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Abstract: The demand for electricity is increased due to the development of the industry, the elec-
trification of transport, the rise of household demand, and the increase in demand for digitally
connected devices and air conditioning systems. For that, solutions and actions should be developed
for greater consumers of electricity. For instance, MG (Micro-grid) buildings are one of the main
consumers of electricity, and if they are correctly constructed, controlled, and operated, a significant
energy saving can be attained. As a solution, hybrid RES (renewable energy source) systems are
proposed, offering the possibility for simple consumers to be producers of electricity. This hybrid
system contains different renewable generators connected to energy storage systems, making it
possible to locally produce a part of energy in order to minimize the consumption from the utility
grid. This work gives a concise state-of-the-art overview of the main control approaches for energy
management in MG systems. Principally, this study is carried out in order to define the suitable
control approach for MGs for energy management in buildings. A classification of approaches is also
given in order to shed more light on the need for predictive control for energy management in MGs.

Keywords: control approaches; energy management; optimization method; objective function;
control constraints

1. Introduction

Proper management of energy flow in MG (Micro-grid) systems must be carried out
in order to improve the global performance of the system, to minimize the cost of the
electrical bill, and to extend the lifetime of its components (e.g., converters, batteries, fuel
cells). In general, energy management (EM) approaches involve an objective function,
which could be used to maximize the efficiency of the hybrid RES system and to minimize
energy consumption while improving the consumers’ quality of services. For instance, an
EM control strategy that considers only the availability of the electricity can be developed
to switch, at each time, from RESs (renewable energy sources) to storage devices or to
the utility grid without considering the electricity price or the profitability of the system.
In other cases, control strategies can interact with the generators by limiting the power
generation. The aim is to ensure the electrical quality of services and, consequently,
minimize the profitability of the installation. However, despite the ability of these strategies
to reach the defined objective, they might decrease the performance of other criteria, such
as the batteries’ lifetime, the system’s installation cost, and profitability.

Actual commercial inverters provide high-performance energy balance by intercon-
necting RESs, energy storage systems, and the utility grid, taking into consideration only
a single-objective function. This later is mainly implemented in order to increase the
availability of the electricity for building’s loads. With a limited configuration, the inverter
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can use batteries or the TEG at any moment without taking into account other constraints,
such as the electricity cost and the C/D (charge/discharge) cycle of the batteries. For
instance, high and frequent cycles of the C/D cycle of batteries could decrease their per-
formance while reducing the system’s profitability. EM strategies that are deployed in the
actual inverters use “if-else” statements to perform real-time decisions. For instance, the
defined setpoint values (i.e., control inputs) cannot be adjusted according to predictive
variations of RESs production, load demand, and battery SoC (state of charge). Such EM
strategies are considered as “passive strategy” in their decisions and actions [1]. Control
strategies incorporating multiple-objective functions are therefore required for efficient
energy management (i.e., ensuring electricity availability) while taking into consideration
operational constraints (e.g., costs, reliability, and flexibility). In fact, “active strategies” for
EM should be developed in order to adapt the setpoint values accordingly. These strategies
could use intelligent and predictive control techniques together with recent IoT/Big-data
technologies (e.g., data monitoring, data analysis, data mining, machine learning) for
efficient EM in hybrid RES systems. In this work, control structures and strategies from the
literature are presented by highlighting their advantages and drawbacks in the context of
MG for smart buildings.

2. Control Architectures

In hybrid energetic systems or MG systems, distributed and hybrid RES generators
(e.g., PV (photovoltaic) panels and wind turbines) are used to produce clean energy (e.g.,
solar, wind), while energy storage systems are installed to compensate the fluctuation
between RESs generation and load consumption. These hybrid systems can either operate
on grid-connected or standalone modes depending on desired and fixed objectives. How-
ever, while the penetration of these distributed generators is continuously growing, new
energy management approaches are required for their seamless integration within existing
electricity network. Table 1 presents resent literature works concerning the deployment of
hybrid systems. As highly stated in Table 1, batteries are the most commonly used devices
for energy storage.

Table 1. Survey through collection of EM (energy management) for the hybrid MG (Micro-grid) system.
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EV Performance Evaluation

[2] 3 3 3 3 3

The Multi-Objective Particle Swarm Optimization algorithm is used
to improve electric energy utilization in remote areas. Simulation
results are presented.

[3] 3 3 3 3

The development of a methodology for modeling and optimally
sizing a hybrid system of RESs and two energy storage devices
(hydrogen and batteries). Simulation results are presented.

[4] 3 3 3 3 3

The Crow search algorithm is used to optimize and size a hybrid
system. Two constraints are considered to minimize the total net
cost: Loss of power supply probability and renewable energy
portion. Simulation results are presented.

[5] 3 3 3 3

The operation of a grid-connected hybrid PV-wind system is
performed using a standalone inverter capable of working in
grid-connection mode and standalone mode. Experimental
investigations are presented.
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Table 1. Cont.
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[6] 3 3 3

The work proposed a real-time EM control strategy combining
wavelet transform, neural network, and fuzzy logic methods.
Experimental results exposed that the power variation and the peak
power of the battery pack have been successfully suppressed.

[7] 3 3 3 3

An intelligent control strategy is developed for a hybrid energy
storage system, composed of fuel cell, battery, and super capacitor.
Multi-input/multi-output state-space model is used to perform the
study. Simulation results are presented.

[8] 3 3 3 3 3

A multi-objective optimization problem, over a receding control
horizon, is used for energy storage dispatch and sharing of
renewable energy resources in a network of grid-connected MG. The
multi-objective optimization is formulated as a lexicographic
program to allow preferential treatment of multiple MG. Simulation
results are presented.

