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Abstract: The study objective was to model and predict the bioethanol production process from
lignocellulosic biomass based on an example of empirical study results. Two types of algorithms were
used in machine learning: artificial neural network (ANN) and random forest algorithm (RF). Data for
the model included results of studying bioethanol production with the use of ionic liquids (ILs) and
different enzymatic preparations from the following biomass types: buckwheat straw and biomass
from four wastelands, including a mixture of various plants: stems of giant miscanthus, common
nettle, goldenrod, common broom, fireweed, and hay (a mix of grasses). The input variables consisted
of different ionic liquids (imidazolium and ammonium), enzymatic preparations, enzyme doses, time
and temperature of pretreatment, and type of yeast for alcoholic fermentation. The output value
was the bioethanol concentration. The multilayer perceptron (MLP) was used in the artificial neural
networks. Two model types were created; the training dataset comprised 120 vectors (14 elements for
Model 1 and 11 elements for Model 2). Assessment of the optimum random forest was carried out
using the same division of experimental points (two random datasets, containing 2/3 for training
and 1/3 for testing) and the same criteria used for the artificial neural network models. Data for
mugwort and hemp were used for validation. In both models, the coefficient of determination for
neural networks was <0.9, while for RF it oscillated around 0.95. Considering the fairly large spread
of the determination coefficient, two hybrid models were generated. The use of the hybrid approach
in creating models describing the present bioethanol production process resulted in an increase in
the fit of the model to R2 = 0.961. The hybrid model can be used for the initial classification of plants
without the necessity to perform lengthy and expensive research related to IL-based pretreatment
and further hydrolysis; only their lignocellulosic composition results are needed.

Keywords: hemp; mugwort; bioethanol; machine learning; enzymatic hydrolysis

1. Introduction

The production of bioethanol is a current topic raised by scientists, technologists,
and representatives of fuel companies in the European Union who are working on satis-
fying the percentage share of this biocomponent in conventional fuels. The policy of the
European Union countries is aimed at the search for low-emission technology, which is
sustainable and aimed at reducing CO2 production at relatively low cost of production
lines. Taking this into account, research targeting the development of bioethanol prepa-
ration from the available lignocellulosic biomass, using the existing production lines or
innovative pretreatment methods, is an important topic. The preparation of bioethanol is
a complex procedure, the success of which hinges primarily on the use of raw material
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that is inexpensive, available in every region of Europe, and has effective and cost-efficient
pretreatment, which will result in a high yield of fermenting sugars.

Numerous examples of the production of fermenting sugars from lignocellulose can
be found in the literature. A large portion of these publications contain data on the impact
of pretreatment on enzymatic hydrolysis of the biomass. The most common include
treatments using ammonia fiber expansion (AFEX), steam explosion, ionic liquids (ILs) and
other methods [1–5]. There are numerous examples of conversion of rye, corn, rice, wheat
straw, poplar, willow, and coniferous tree chips into bioethanol based on the method using
pretreatment with ionic liquids and enzymatic hydrolysis [6–10]. However, comparison
of the majority of the data has proven to be difficult due to various amounts of substrates
used for the process or other pretreatment parameters. Therefore, the use of literature
data to design the bioethanol production process at a greater scale is very complicated
and problematic. In this study, an attempt was made to create a model that would allow
for the estimation or prediction of bioethanol concentration from various lignocellulosic
raw materials. Such a model would allow the classification of biomass for bioethanol
production on the basis of its chemical composition and facilitate choice of a suitable ionic
liquid and enzyme preparation used for pretreatment. Such an approach would save
time and costs in laboratory research, which is now a way to search for ideal production
methods and an efficient source of lignocellulosic biomass.

Mathematical and statistical models provide essential information for understanding,
analyzing, and predicting biological processes, and are necessary to optimize key parame-
ters to improve process performance. Modeling and optimization of biofuel manufacturing
processes will contribute to a better understanding of the process expenditures in order to
obtain the optimum efficiency. The main purpose of modeling is to optimize the operations
involved in their production in order to achieve efficiency improvement [11–13].

Artificial intelligence tools have appeared as a promising method for modeling and
optimizing bioprocesses. In the last decade, artificial neural networks (ANNs) were applied
in multidimensional, nonlinear research and development of bioprocesses. They have
been found effective in developing bioprocess models devoid of prior information on the
kinetics and metabolic flows occurring in cells and cell surroundings [14]. Furthermore,
ANN are completely based on data, without prior knowledge on the events regulating the
process [15]. The appeal of ANN as a modeling tool derives from their unique functions of
processing information that is assigned primarily—linearity, high parallelism, and error
and noise acceptance—as well as their capability to learn and generalize. ANNs have
gained much attention from significant soft computing tools that are not only limited to
data processing and analysis, but can also be used to solve problems in multifaceted and
nonlinear processes [16].

