determine the dimension of auxiliary traction PMSM motor, power
supply VSI converter, and the amount of consumption of electric energy drawn from
traction accumulation battery. The four operation regimes based on real torque data
were investigated:

In #R1, the auxiliary electric motor compensates the oscillating torque. Figure 15
shows that the mean value of active power PAV is minimal. It covers “only mechanical
and electrical losses” in the motor. The value is about 700 W. The value of reactive power
component QAV is 6075 Var. The distortion power calculating according to Equation (38)
and data from Figure 16 is 20,444 Var. Then the apparent power is calculated according to
Equation (39) and its value is 21,334 VA with cosφ 0.116.

In #R2, the oscillating torque is compensated using the rotating mass in an ICE engine.
Therefore, the estimated torque is without an AC component. In this regime, the electric
motor delivers mainly the active power PAV = 20.87 kW, which is 50% of total active power
and its value is shown in Figure 18. The value of cosφ = 0.95 is calculated as the division of
active and apparent power.

In #R3 regime, the compensation of the oscillating torque component and energy
recovery of the auxiliary electric motor is shown. This regime loaded an ICE engine by the
value of the regenerating power. The value of regenerating power PAV is −19,189 W, and it
is shown in Figure 21.

In #R4, the apparent power calculated according to Equation (39) is 36,558 VA. The
power is divided into two parts. For the compensation of oscillating torque, which is
shown in Figure 25, and for parallel cooperation, shown in Figure 24. In this regime,
maximal power transmitted by PMSM motor and VSI converter reaches more value than
ICE mechanical power (about 20 kW = 200 rad/s × 100 Nm).

The power drawn from the battery is equal to the mean value of power PAV intended
for parallel cooperation. The oscillating component of the current does not increase the
need for more battery power, because in a half period, the power is delivered and in the
second half, the power is recovered. Thereby, the active power taken from the battery is just
22.9 kW. But the auxiliary PMSM motor and VSI inverter should be sized to that apparent
value of power.

7. Conclusions

In this paper, the research issues related to the determination of the active damping
of non-active torques of parallel HEV were investigated. The presented approach is
based on the real measured data, which have been received from the manufacturer of
car flywheels. The variables of the internal combustion engine have been analyzed and
consequently, an active damping system was proposed to investigate the possibilities and
sizing of the auxiliary electrical PMSM motor or IM motor for active dumping purposes.
The investigations are based on the simulation modeling, which enables to research the
relevant dependencies according to compensation torque, current, and the way of the
control of the auxiliary electrical machine. Here, four modes have been analyzed separately,
i.e., compensation of non-active torques, parallel operation, regeneration of PMSM and
parallel operation with compensation. The p-q theory was implemented within the control
algorithm; these average values have been controlled of the total power waveforms (p(t)
and q(t)). The contribution of the paper is suitable if proper sizing and dimensioning of
the auxiliary electrical machine, relevant power electronic system, and traction battery
are required.
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Nomenclature

Tav—average torque
Tav,nom—nominal value of average torque

isα, isβ—stator currents in α, β-axes

Tosc—oscillating torque
tosc—time waveform of oscillating torque
Tpk-pk—torque ripple

ia, ib, ic—phase currents
ak, bk, ck—members of Fourier series
QΣ—reactive power of all harmonic components
DΣ—distortion power of all harmonic components

telmg—electromagnetic torque irα·irβ—rotor currents in α, β-axes
Tl—load torque Lm—mutual inductance
tl—actual torque ∆T—sampling period
tacc—accelerating torque Kr, Ks—Blondel’s coefficients
Jm—motor moment of inertia Ls, Lr—stator and rotor inductance
ωm—angular speed Rr—rotor resistance
t f ri—friction (torque) ak, bk, ck—Fourier coefficients
tl,est—estimated torque kωtk-angular frequency
im—stator current Ttot—total torque
ud—voltage in d-axis P1(av)—active power on the shaft
id—current in d-axis p_q—reactive power theory
Rs—stator resistance
Ua,rms, Ub,rms, Uc,rms—effective values of phase voltage
Ia,rms, Ib,rms, Ic,rms—effective values of phase currents
Iα,rms, Iβ,rms—effective values of currents in αβ coordinates
ϕ1—phase angle between first harmonics of voltage
and current
P1(av)—mean value of the active power

U1rms, I1rms—fundamental rms values
IΣ,rms—sum of effective values of higher current harmonics
UΣ,rms—sum of effective values of higher voltage harmonics
Ik,rms—effective value of kth harmonic
IΣp,rms, IΣq,rms—effective values of currents in p-q axis
Uα,rms, Uβ,rms—effective values of voltages in αβ coordinates

Ld—inductance in d-axis Q1(av)—reactive power of fundamental
Lq—inductance in q-axis ϕ1—phase shift fundamental
uq—voltage in q-axis Dav—distortion power
iq—current in d-axis Sav—apparent power
ΨPM—flux of PM p, q—actual total power in p, q-axis
Pp—number of pole pairs pac, qac—distortion parts of power
ϑm—rotor position PAV, QAV—mean value of active and reactive power
τmech—mechanical time constant Pac,rms, Qac,rms—rms value of powers
HEV—hybrid electric vehicle VSI—voltage source inverter
PMSM—permanent magnet synchronous motor FOC—field-oriented control
IM—induction motor MAM—moving average method
ICE—internal combustion engine MATLAB—matrix laboratory environment of MathWorks, Inc
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