[9] 3 3 3 3 3 3

An economic linear programming model is developed with a
sliding-time-window to assess design and scheduling of biomass,
combined heat and power-based MG systems. Simulation results
are presented.

[10] 3 3 3 3 3

Distribution network including RESs is studied for optimal dispatch
model of mixed-power generation by considering the
charging/discharging scheduling of battery.
Bee-colony-optimization method is proposed to solve the daily
economic dispatch of MG systems. Simulation results are presented.

[11] 3 3 3 3

A combined sizing and EM methodology is proposed and
formulated as a leader-follower problem. The leader problem
focuses on sizing and aims at selecting the optimal size for the MG
components. It is solved using a genetic algorithm. Simulation
results are presented.

[12] 3 3 3 3

A strategy for the optimal management of a multi-good standalone
MG integrated with RES is investigated. The proposed approach is
defined through an EM model able to determine the schedule of
each programmable unit to fulfil the community needs at the lowest
operation cost. Simulation results are presented.

[13] 3 3 3 3 3 3 3

Electrical vehicles are used for peak shaving and load curve
correction in a MG system. The deployed methods deal with the
simultaneous scheduling of electrical vehicles and reactive loads in
order to minimize operation cost and emission in presence of RES in
MG system. Simulation results are presented.

[14] 3 3 3 3

A power management system is presented to manage the power
output from RES, fuel cell, and batteries with delivery of hydrogen
from an electrolyzer. The deployed strategy handles the source
effectively by considering the limited lifecycle of storage devices. It
eliminates the need for a dump load in the MG when the storage
devices are charged to the maximum capacity. Simulation results are
presented.

Therefore, the deployment of an energy management approach should be able to
enhance the dynamic response of distributed energy resources under different operating
conditions and maximize the usage of RES power generation while ensuring the stability
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when one or more sources are connected or disconnected into/from the system. In this way,
different approaches from literature have been proposed for EM (Table 2). As shown in
Table 2, the most suitable control strategies could be selected according to fixed constraints
and objective functions. These control strategies can be classified into three main categories:
Centralized, decentralized, and hierarchal control, as mentioned in Figure 1. These control
strategies are presented in the rest of this section.

Table 2. Survey through collection of EM for the hybrid MG system.

Ref. Main Objective EM Approach MG Scale Control Structure

[3]

A methodology for modeling and optimally
sizing a hybrid system for renewable energy
considering two energy storage devices:
Hydrogen and batteries.

Wavelet transform,
Neural network and

Fuzzy logic (FL)
Large Not specified

[4]

A method is developed to size an off-grid
PV/diesel/FC hybrid energy system in order to
optimize the number of system components with
respect to the cost minimization of the
installation.

Crow search algorithm Large Hierarchical

[8]

An EM method is deployed in a MG system
containing energy storage devices and renewable
energy based distributed generators in
grid-connected MG. In the studied approach, the
neighboring MG share the capacity of their
distributed resources and energy storage devices
aiming at reducing the operational costs.

Lexicographic
programming, Linear

programming, Receding
horizon control

Large Hierarchical

[9]

A deterministic constrained optimization and
stochastic optimization approaches to estimate
the uncertainties in biomass-integrated MG
supplying both heat and electricity. The work
developed an economic linear programming
model with a sliding time window to assess
design, scheduling of biomass-combined power
and heat-based MG systems.

Linear programming
model with a sliding time

window
Small Decentralized

[10]

A MG energy management strategy by
considering RES integration into the distribution
network. The time-of-use, other technical
constraints, and an enhanced bee colony
optimization is proposed to solve the daily
economic dispatch of MG systems.

Enhanced bee colony
optimization Small Centralized

[11]

Authors proposed a combined EM and sizing
methodology, formulated as a leader follower
problem. The leader problem focuses on sizing
and aims at selecting the optimal size for the MG
components. The problem is solved using a
genetic algorithm and the follower problem is
formulated as a unit commitment problem and is
solved with a mixed integer linear program.

Mixed integer linear
program Small Centralized

[14] Authors proposed an EM approach to divert
excess energy of PV to the electrolyzer. Linear Programming Small Centralized

[15]

An analysis of energy management system of a
MG using a robust optimization taking the
uncertainties of wind power and solar power
generations and energy consumption into
consideration.

Agent-based modelling Large Decentralized
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Table 2. Cont.

Ref. Main Objective EM Approach MG Scale Control Structure

[16]

An algorithm for EM system of a MG using
multi-layer ant colony approach pointing on
determining the optimum point of operation for
local distributed energy generation with least
electricity production cost. The studied algorithm
has the capability of analyzing the constraints
related to economic and technical aspects of the
problem.

Multi-layer ant colony
approach Medium Not specified

[17]

A method known as contingency-based energy
management for a system of MGs. A stochastic
optimization is proposed according to various
scenarios of the contingencies.

Contingency-based
energy management Large Hierarchical

[18]

A fuzzy EM approach is deployed to smooth the
power flow of a MG containing heat and power
unit. The aims is to use the surplus of electrical
power of the MG for storing in electrical energy
storage systems and ensuring the water
temperature of the thermal storage system in the
desired value in order to supply residential
buildings.

Fuzzy energy
management strategy Medium Not specified

[19]

A model predictive control technique to
determine the optimal operation of the MG
system using an extended horizon of evaluation
and recourse. The EM problem is decomposed
into Unit Commitment and Optimal Power Flow
problems in order to avoid a mixed-integer
non-linear formulation.