For these reasons, the aim of this study was to collect the current data on the pro-
duction of bioethanol from lignocellulosic biomass using ionic liquids and to create a
model that can be used to predict ethanol concentration from lignocellulosic raw materials.
For this purpose, machine learning (ML) methods were used. Increased interest in the use
of ML procedures has been observed, e.g., artificial neural networks (ANNs) and random
forests (RFs) in the context of bioethanol production from biomass [17–20]. With the use of
these algorithms, it was assumed that on the basis of the results of laboratory tests obtained,
it will be possible to predict the concentration of bioethanol in various biomass species
based on their lignocellulosic composition. This would aid the classification of biomass
type to the suitable ionic liquid or type of cellulolytic enzyme. This preliminary estimation
in the case of laboratory studies is important because in this way the costs associated with
the synthesis or purchase of ionic liquid and enzymes can be kept to the minimum. It would
be possible to perform more rapid verification and grouping of plant types that are found
in the given region. Such model could also inspire classification of other pretreatments,
and ML data could be applied to a wider extent in scaling-up processes. In order to reduce
the costs of the process, plants can be grouped in terms of similarities in their cellulose
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content, affinity for ionic liquids, and their influence on the exposure of cellulose fibers or
the selection of cellulolytic enzymes for the appropriate type of biomass.

In the present study, the prognostic model was verified by empirical studies of
bioethanol production from hemp (Cannabis sativa L.) and mugwort (Artemisia vulgaris
L.). The stems of hemp contain high amounts of cellulose (up to 80%), with lignin content
of about 15–20%. In addition, it is a plant that is increasingly commonly grown for the
production of oil, fiber, essential oils, etc. The use of both plants properly fit in the criteria
of sustainable development, especially considering their biological and agrotechnical prop-
erties, which makes them economically and environmentally favorable. The properties
exhibited by this biomass source make them admirable for the development of multipro-
cessor systems by gradually separating the biomass into several useful components. This
trait provides hemp with an advantage over other industrial crops, as they are usually used
for extraction of one component [21,22]. As far as energy consumption is concerned, it is
necessary to emphasize that the mean yield value of green hemp plants was 14.5 t/ha [23]
(by means of dry weight). It is possible to obtain about 10.5 t/ha of raw material, which can
be potentially used for energy purposes [24]. Parts of the stems that were considered waste
or could be used for the production of solid fuel (pellets) were used to produce bioethanol.
For contrast, mugwort was used, which is a plant commonly viewed as a weed, growing
in arable land as well as boundary strips and agricultural wastelands. This plant possesses
approximately 1–1.5 m stems with 35% cellulose content, 25% lignin, and approximately
20% hemicellulose. Mugwort is a native species to Poland. It was introduced to North
America, where it has spread and is treated as an invasive species. The mugwort species
found in Europe are typically weed and ruderal plants. Common mugwort is the most
widespread species. It is characterized by high growth force and good regenerative abilities.
New plants can emerge from even finely cut rhizome fragments [25,26].

The production of bioethanol from lignocellulose could become profitable if the
costs associated with the production of biomass are very low. Each geographic region is
distinguished by a great variety of flora. These can be found in many literature reports
stating that the success of the bioethanol production process is influenced by the biomass
composition: proportions of cellulose, hemicellulose, and lignin; and the type of fiber
arrangement, and thus also the plant species and the degree of its maturity. Taking all these
factors into account, it becomes very difficult to test all plant species that could potentially
form a good source for the production of bioethanol. Therefore, it is easier to use energy
crops for the production of bioethanol. A mathematical model based on experimental
data can be a helpful tool in determining the suitability of a plant species for processing
into bioethanol. The production of bioethanol is one of the biotechnological processes the
complexity of which is high and difficult to present via ready-made algorithms. Therefore,
in such situations it is perfect to use ML, including e.g., ANN or RF, as a prediction
tool for future biomass samples. This publication attempts to create a model based on
experimental data of the bioethanol production process from biomass on a laboratory scale
and validate this model based on the results of the experiment—fermentation of hemp and
mugwort stems.

2. Materials and Methods
2.1. Raw Materials

Two plant species were used for model validation: stems of hemp, cultivar Finola
(plant collection of the Department of Agrobiotechnology, Koszalin University of Tech-
nology) and common mugwort stems collected from agricultural wastelands. Stems of
mugwort were taken from two wastelands and hemp samples from two extreme cultivation
sites within 30 km from Koszalin (N 54◦11′26.11”, E 16◦10′53.77”), and then the bioethanol
production process was carried out for each sample separately in triplicate. The mean
values of three replicates for four biomass samples are presented in Table 1. The biomass
was collected in late autumn (second half of October 2019). The stems were dried and
ground, then the material was pretreated using different ionic liquids.
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Table 1. Chemical composition of biomass and glucose content after enzymatic hydrolysis and ethanol content, following alcoholic
fermentation of samples of material used for model validation.