Model predictive control Large Centralized

[20]

Authors present an EM system to minimize the
daily operating cost of a MG and maximize the
self-consumption of the deployed RES by
selecting the best setting for a central battery
storage system based on a defined cost function.

Convex Programming,
Model Predictive, and

Rolling Horizon
Medium Hierarchical

[21]
The operating cost of MG is minimized, while
considering droop controlled active and reactive
power dispatch of AC side MG as a constraint.

Mixed integer nonlinear
programming Small Centralized
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2.1. Centralized Control

Centralized control approaches use a single central controller (CC), which is character-
ized by a high-performance computing unit and a secure communication infrastructure in
order to manage different entities of the system (e.g., RESs, storage systems, TEG). Each
entity uses a local controller (LC) in order to communicate and directly interact with the CC.
Moreover, using recent communication and computing technologies (e.g., IoT, Big-Data),
the CC is able to monitor, collect, and analyze real-time data. This allows all entities to
collaborate with the central EM controller while ensuring a flexible MG operation in both
grid-connected and standalone mode (Figure 2). The CC collects data, such as RES energy
production, energy consumption pattern, the energy price from market operators, and
weather conditions, and then executes the optimal and efficient system’s control.

Figure 2: 

 
 

Figure 2. Centralized control structure.

Numerous research works have developed and deployed centralized EM strategies.
For instance, the authors of [22] proposed a centralized controller in order to optimize
the operation of MG by maximizing the production of distributed RESs generators while
establishing back-and-forth energy transfer with the main utility grid. The efficiency of the
proposed solution on MG system was investigated by considering a typical case network
operating under various market policies and spot market prices. Moreover, the authors
of [19] developed a centralized EM system for a standalone MG system based on the model
predictive control method in order to reduce the computational loads. In fact, the studied
problem was solved iteratively by nonlinear programming (NLP) and mixed integer linear
programming (MILP) techniques. Other centralized control strategies are summarized in
Table 2. However, despite the ease of implementing the centralized strategies, they have
shown their limits, especially when dealing with large-scale hybrid systems [23].

2.2. Decentralized Control

Unlike centralized strategies, in decentralized control, each entity is considered au-
tonomous using a LC. This means that groups of entities are controlled separately by a
leader. In literature, the terms ‘decentralized’ and ‘distributed controls’ are often used in
place of each other [24,25]. The distributed control can be considered as a decentralized
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control in which LCs use local measurements, such as frequency and voltage values, to
elect the leader entity. They are also allowed to share information with neighbors. For
a distributed control, LCs do not only use local measurements but also are able to send
and receive required information to other LCs [26]. In decentralized control approaches,
limited local connections are required and the control decisions are made based only on
local measurements (Figure 3). It does not require a high-performance computing unit and
a high-level connectivity [27].Energies 2020, 13, x 7 of 32 
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Figure 3. Decentralized control structure.

As depicted in Figure 3, each LC operates individually on managed energy sources,
storage systems, and loads without central control. The control decisions are determined
locally based on local measurements, which are shared among controllers using peer-to-
peer communication.

However, monitoring, processing, and data visualization is considered critical in
order to coordinate various distributed controllers and achieve a global operation goal.
This process is standardized by the norm IEC-61968 for a single-building energy manage-
ment system and by IEC-61850 for interoperability between building MG systems [28,29].
Depending on the communication network availability, the decentralized control can be
classified into three operation modes: (i) Fully dependent, in which the distributed con-
trollers generate local control decision while communicating information with each other
via a CC; (ii) partially independent, in which LCs communicate with each other and share
information with the CC in order to generate central decisions; and (iii) fully independent,
in which the distributed controllers communicate directly with each other and indepen-
dently from the CC [30]. However, despite the flexibility of these operational modes,
the decentralized control structure presents low performance compared to centralized
control [25,31–33]. This is due to the low response time and the incomplete information
about the total MG system installation.
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2.3. Hierarchical Control

Hierarchical control is mainly proposed for SG (smart grid) systems. In fact, the
extended geographic areas of these systems and the extensive communication and compu-
tation requirements make the implementation of fully centralized approaches a difficult
task. At the same time, higher coupling between the different LCs requires a maximum
level of coordination, which cannot be achieved by decentralized control structures. How-
ever, a compromise between the fully centralized and decentralized control structures
is realized by providing hierarchical control structures [34,35] according to three control
levels: Primary, secondary, and tertiary, as depicted in Figure 4.Energies 2020, 13, x 8 of 32 
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The primary control level stabilizes the voltage and frequency generated from each
source in order to respect the limits required by the standards [36–38]. In addition, the
primary control level detects the operating mode of MG systems, offering the ability to
operate in grid-connected and standalone modes [39]. For the secondary control level,
the MG voltage and frequency are restored after system’s load variation. The aim is to
ensure and enhance the power quality within the required standards values, allowing the
synchronization between the MG systems and the main electrical network [40].

The main objectives of tertiary control are the power flow control in the grid-connected
mode, ensuring then the optimal operation in both modes like capacitance and induc-
tance [41]. Figure 5 includes the structures of each level of the hierarchical control. The
control levels differ in the response time frame speed in which they operate as well as
the infrastructure requirements, especially for the communication, which is normalized
by the standards IEC 61850-7-420 and EN13757-4 [36]. The hierarchical control can be
implemented in parallel in both centralized and distributed structure. The advantages and
disadvantages of each control structure are presented in Table 3.
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Figure 5. Hierarchical control levels.

Table 3. Control architectures for hybrid system, advantages and inconveniences.

EM Advantages Inconveniences

C
en

tr
al

iz
ed

• Strong controllability and real-time observability of the
whole MG system;

• Provides strong supervision and wide control of the
whole system;

• Mature and established approaches for control of
many systems;

• Suitable for small size MG systems where the collected
information is performed by low bandwidths
communication [42];

• Suitable for the internal control in MG system;
• Global optimization of all entities of the same MG;
• Offers high-performance computing unit and a secure

communication infrastructure;
• Holds the control strategy that considers the MG

entirely and depends on the simple architecture of the
system to build a global knowledge making the EM
control easier to be deployed;

• Straightforward implementation, the CC allows
economic implementation and it is easy to maintain;

• Optimal decision is guaranteed.

• The failure of the CC affects the whole system
operation;

• Heavy computation burden is a technical barrier for
the deployment;

• Not well designed to support plug-and-play
functionalities of a large number of entities;

• Need a high level of connectivity due to the direct
interaction of each entities with the central;

• Requiring high processing unit for the CC;
• More prone to failures since only one unit regulates the

voltage and leads to reduce life spam of Battery bank
stack [43];

• Poor scalability and responsible for shorter battery life
[44];

• Since all information is collected and handled at one
CC, the computational burden increases making the
control less effective for real-time communication
requirements;

• Reliability is degraded for the whole system.
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Table 3. Cont.

EM Advantages Inconveniences

D
ec

en
tr

al
iz

ed

• Distributed processing system with autonomous
control capability;

• Peer-to-peer nodes communication, allowing greater
flexibility of operation, and avoiding single-point
failure;

• Higher reliability due to the redundancy of controllers
and communication;

• Distributed generators are controlled by independent
controllers through their local variables offering
redundancy communication link;

• Insufficient information about other entities of the MG
systems;

• Droop control strategy is usually used to avoid
circulating currents between the converters without
the use of digital communication link;

• Avoiding single-point failure, enhancing the
expandability, and allowing greater flexibility of
operation;

• High privacy for the entities and less amount of
information;

• Reduction of the computational need and releasing the
traffic on the communication network;

• Reduces computational burden and increases
reliability and robustness;

• Easy realization of plug-and-play functionality.

• Incomplete information about the overall MG status;
• Voltages and currents average regulation requires

more data transmission through the MG;
• Local optimization in EMS is not able to provide a

global solution for operating cost minimization of the
total MG;

• The distributed processing does not guarantee global
optimal results for the whole MG system;

• A high complexity of implementation compared to
centralized and hierarchical control;

• Load dependency problem, responsible for the
circulating currents in distributed generators, accuracy
of load sharing can be achieved with the compromise
of deviation in the voltages compared to their rated
values;

• Unsuitability for non-linear loads due to harmonics
and inability to achieve coordinated performance of
multiple components with different characteristics,
and poor transient performance;

• Requires effective synchronization and strong
communication to achieve synchronicity;

• Requires fast periodical reconfiguration.

H
ie
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• More suitable for DC MG systems;
• The voltage and the current are regulated locally by

the source converters;
• Flexible regulation of the system voltage within

acceptable intervals;
• Economic power dispatch among the converters,

between the MG, the utility grid as well as the
neighboring-MG;

• Synchronous generators with the same frequency for
all over the grid;

• The operation constraints are dispatched to different
levels reducing the processing time;

• Improving the current mismatches among the
controllers;

• Combining the previous control structures;
• Optimal decision is possible.

• The distributed generators should participate in
voltage regulation and frequency control;

• Some generators operate in limited power mode while
supplying only the power planned by the electricity
market;

• The distributed generators are responsible for
adjusting the differences between the planned demand
and the actual load. Therefore, the demand should be
forecasted to plan correctly the output of the
generators;

• Adjacent layers coordination is required;
• There is no transfer of information and energy if there

is a communication fault in the upper layer;
• Fewer computation burdens.

3. Control Strategies

The deployment of more than one energy source in MG systems requires the use
of efficient control strategies/approaches for managing energy flow. This requires the
development and deployment of EM systems. EM systems should be able to effectively
coordinate energy sharing and trading among all electrical networks while supplying loads
according to the operational conditions and economic constraints with secure, reliable, and
efficient power system operation. In fact, optimization techniques for D/R, demand-side
management, and power quality management are needed to achieve different EM system
objectives while satisfying multiple constraints, such as electricity price minimization and
occupants’ comfort maximization, as mentioned in Figure 6.
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Figure 6. Objective functions constraints, and optimization methods for optimum operation of MG systems.

The concept of EM system is not new and began with the first electrical network,
known as “Energy Control Center.” In the past decade, the electrical network has been
developed and new challenges have been evolved. Consequently, new ICTs (information
and communication technologies) have been deployed in order to improve the electrical
power sector.

The EM system was also developed to be renamed as a SCADA-EMS (supervisory
control and data acquisition-energy management system), which is charged to deploy
various control techniques like services control, distributed management systems, and
demand-side management [33]. With the deployment of RESs, the EM system should be
capable of creating an energy balance between the variable demand and the stochastic
RES generation in an efficient manner. It could have a control center, which is capable of
supervising, monitoring, managing, and optimizing the operation of distributed generators,
diversified consumers, and the transport/distribution facility of the electricity. Actually,
the EM system is not limited to the classical control objective, but has been developed to
work for real-time applications, predictive control scheduling, and transmission security
management.

Several approaches have been proposed and have used diversified objective functions
and constraints together with optimization methods for efficient energy management, as
depicted in Figure 6.