Material Name
Composition Pretreatment Enzymatic

Hydrolysis
Alcoholic

Fermentation

Cellulose [%] Hemicellulose [%] Lignin [%] Ionic Liquid Glucose [g/L] Ethanol [g/L]

Hemp (Cannabis
sativa L.)

55.18 20.42 15.78 [BMIM][OAc] 11.54 8.33
55.51 17.54 17.8 [BMIM][OAc] 12.27 9.93

58.37 15.7 18.22 [CHDMA-
C4][OAc] 9.16 5.17

58.98 15.3 11.5 [CHDMA-
C4][OAc] 9.85 5.81

61.79 18.32 10.39 [CHDMA-
C6][OAc] 8.56 6.01

60.11 17.12 12.34 [CHDMA-
C6][OAc] 8.49 5.63

30.9 9.93 13.8 [EMIM][DEP] 5.78 4.78
32.5 10.1 12.7 [EMIM][DEP] 6.86 4.08
46.4 15.12 16.26 [EMIM][OAc] 11.32 7.97
48.25 16.5 15.78 [EMIM][OAc] 11.32 8.28
62.22 17.72 19.98 untreated 3.49 3.28
61.51 16.27 11.56 untreated 3.38 2.60

Common
mugwort
(Artemisia vulgaris
L.)

46.42 21.05 18.78 [BMIM][OAc] 2.59 1.65
41.37 21.93 20.44 [EMIM][DEP] 0.26 0.22
42.78 19.9 16.94 [EMIM][OAc] 3.15 1.50
46.42 21.05 18.78 [BMIM][OAc] 4.80 2.37
42.78 19.9 16.94 [EMIM][OAc] 4.86 2.21
45.1 13.79 20.38 untreated 1.81 0.95
43.27 11.9 18.76 untreated 2.22 1.12

41.9 17.72 24.3 [CHDMA-
C4][OAc] 2.43 1.42

42.19 21.03 24.42 [CHDMA-
C4][OAc] 2.43 1.53

42.4 18.14 23.99 [CHDMA-
C6][OAc] 1.87 1.29

41.37 21.93 20.44 [EMIM][DEP] 2.49 1.03
41.37 21.93 20.44 [EMIM][DEP] 0.60 0.37
46.42 21.05 18.78 [BMIM][OAc] 3.18 1.56
42.78 19.9 16.94 [EMIM][OAc] 2.97 1.67

2.2. Ionic Liquids (ILs)

For the pretreatment of cellulose-rich material, five ILs from imidazolium and am-
monium groups were chosen. Three were commercially available (Iolitech GmbH, Ger-
many) imidazolium ILs: 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), 1-butyl-
3-methylimidazolium acetate ([BMIM][OAc]), and 1-ethyl-3-methylimidazolium diethyl
phosphate ([EMIM][DEP]). The remaining two, belonging to the group of ammonium ILs,
were synthesized for the study: butyl(cyclohexyl)dimethylammonium acetate (([CHDMA-
C4][OAc]) and (cyclohexyl) hexyldimethylammonium acetate ([CHDMA-C6][OAc]).

2.3. Synthesis of [CHDMA-C4][OAc] and [CHDMA-C6][OAc] Ionic Liquids

Synthesis of [CHDMA-C4][OAc] and [CHDMA-C6][OAc], and its bromide precur-
sors was conducted according to a previous work, where apart from the synthetic route,
full characteristics and cellulose dissolution were also described [27]. In that way, appropri-
ate bromides were prepared in a quaternization reaction between cyclohexyldimethylamine
and an appropriate 1-bromoalkane with 10% extension, in acetonitrile, at room temperature
for 72 h. The crude product was obtained by evaporation of the reaction background in a
rotary evaporator. After the ethyl acetate addition, the prepared bromides were filtered
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and dried at 40 ◦C under reduced pressure for 48 h (vacuum dryer). The product was
then kept in a desiccator to avoid moisture uptake from the environment. The second
step of the ILs preparation was the anion exchange reaction between quaternary bromide
and acetic acid. An appropriate bromide (with hexyl or butyl substituent) was dissolved
in methanol. To this solution, a previously prepared stoichiometric amount of KOH dis-
solved in methanol was added. The solutions were stirred for 3 h at ambient temperature.
Partially precipitated side product (KBr) was filtrated and an appropriate (stoichiometric)
amount of acetic acid was added to the reaction mixture. Solutions were further stirred
at the same conditions for 1 h and the reaction background was evaporated in a rotary
evaporator (40 ◦C). The crude product was purified with the addition of anhydrous ace-
tone. The remaining potassium bromide was filtered, and solvent once again removed
(rotary evaporator) to give the final product. The ILs obtained ([CHDMA-C4][OAc] and
[CHDMA-C6][OAc] were finally dried for 48 h under reduced pressure in a vacuum dryer.