3.1. Objective Functions and Constraints

The deployment of EM control strategies specifies the main objective functions, which
could be related to the operation cost, pollution, reliability, and power quality [11,45–47].
For instance, the main aim of using economic objective functions is to minimize the elec-
tricity price. Different formulations have been studied for cost minimization in MGs. For
instance, the authors of [48] an EM strategy for electricity cost minimization in residential
MG, which was constituted by multiple households with distributed energy resources.
This EM strategy considered predefined purchasing/selling decisions, at each time slot, for
reducing the electricity cost as well scheduling decisions for the shifted loads. The authors
of [49] formulated the cost minimization as a dynamic economic load dispatch problem. A
metaheuristic algorithm was introduced and compared with other methods, such as the
differential evolution algorithm, genetic algorithm, and particle swarm optimization. The
authors of [50] proposed an optimal strategy by evaluating the performance of different
hybrid MG systems. A mathematical model was studied for sizing the component of the
MG in order to meet the lowest possible cost while maximizing load demand under vary-
ing weather conditions. The obtained results presented the optimal configuration for MG
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system components to achieve the lowest cost of energy and net present cost. In addition,
the dynamic analysis showed that, in order to reduce the voltage-drop during disturbances,
it is essential to carefully install the sources in the buses connected to high energy demand.
The authors of [20] presented an EM system to minimize the daily operating cost of a
MG while maximizing the self-consumption of the deployed RES by selecting the best
setting for a central battery storage system according to a defined cost function. A simple
comparison was made to show the advantages of two different layer controllers: The
rolling horizon predictive controller and modem predictive controller. The experimental
results showed the performance of the proposed strategy to work in real-time with high
accuracy. The yearly RES self-consumption and the yearly operation cost of the MG were
calculated with and without the rolling horizon, showing the utility of the method to
minimize the cost. Another interesting work was presented by the authors of [51], who
introduced an optimization model for managing a residential MG which contained RESs
and a charging spot with a “vehicle-to-grid” system. In this EM system, not only were
energy costs considered, but battery installation costs were also introduced in the system
minimization.

The deployment of EM approaches, which consider the pollution factor as an objective
function, take time to validate, since the whole procedure should consider the life cycle of
the different deployed equipment. In fact, every new energy source technology which is
promoted as being “renewable” or “sustainable” is subject to an energy balance analysis
in order to calculate the net energy yield. The energy analysis does not only consider the
data for present generation systems, but also the data for the probable improvements in
production and energy system technology [52]. The equivalent CO2, generated during
the fabrication of each component, should be calculated and compared to the equivalent
energy which is generated during its life cycle. We consider that this energy is generated
by traditional sources in order to estimate the equivalent CO2 emission and that, by
comparing these two elements of CO2 generation, the profitability of the system concerning
the pollution objective can be defined. For example, the authors of [53] studied the life cycle
of the balance system component of 3.5 MWp multi-crystalline PV installation. The life
cycle and the boundary conditions were calculated for each component of a PV installation
(e.g., PV metal support, aluminum frames). The authors of [52] presented estimations of
the energy requirements for manufacturing PV systems and evaluated the energy balance
for an example of PV system applications. The work investigated the effects of the future
developments in PV generation technology in order to assess the long-term predictions
of PV system as a candidate for a sustainable energy supply and for CO2 mitigation. The
authors considered the energy payback time to estimate the CO2 mitigation potential and
concluded that 90% of greenhouse gas emissions during the PV system life cycle are caused
by the energy used during system manufacturing and not during the system operation.

Like economic and pollution aspects, the term ‘reliability’ covers different aspects
concerning the system operation cost, profitability, fails and maintenance, and productivity.
Consequently, as mentioned above, RESs have a significant cost and consume a lot of
energy in their fabrication. In order to maximize the profitability and system’s reliability,
the production of these sources should be maximized. Therefore, the main aim is to
maximize the use of renewable energy generation, minimizing the loss of energy, keeping
the storage energy system at a good state of health, and ensuring a safety and efficient
supply of energy to the loads. In this way, the authors of [54] presented an electricity
market strategy for reliability enhancement of islanded multi-MG systems. A techno-
economical objective function was deployed to account the profit of MG owners and to
enhance the reliability of the system as well. Distribution functions were used for the
probabilistic modeling of RESs and loads, and an electricity market strategy was proposed
to improve the profit of the MG owners. However, the power quality, particularly the
power loss, is still a main issue for the system’s reliability. Therefore, several works have
proposed suitable EM methods and control techniques to minimize the power loss in
MG systems. For instance, the authors of [55] integrated a MG with static synchronous
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compensator controller in order to ensure the higher power flow with enhanced voltage
profile and reduced power loss. They concluded that the static synchronous compensator
controller raises the capacity of the distribution line and contributes to voltage profile
improvements and power loss reduction. Similar works have considered the concept
of power loss minimization, such as those presented by the authors of [56–58]. Several
objective function can be considered for the deployment of the EM strategies. The reliability
improvement is a noticeable task in modern power systems due to its direct influence on
the electricity price and more precisely social safety [59]. The auhors of [59] studied an
approach for optimal operation of distribution networks. A hybrid algorithm (Grey-Wolf
Optimizer and Particle Swarm Optimization) was proposed to solve the proposed multi-
objective function. The results were compared with those presented in literature works
to demonstrate the powerful of the proposed algorithm. A beneficial literature work for
multi-objective EM was improved by the authors of [60], who studied a multi-objective
EM in an MG system. Techno-economic analysis and energy dispatch were presented for
standalone and grid-connected MG infrastructure with hybrid RESs and storage devices.