2.4. Pretreatment, Enzymatic Hydrolysis, and Alcoholic Fermentation

Imidazolium ILs, namely [EMIM][OAc], [BMIM][OAc], [EMIM][DEP], [CHDMA-
C4][OAc], and [CHDMA-C6][OAc] were used for biomass purification. To achieve this,
solutions of appropriate ground material (5 g) and a specific IL (50 mL) were prepared,
which were further subjected to homogenization (2 min) and incubation at 120 ◦C for 2 h.
Samples were afterwards left to cool to room temperature. In the next step, the cellulose
fibers were isolated via thorough rinsing of the prepared mixture with deionized water. This
was repeated at least three times, to the point of total IL removal. The solid fraction obtained
was further dissolved in a 50 mM acetate buffer with a pH equal to 5.0 (100 mL). Enzymatic
hydrolysis was then performed on the pretreated and nontreated lignocellulosic biomass.

For the enzymatic hydrolysis of hemp stems, Cellic CTec2 (Sigma-Merck, Darmstad,
Germany) was used at the amount of 20 FPU/g of cellulose. Samples were incubated
at 50 ◦C for 72 h. On the other hand, the mugwort samples were hydrolyzed using the
following enzymatic preparations: Cellic CTec2, cellulase from Aspergillus sp., cellulase
from T. reesei (Sigma-Merck, Darmstad, Germany). The incubation of biomass fractions
mixed with Aspergillus sp. and T. reesei cellulases was performed for 72 h at 47 ◦C.

Before performing the alcoholic fermentation, the hydrolysate solutions were purified
by means of filtration to get rid of any residual lignocellulose. The pH of the fermentation
broth was kept constant at 5.0 for each sampling point. The pH control was performed
by the adding a solution of H2SO4 (10 wt.%) or NaOH (20 wt.%). Freeze-dried distiller’s
yeast Saccharomyces cerevisiae type II (purchased from Sigma-Aldrich) (5%, w/v) were
used to initiate ethanol fermentation. This was afterwards allowed to proceed in anaerobic
conditions for four days. After fermentation, the samples were further analyzed to establish
the ethanol concentrations.

Control samples were hemp and mugwort stalks not pretreated with ionic liquids.
Samples were dissolved in an acetate buffer, according to the protocol described for IL
pretreated samples. The material was characterized to establish the cellulose, hemicellulose,
and lignin content. Glucose content after the process of enzymatic hydrolysis and alcohol
concentration after the fermentation process were also determined.

2.5. Analytical Techniques

An Ankom A200 fiber analyzer was used to determine the amounts of lignin/cellulose/
hemicellulose in all biomass samples (with the use of filter bag encapsulation). Fiber
test results were determined as neutral detergent fibers (NDF) with the use of Van Soest
method, and acidic detergent fiber (ADF) and acidic detergent lignin (ADL) according to the
standard [28]. The difference between the ADF and ADL fractional share was the cellulose
content, while the difference between NDF and ADF fractional share was the hemicellulose
content. High performance liquid chromatography (HPLC) was used to determine the
amounts of glucose and ethanol (Merck Hitachi, Darmstadt, Germany). For that purpose,
the prepared samples were, in the first step, subjected to centrifugation (10 min, 4000× g,
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4 ◦C) with the use of a Multifuge 3SR (Darmstadt, Germany) and filtered in the second step
using membrane filters with a pore diameter of 0.22 µm (Millex-GS, Millipore, Burlington,
MA, USA). An Aminex HPX-87P column (Bio-Rad, Hercules, CA, USA) was used for the
separation of glucose and ethanol with a 5 mM solution of H2SO4 (mobile phase) at a flow
rate of 0.6 mL/min at 30 ◦C. The detection of glucose and ethanol was performed with a
refractive index detector (Model L-7490, Merck Hitachi, Darmstadt, Germany).

3. Experimental Strategy and Overview of Proposed Machine Learning Methods
3.1. Materials—Data for the Model

To create the model, empirical data from experiments on the bioethanol preparation
from the following types of lignocellulosic biomass were used: buckwheat straw, biomass
from four wastelands, including a mixture of various plants: stems of giant miscanthus,
common nettle, goldenrod, common broom, fireweed, and hay. The production process
of bioethanol from the abovementioned types of biomass was carried out on the basis
of an identical production scheme, which included disintegration of the raw material,
pretreatment with the use of IL, enzymatic hydrolysis with the use of five enzymatic
preparations and alcoholic fermentation with the use of Saccharomyces cerevisiae type II
or Saccharomyces cerevisiae Ethanol Red yeast. The cellulose, hemicellulose and lignin
amounts were determined in each material. After enzymatic hydrolysis, glucose content
was determined in the samples, whereas after alcoholic fermentation, ethyl alcohol content
was determined. A total of 120 experiments were conducted, on which basis two model
types were created. Model validation was carried out on the basis of the concentrations
of bioethanol obtained from hemp and mugwort. In summary, 26 experiments were
performed and the results obtained were used to validate the model. Biomass samples—
mugwort and hemp—were pretreated with the use of various ILs and enzymatic hydrolysis
with the use of enzyme preparations. Both in the native material and after pretreatment
with ILs, determinations were made for the content of cellulose, hemicellulose, and lignin.