After defining the system’s constraints and objective functions, suitable optimization
methods are required to accordingly ensure the exchange of power flow between the
installed RES/storage and the MGs on the one hand, and between MGs and the utility grid
on the other hand. The rest of this section is dedicated to an overview of main methods
from literature.

3.2. Optimization and Control Methods

Numerous research works have been carried out for MG control according to system’s
topologies, structures, and operation modes [33,61,62]. For example, optimization and
control methods should manage the stochastic nature of the installed RES generators
by ensuring a reliable supply of power to consumers while keeping the storage system,
electricity bill, and occupants’ comfort at the acceptable operation conditions. Figure 7
presents a proposed classification of the MG control methods commonly used in MG
operations. A brief description of each method is presented in the rest of this section.
Furthermore, various steps should be specified, as depicted in Figure 8, for EM in MG.
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3.2.1. Predictive Control Methods

Recently, predictive control approaches have been proposed for advanced systems
control according to defined constraints with the aim of developing predictive controllers
for efficient energy flow in MG systems. These controllers could forecast future actions and
decisions, but they require forecasted inputs’ values (e.g., power consumption/production).
With recent progress in IoT and Big-data technologies, together with ML, it now possible to
deploy sensors for gathering contextual data [63]. These data could be processed and used
for predicting n-step-ahead values. Therefore, the forecasted values are the main inputs for
generating the most suitable and future actions by predictive control approaches [64,65].

MPC and GPC are the well-known approaches, having the capabilities of predicting
future events and forecasting right control decisions accordingly. In fact, they have the
ability to incorporate optimization mechanisms, which makes it possible to integrate
system’s constraints and disturbances in forecasted control decisions. For instance, the GPC
is widely used in advanced control applications, such as in EM and buildings’ automation
systems [66,67]. For example, the authors of [68] introduced a home EM system for battery
storage and PV systems. For the optimal operation strategy, the proposed planning was
expressed as a stochastic mixed-integer nonlinear programming. The power generated by
the PV system was considered as an uncertain parameter and modeled by a probability
distribution function. The battery storage system was used to store energy during off-
peak/low-cost hours and discharge energy during on-peak/high-cost hours. However,
the main limitation of this EM strategy was the passive reaction of the system with the
cost and the peak demand variability. It was programmed by a fixed time interval that
presented predefined periods of on-peak and high-cost and was not defined by an active
function for the interactive variability of the cost and the electricity demand. Moreover, the
authors of [67] proposed an adaptive and dynamic optimization technique based on the
stochastic MPC approach. The proposed EM approach was applied for distributed energy
resources scheduling problem for a set of smart homes with different sources of energy.
Its aim was to address the uncertainty and variability issues of the PV power generation.
This study was designed for large-scale smart houses by taking into consideration their
cooperation with their neighbors. Another interesting work was presented by the authors
of [69], who proposed an EM system using an MPC, where a simple state-space model
was used for the performance modeling of a MG system. This work considered the RES
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power production and the consumption as measured disturbances parameters for the EM
system. Therefore, the storage systems and the cost were modeled as constraints for the MG
system, which were solved by the state-space equations. In addition, other works have been
presented in the literature which have referred to the optimal control of RES in MG systems
considering hybrid storage systems, as detailed by the authors of [70]. The authors of [71]
used the MPC for optimal control of distributed energy resources with a battery storage
system. A mixed-logical framework was applied to model the deployed household system.
In other works, the MPC was used for EM of MG systems that were connected to the
charging station for electrical vehicles [72–74]. The authors of [72] used an algorithm based
on the MPC model for the economic optimization of an MG laboratory. The laboratory
contained a hybrid storage system composed of hydrogen storage and battery bank with
a connection to the utility grid and a charging station for electric vehicles. A hierarchical
control structure was proposed together with the MPC method, which operated at different
timescales. The proposed methods operated on the first level to maintain the MG stability
and on the second level in order to perform the management of electricity purchase and
sale to the utility grid, manage the use of energy storages, and maximize the use of RESs.
The presented results showed the reliable operation of the proposed control algorithm to
manage the MG system. The authors of [73] proposed an optimal EM approach based on
the MPC controller for the MG with external agents, including battery storage system and
fuel cell electric vehicles. The MPC problems were solved by a mixed-integer quadratic
programming. The Mixed Logic Dynamic framework was used to model the plant, and the
operation and degradation costs were included in the objective function. The proposed
approach considered the best time period in to recharge/refuel the vehicle, finding lower
prices for the recharge of the vehicle battery or the refueling of the vehicle fuel cell if they
were planned before the day-ahead market session. Therefore, generic MPC models were
introduced by the authors of [75,76] for economic optimization in MG systems. The authors
of [75] presented mathematical optimization models of residential energy hubs. The model
can be readily integrated into household automation systems and EM systems to improve
their effectiveness and reduce the total energy costs and emissions while considering their
preferences and comfort. Mathematical models of major household demands have been
developed. The authors of [76] developed an MPC approach to optimize an MG system’s
operation. A mixed-integer-linear framework was illustrated, which included economic
dispatch, energy storage, unit commitment, and grid interaction. The cost was addressed
and parameterized in detail in the problem formulation. The experimental results were
presented, showing the performance of the proposed approach to save money compared
to the current practice.

It is worth noting that the MPC family was proposed for electronic power, especially
power converter control. The GPC is one of the CCS-MPC (Continuous Control Set MPC)
methods that calculate a continuous control command in order to generate the desired
output of the power converter. The CCS-MPC models have a lower computational cost than
the other existing methods, such as the FCS-MPC (Finite Control Set), OSV-MPC (Optimal
Switching Vector), and OSS-MPC (Optimal Switching Sequence) [77]. It can be used for
long predictive horizon problems by calculating the control actions beforehand and then
limiting the online computation burden. Mainly, the calculation time is the main factor for
the deployment of MPC control families. In past decades, the development of computing
units and the integration of ICTs and ML algorithms for power electronic applications has
encouraged the use of predictive control for the power converter. For instance, the authors
of [78,79] used an FCS-MPC for the current control of three-phase inverter. The authors
of studied this in [80] for a multiphase inverter, the authors of [81,82] for a multilevel
inverter, and the authors of [83,84] for a matrix converter. For more details, we refer
readers to an interesting review, which is related to predictive control applications in power
electronics [85]. These approaches offer the possibility to integrate multiple-objective
functions and constraints with the possibility of integration in the different control levels.
Mainly, with the integration of the new ICT, the predictive control can be developed to
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present high performance for control command and action predictions. In addition, the
use of ML algorithms to forecast the control input parameters offers more reliability and
flexibility to the predictive control approaches.

3.2.2. Classical Approaches

Many EM optimization approaches are based on classical approaches, such as mixed-
integer linear and nonlinear programming. These approaches can be considered as efficient
methods for MG systems control according to the specified objective and constraints.
For instance, the authors of [86] proposed a MG EM system for power sharing, power
trading with the main grid, continuous run, and on/off mixed mode based on the linear
programming optimization method. In this study, the on/off mode was solved by a MILP
solution approach, which optimized the operation of MG with respect to the operation
mode of the main grid, fuel cell, and energy storage system. The authors of [87] developed
a real-coded genetic algorithm and a MILP-based method to schedule the unit commitment
and economic dispatch of MG units. The work considered the voltages limits, equipment
loadings, and unit constraints in its formulation, and the proposed algorithm deployed a
flexible set of sub-functions and intelligent convergence behavior, as well as diversified
searching approaches and penalty methods for constraint violations. At the same, a
method was investigated to deal with the constraints of MILP algorithm in handling the
nonlinear network topology constraints. Another interesting work was presented by the
authors of [88], who proposed an MILP-based approach for managing electrical and heat
demands in a multiple MG environment. The proposed strategy considered different
energy converters and storages, distributed energy generators, and electricity/heat storage
units for an optimal scheduling of MG, including technical and economic ties between
electricity and natural gas systems. The deployed algorithm was developed based on
AC power flow, while the deployed model respected reactive power and voltage security
constraints, allowing the MG system to minimize the operation cost. Moreover, several
other works have been presented using these approaches. For example, the authors of [21]
minimized the operating cost of MG using MINLP, while considering, as a constraint,
droop controlled active and reactive power dispatch of AC side MG. The authors of [89]
proposed an EM approach for MG under an operation system of transformer nominal
operation and voltage security. Three objective functions, customer benefits, load leveling,
and network losses, were studied.

Generally, the objective function and constraints deployed in linear programming
methods are linear functions with whole-valued and real-valued decision variables. This
family of approaches is often used for system analysis and optimization, as it presents a
flexible and powerful method for solving large and complex problems, such as distributed
generation and MG systems.

Dynamic programming methods are used to solve more complex problems that can
be sequenced and discretized. The studied problems are usually fragmented into sub-
problems that are optimally solved, while the obtained solutions are superimposed to
develop an optimal solution for the original problem [90]. Therefore, rule-based methods
are generally used to implement the EM system because they do not require any future
data profile to make a decision, thus making them more suitable for real-time applications.
For example, the authors of [91] presented a rule-based EM system in which a rule-based
algorithm was used to implement the priority of RES usage and manage the power flow
of the proposed MG components. A nature-inspired optimization algorithm was used
to optimize the MG system’s operations for long-term capacity planning. The main goal
of the proposed objective function was to minimize the cost of energy in MG systems
as well as the deficiency of power supply probability. Other works have proposed rule-
based methods to control and optimize the energy flow in MG systems. For example, the
authors of [92] developed a control algorithm to provide power compatibility and EM
for different resources in the MG. A real-time control system was used to experimentally
validate the hybrid system in the MG. The results showed that the proposed approach
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provided stable operation of the MG subsystems under various power generation and
consumption conditions. The authors of [93] studied a method to build the optimal EM for
MG- connected system, which included the energy trading cost with the main grid and the
battery aging cost. The authors used a dynamic programming algorithm to minimize the
cash flow of the system while maximizing the power supply from the main grid.

Like other classical methods, dynamic programming algorithms can be considered as
mathematical optimization methods, which can be used to simplify a complicated problem
to simpler sub-problems for being solved in a recursive manner. They are able to provide
optimal decisions. However, they require high computational costs, which make them
difficult to implement in embedded devises.