In Model 1 (Figure 1), the following input data were determined: biomass compo-
sition, including the content of cellulose (%), hemicellulose (%), lignin (%), and types of
ILs used for pretreatment expressed in amount [mL]: [BMIM][OAC], [CHDMA-C4][OAC],
[CHDMA-C6][OAc], [EMIM][DEP], [EMIM][OAC], EMIM[Cl], as well as types of en-
zymatic preparations expressed in amounts (g/L) added in the process of enzymatic
hydrolysis and glucose content (g/L) tested after this process.

In Model 2 (Figure 1), the input data were arranged in a different manner and they
consisted of the following variables: biomass composition (content of cellulose (%), hemi-
cellulose (%) and lignin (%)), types of ionic liquids ([BMIM][OAC], [CHDMA-C4][OAC],
[CHDMA-C6][OAc], [EMIM][DEP], [EMIM][OAC], [EMIM][Cl]), their amounts [mL], and
time of purifying material in ionic liquids [min]. Input data of the enzymatic hydrolysis
process included the possibility of additions of combinations of two enzymes at the same
time—expressed as addition of enzyme 1 and their amount and addition of enzyme 2 and
their amount [µL]. The last variable in this model is the content of glucose tested after 72 h
of enzymatic hydrolysis. This was necessary because two enzyme preparations simultane-
ously were used in certain processes to hydrolyze them in order to increase the content
of simple sugars in the fermented solutions. In both models, the starting variable was the
concentration of bioethanol (g/L) tested after 96 h of alcoholic fermentation. To create
models, Matlab for RF and Keras and Tensorflow library in Python for ANN were used.
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Figure 1. Two models used for the artificial neural network (ANN) and random forest algorithm (RF).

3.2. Methods of Machine Learning Used to Predict Bioethanol Content
3.2.1. Artificial Neural Networks

To carry out the ethanol content predicting process, multilayer perceptron (MLP)
artificial neural networks were used, with the architecture shown in Figure 2 (for Model 1)
and in Figure 3 (for Model 2).

For both model types, the training dataset comprised 120 vectors (14 elements for
Model 1 and 11 elements for Model 2). Tables 1 and 2 present the designations of inputs
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and outputs of the artificial neural network from Figure 1 (Model 1) and Figure 2 (Model
2), respectively.

Figure 2. Multilayer perceptron (MLP) artificial neural network for Model 1 implementation.

Figure 3. MLP artificial neural network for Model 2 implementation.

Table 2. Validation of the models for bioethanol production from Cannabis sativa L. and Artemisia vulgaris L.

Model 1 Model 2 Hybrid 1 Hybrid 2

ANN RF ANN RF Model 1 Model 2 Model 1 Model 2

R2 0.78 0.94 0.88 0.96 0.95 0.96 0.96 0.96
RMSE hemp 2.08 1.20 1.55 0.99 1.25 1.04 1.25 0.82
RMSE mugwort 0.59 0.55 0.28 0.46 0.32 0.36 0.19 0.33
ME hemp 0.59 0.77 0.73 0.71 0.59 0.67 0.84 0.16
ME mugwort 0.40 −0.47 −0.08 −0.43 −0.26 −0.31 −0.10 −0.24
MAE hemp 1.96 0.96 1.38 0.78 1.02 0.92 1.05 0.74
MAE mugwort 0.41 0.47 0.24 0.43 0.26 0.31 0.14 0.29
est_mean hemp 5.50 5.31 5.36 5.38 5.50 5.42 5.25 5.93
est_mean mugwort 1.16 2.04 1.64 1.99 1.82 1.87 1.66 1.81
est_median hemp 5.40 5.03 5.40 5.03 4.69 4.95 4.65 5.38
est_median mugwort 1.24 1.86 1.65 1.92 1.67 1.80 1.56 1.68
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The error back-propagation algorithm with a constant value of the learning coefficient
ro = 0.01 was adopted as the training algorithm. Before starting the training process, each of
the training sets was subjected to the normalization process according to the relationship:

U∗i =
Ui −meani

stdevi
(1)

where i ∈ {1, . . . , 14} (for Model 1) or i ∈ {1, . . . , 11} (for Model 2), Ui*—value of input of
neural network after normalization, meani—mean value for all training data for i-th input
parameter (attribute), and stdevi—standard deviation value for i-th input attribute.

The meani mean value and stdevi standard deviation values determined were saved to
be used for normalization of input data during the process of predicting ethanol value on
the test set. The test set comprised 17 vectors (14 elements for Model 1 and 11 elements for
Model 2).

After the training data normalization process was carried out, both models were
trained with the corresponding training data. The training data comprised two phases.
The forward propagation phase consists of randomly selected training vector values of
weighed sums Sk and values of f(Sk) outputs for all neurons determined, according to
the relationship:

Sk =
n

∑
t=m

wk,t ∗Ut + wk,0 (2)

where: k ∈ {15, . . . , 33} (for Model 1) or k ∈ {12, . . . , 27} (for Model 2). In addition, for
Model 1 m = 1 and n = 14 for input layer neurons (k ∈ {15, . . . , 28}), m = 15 and n = 28
for intermediate layer neurons (k ∈ {29, . . . , 32}), and m = 29 and n = 32 for output layer
neuron (k = 33); for Model 2 m = 1 and n = 11 for input layer neurons (k ∈ {12, . . . , 22}), m =
12 and n = 22 for intermediate layer neurons (k ∈ {23, . . . , 26}), and m = 23 and n = 26 for
output layer neuron (k = 27); wk,t—value of the weight connecting Uk neuron with neuron
or input Ut, and wk,0—value of the so-called threshold value for the Uk neuron.

Activation function for input layer neurons {U15, . . . , U28} (for Model 1) {U12, . . . ,
U22} (for Model 2) and intermediate layer {U29, . . . , U32} (for Model 1) and {U23, . . . , U26}
(Model 2) is described with the following relationship:

Uk = f (Sk) =
1

1 + e−Sk
(3)

Function of activation for the output layer neuron U33 (for Model 1) and U27 (for Model
2) is described with relationship:

Uk = f (Sk) = Sk (4)

After determining baseline values for all neurons, the forward propagation phase is
complete and the signal backward propagation phase begins. This phase consists of deter-
mining the values of derivatives for all neurons according to the following relationships.

For neurons of the input layer and intermediate layer:

U′k = f ′(Sk) = Uk(1−Uk) (5)

For output layer neuron:
U′k = f ′(Sk) = 1 (6)

In the backward propagation phase, the so-called deltak coefficients are also deter-
mined for each k-th neuron with the following the relationships:

For output layer:
deltak = (Ck −Uk) ∗ f ′(Sk) (7)
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For intermediate layer:

deltak = deltat ∗ wt,k ∗ f ′(Sk) (8)

For input layer:

deltak =

(
y

∑
t=x

wt,k ∗ deltat

)
∗ f ′(Sk) (9)

where: x = 29 and y = 32 (for Model 1) and x = 23 and y = 26 (for Model 2).
After determining deltak values for all neurons, the backward propagation phase is

completed. Then the process of modification of all weight values begins according to
the relationship:

w∗k,t = wk,t + ro ∗ deltak ∗Ut (10)

where wk,t* is the new value of wk,t weight providing a signal to the Uk neuron from neuron
output/input Ut.

After completing the modification of the weights, the first iteration of the training
algorithm ends. Then another training vector is randomly selected and the whole pro-
cess (forward propagation phase, backward propagation phase, and weights update) is
repeated until training is completed. The training lasted for 2000 iterations for each neural
network described.

3.2.2. Random Forest Algorithm

Random forest is a nonparametric ML algorithm derived from the classification and
regression tree. Characteristics of RF include resistance to noise, simplicity of tuning,
and capacity to deal with high-dimensional nonlinear problems [29–32]. In this work, RF
was used with an RF library in Matlab software and applied to describe the pretreatment
and enzymatic hydrolysis. To ensure good predictive performance, the RF was assessed
for 11 of the RF samples, similar to the ANN. The model whose RMSE (root mean square
error) was the median of all errors was further assessed.

4. Results and Discussion

Mugwort is an example of biomass obtained without the need for cultivation and
fertilization, with an average cellulose content of 45%, hemicellulose 13.8%, and lignin
20.4%. For comparison, the conversion was also carried out on hemp stalks, which have
recently become very popular for functional reasons. Finola hemp stalks had an average
cellulose content of 62%, hemicellulose 17%, and lignin 19%. In this study, for the pro-
duction of bioethanol, ground plant stalks were used and the process was carried out by
performing a pretreatment with the use of various ionic liquids and various enzyme prepa-
rations. Glucose content in mugwort samples depended on the type of pretreatment and
enzyme preparation used. Table 1 presents glucose contents obtained after 72 h enzymatic
hydrolysis, bioethanol content, and chemical composition of hemp and mugwort.

After the enzymatic hydrolysis of mugwort, the highest content of glucose was ob-
tained in the samples where imidazolium ionic liquids ([EMIM][OAc] and [BMIM][OAc]),
and Cellic CTec2 for enzymatic hydrolysis were used. A similar relationship was observed
in the samples of hemp for reducing sugars, but the results were significantly higher as
compared with common mugwort. The content of simple sugars after enzymatic hydrolysis
with the use of Cellic CTec2 amounted to 12.27 g/L for material purified with [BMIM][OAc]
and 11.32 g/L for biomass purified with [EMIM][OAc]. For comparison, in the sample of
native hemp hydrolyzed with Cellic CTec2, 3.2 g/L glucose was obtained after 72 h.

In the experiments with the use of machine learning, including ANN and RF methods
for the estimation of bioethanol concentration, results of experiments concerning the
processing of hay, agricultural wastelands, and selected energy crops were utilized. The RF
method exhibits different advantages than ANN. Each tree represents the learning process
and each tree can select traits and samples at random [33]. The final prediction is obtained
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by averaging the predictions concerning the trees. This enables efficient avoidance of
excessive matching and the effect of single samples [34]. On the other hand, ANN is
characterized by singular correlation or learning process. Furthermore, many earlier
studies show that the RF may give better predictions for the same problem [35,36].

Experimental data concerning bioethanol production from hemp and mugwort stems
were used for the validation of the ANN model. The raw material is characterized by high
cellulose content, low lignin content, and better structural properties after processing with
ionic liquids; i.e., the material is more porous and there is more area free and available for
cellulolytic enzymes; thus enzymatic hydrolysis is facilitated and more efficient. The situa-
tion is completely different when a raw material such as common mugwort is used, as its
cellulose content is lower by 50% and it contains considerably higher amounts of lignin
and hemicellulose. In addition, after dissolution in ionic liquids, common mugwort stems
are not deprived of lignin with the same efficiency as for hemp stems. High amounts of
lignin remaining in biomass samples directed for enzymatic hydrolysis may be linked to
a poorer course of the process, because lignin is an enzyme inhibitor [37]. In this case,
the use of ML methods perfectly reflects the processes of pretreatment and enzymatic
hydrolysis processes.

The type of biomass, as well as the contribution of cellulose in the composition
of plants, has direct influence on the content of simple sugars, including glucose after
enzymatic hydrolysis. Thus, the selection of biomass rich in cellulose, as was the case for
hemp stems, should be linked to more efficient ethanol production (Figure 4). For Model 1,
the use of Cellic CTec2 in enzymatic hydrolysis was most important because, regardless of
the type of biomass used, i.e., whether it was weed, woody plants, or energy crops, high
concentrations of glucose were obtained when the enzyme was used for the hydrolysis.
The pretreatment of biomass and type of ionic liquid applied were also significant for
Model 1. More favorable results were obtained in the case of imidazolium liquids, and the
most important was the use of [EMIM][OAc] and [BMIM][OAc], for both energy crops—
hemp, as well as woody weed with higher lignin content. The content of lignin in the
biomass composition is another significant factor affecting the reduction of bioethanol
production efficiency. In Model 2, this variable is in the third place, whereas second place
is taken by the use of ionic liquids as pretreatment type. Dependable variables that affect
the described model are also E1 and E2 enzymes, that is, T. reesei and Cellic CTec2 and their
amounts, appropriately selected to the content of cellulose after pretreatment.

Figure 4. Relative importance of inputs for bioethanol estimation—random forest.

The use of xylanase as an additional enzyme in enzymatic hydrolysis resulted in
increased content of simple sugars by decomposing hemicellulose, which is linked to
cellulose. Enzymatic digestion of hemicellulose resulted in exposing cellulose fibers,
which were then digested by cellulase. Therefore, the use of xylanase in such cases directly
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contributed to the increase of the content of glucose in the samples. Considering the costs
of the process, the use of an additional enzyme (xylanase) is not valid.

Ahmadian-Moghadam et al. [38] examined the influence of the initial concentration of
the substrate (molasses), live yeast cells, and dead yeast cells as the input parameters of
the process on the production of bioethanol via Saccharomyces cerevisiae. An R2 value equal
to 0.93 was obtained, which shows that the model was suitable for pattern recognition
into data and these patterns precisely predicted ethanol efficiency. In the latest research
conducted by Betiku and Taiwo [39], the influence of breadfruit hydrolysate concentration,
hydraulic retention time, and pH on the production of bioethanol was assessed with ANN
and response surface methodology (RSM). The ANN had an absolute mean deviation
between the predicted and observed value of 0.09%, compared to 1.67% after RSM [39].
These results further confirm the precision of ANN modeling in comparison with other
techniques, such as RSM.

ANN and RF algorithms have a random training start point, thus they were repeated
11 times to ensure higher reliability of the results obtained. The following analyses present
results of the iteration whose error was a median of error from 11 replications. In the
learning process, the R2 determination coefficient for Model 1 was 0.92 for ANN and
0.93 for RF. In Model 2, the R2 coefficient increased to near 1 for ANN, whereas for RF it
remained at the same level (Figure 5).

Figure 5. Training models for artificial neural network (ANN) and random forest (RF).

Data for mugwort and hemp were used for validation. In both models, the deter-
mination coefficient for neural networks >0.9, whereas for RF it oscillated around 0.95.
In the RF training models, there were four wasteland samples whose observed values
significantly differ from the estimated values. The ethanol content of these samples was
significantly different from the others and due to the principle of operation of the RF
algorithm, those samples could not be included. Considering the rather wide dispersion of
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the determination coefficient, two hybrid models were executed. The first hybrid model
(Hybrid 1) consisted of assuming the median from the set of data estimated from 22 repli-
cations. The second hybrid model (Hybrid 2) assumed determination of a linear function
describing the variables from the entire training set of 22 replications (11 ANN and 11 RF).
Subsequently, median from the validation set was calculated, on the basis of which new
estimated values were calculated. The last step of the process was to calculate the value
closest to estimated values from the set of 22 values. During the calculation of these models,
70% of points in Model 1 from ANN were selected and 75% of points in Model 2 from ANN
were selected. When both hybrid models were applied, a clear increase of determination
coefficient can be observed with regards to ANN, and a considerable decrease of RMSE
(root mean square error), ME (mean error), and MAE (mean absolute error) for mugwort
and hemp. Furthermore, mean values (est_mean) and medians (est_median) of estimates
were calculated for each model and algorithm.

Table 2 above describes the sum parameters concerning the presented models of
bioethanol production from hemp and common mugwort. The R2 determination coefficient
depended on the type of applied model. The hybrid approach in the creation of models
explaining this process of bioethanol production resulted in increased match of the model
to R2 = 0.961 for Hybrid 2. In the original calculations, R2 reached about 0.96 match only
for Model 2–RF. Precision of Model 1–Hybrid 2 for the prediction of ethanol production
process from biomass is satisfactory and higher than the ANN and RF models. RMSE
values for the RF algorithm in each case of validation sample analysis, that is, hemp and
mugwort biomass, were lower, and the model was better matched than for ANN. Moreover,
differences in R2 and RMSE relative to the analyzed material can be observed. RMSE was
lower for common mugwort samples, the results of which were predicted with the use of
ANN. A reverse situation occurred for validation of the model utilizing hemp samples.
In this case, lower RMSE with better match of the model (R2 = 0.961) was obtained for Model
2–RF. Considering that the differences were significant and did not provide a clear answer,
it was decided to use a hybrid model, which vastly improved the effects of predicting
bioethanol concentrations from lignocellulosic materials and provided a better match of
the hybrid model to experimental results–validation, presented in Figure 6. The pink color
in the Figure 6 was used to mark experimental results of bioethanol concentration obtained
from common mugwort stems, and green was used to mark bioethanol concentrations
obtained from cannabis stems. The blue asterisk refers to RF values and the red asterisk to
ANN values.

In the case of modeling such complex processes as bioethanol production from dif-
ferent lignocellulosic raw materials and taking into account numerous initial samples,
the use of only one algorithm type results in difficulties. Due to the concerns that the use
of ANN would result in flattening or not using all process conditions and mechanisms,
scientists often refer to the comparison with such algorithms as random forest, adaptive
neuro–fuzzy inference system, and support vector machine [35,36,40]. The application
of a hybrid approach to the discussed issues aimed for a more comprehensive inclusion
of the mechanisms that are not yet discovered in bioethanol production, or have not yet
been classified as of key importance on bioethanol concentration. In this study, the hy-
brid model is well matched to the process presented, and it further includes a very wide
spectrum of lignocellulosic biomass, not including raw materials due to, e.g., an excessive
amount of lignin. This may largely contribute to the expansion of knowledge in the field of
bioethanol production from mixed types of lignocellulosic biomass with different chemical
compositions, and acceleration of the selection of pretreatment type based only on several
input variables.
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Figure 6. Measured values relative to approximated values for the Hybrid 1 and Hybrid 2 models.

5. Summary

The use of machine learning methods, i.e., ANN and RF, for the prediction biotechno-
logical processes outcomes, in our case bioethanol production, even at a laboratory scale is a
very good first step to understand the production mechanism, before going to a large scale.
Results of this study suggest that ML is a good tool to predict the final concentration of
ethanol obtained in a multistage process of hydrolysis and fermentation of lignocellulosic
biomass. Data for this model includes results of bioethanol production with the use of ILs
and different enzymatic preparations from the following biomass types: buckwheat straw
and biomass from four wastelands, including a mixture of various plants—stems of giant
miscanthus, common nettle, goldenrod, common broom, fireweed, and hay. The results
obtained for each of the models applied are in a very good agreement with the experimental
results. For the process, two extreme biomass cases (hemp and mugwort) were used and
the simulations determined the final ethanol value with high likelihood. Importantly, the
ANN model alone qualifies the biomass as a good source of bioethanol, mainly on the
basis of the cellulose content (as in the case of hemp). The RF, on the other hand, also takes
into consideration other variables, such as lignin content. Therefore, the hybrid model
proposed is more adequate and takes into consideration other constituents and the level
of their changes during the pretreatment process. The hybrid model can be successfully
used for the preliminary classification of plants on the basis of the results of their ligno-
cellulosic composition, which means that the selection of an appropriate biomass source
can be carried out without long-term and often expensive research. ML is a perfect tool
for these types of processes, which can be developed by means of continuous network
training. The quality of this study indicates that further research results on the production
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of bioethanol from lignocellulose can be used for extending and continuously increasing
the verification of the hybrid model.
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