3.2.3. Heuristic and Metaheuristic Approaches

Heuristic and metaheuristic approaches are used in many disciplines, such as in
telecommunications and transportation systems. Recent studies have developed EM ap-
proaches for MG systems. For instance, the authors of [94] introduced a heuristic method
for the optimal operation and EM of DC MG systems. The studied problem was formu-
lated in the form of a single-objective optimization problem by focusing only on cost
minimization. The authors of [95] proposed a metaheuristic based system by integrating
the Harmony search algorithm and the enhanced differential evolution. To ensure that the
power consumption did not exceed a fixed threshold value during peak periods, multiple
knapsacks were used, and the proposed system outperformed the existing metaheuristic
techniques in terms of cost and peak-to-average ratio. The authors of [96] proposed an
economical model for energy storage system together with a real coded-genetic algorithm
model for MG systems operating in a grid-connected mode. The developed algorithm maxi-
mized the present cost of energy storage system over its lifespan based on its capital, energy
arbitrage revenue, operation cost, and maintenance cost. The authors of [97] proposed an
optimal EM system for a grid-connected MG system based on the genetic algorithm, which
considered the electricity price, power consumption, and uncertainty of RES generation.
The work showed that particle swarm optimization method is more efficient in term of
finding the best solution of the studied optimization function in comparison with genetic
algorithm and combinatorial particle swarm optimization. A deterministic EM problem
was solved by the authors of [98] via the multi-period gravitational search algorithm. The
authors of [99] used a multi-objective particle swarm optimization algorithm to solve the
EM system problem, which was considered as a multi-objective problem. However, the
authors of [13,100] solved the EM system problem as a single-objective problem using
particle swarm optimization-based algorithms. A metaheuristic approach for MG con-
figuration in green data centers was presented by the authors of [101]. An optimization
model was presented that considered the electricity costs and greenhouse gas emissions
associated with all components of the MG systems, as well as their interactions. The model
was applied to a real scenario of a data center with a given load demand in a specified envi-
ronment. The authors calculated the degradation costs and the operational cost based on a
system lifetime of 20 years. The developed model ensured good-quality MG configurations
for different tradeoffs of cost and sustainability. Another work, presented by the authors
of [102], combined an intelligent expert system fuzzy logic and a metaheuristic algorithm
Grey-Wolf Optimizer. The proposed approaches solved the economic and environmental
optimization problems of the MG systems by considering the uncertainties of RES and
fluctuation in the power demand. In addition, a monitoring technique was developed with
the fuzzy system to evaluate the input parameters to control the battery charge/discharge
cycle, taking into account the economic aspect of the Grey-Wolf Optimizer optimization
problem. The battery storage system operated by tracking the local generation costs of
the installed MG and the total costs of the battery storage, which increased the possibility
of charging the storage system at low costs during off-peak times. A metaheuristic home
energy management system was studied by the authors of [103]. The authors evaluated
the performance of the home energy management system using three metaheuristic opti-
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mization techniques: Bacterial foraging optimization, the Harmony search algorithm, and
Enhanced deferential evolution. The objectives were to minimize the energy consumption,
electricity cost, and reduction in peak-to-average ratio while maximizing user comfort.
The obtained results showed that a tradeoff between user comfort and cost exists for the
control constraints. In terms of cost, the results showed that the Harmony search algorithm
performs better among other techniques. Another new interesting work, presented by
the authors of [104], used a metaheuristic-based vector-decoupled algorithm to balance
the control and operation of a hybrid MG system in the presence of stochastic renewable
energy sources and the electric vehicle charging structure. The proposed control method
ensured the stability of both frequency and voltage levels during the high-pulsed demand
conditions and severe conditions of islanding operation mode together with the variability
of RESs production. The presented results exposed the effectiveness and robustness of the
proposed method to manage the real and reactive power exchange between the installed
DC and AC buses of the MG within acceptable voltage and frequency variability.

Generally, heuristic optimization approaches use exploratory methods, in a reasonable
time, to solve the optimization problems. However, they are unable to assure optimality of
the obtained results [105]. The metaheuristic approaches are efficient and popular methods
that are used for control and EM in the MG system. Several works in the literature that have
analyzed the performance of these approaches. In some works, the metaheuristic control
has been coupled with other control approaches in order to benefit from the performance
of both approaches [106,107].

3.2.4. Artificial Intelligent Methods

Artificial neural networks are examples of artificial methods. They are considered
as stochastic methods, which could be used to solve optimization problems for system
having random variables. For MG systems, RESs have a variable nature caused by the
weather conditions, which affect the power generation. As example, the authors of [108]
presented an expert system for EM in MG systems using neural networks in order to
predict the power generation of the installed RESs. The authors of [109] proposed a
mathematical model for a smart load management in a standalone MG system. The
studied loads were modeled by neural networks, and a predictive control was used to
manage the energy according to predicted load variation. The authors of [110] presented
an EM system for an MG system connected to the utility grid with the main objective of
maximizing the use of renewable energies while minimizing the carbon emission. Two
neural networks were used to model the proposed EM system using evolutionary adaptive
dynamic programming and learning concepts. For the deployed neural networks, one
was used for the management strategy and the other was used to check the optimal
system’s performance. The authors of [111] used a neural network to control a bidirectional
rectifier/inverter. A dynamic programming algorithm was implemented and was trained
using back propagation through time. The deployed neural networks showed a high ability
to trace rapidly changing reference commands for frequency and voltage and satisfied
control requirements for a faulted power system. The neural network controller used in
this work was performed and studied under typical vector control conditions. The authors
of [112] proposed a Lagrange-programming neural networks method for an efficient control
and management of MG system with the main objective to minimize the overall cost of MG.
In this work, the load was classified into different categories of controllable load, thermal
load, price sensitive load, and critical load, while variable neurons and Lagrange neurons
were combined to obtain optimal scheduling of MG operation. Mainly, neural networks can
control, optimize, and identify system’s parameters in online or offline applications. Unlike
the previous approaches, neural networks can solve problems with nonlinear data in large-
scale MG systems because of their ability to solve the system’s stability via self-learning
and prediction capabilities [113,114].

MAB control approaches are generally used in MGs because they are decentralized
while allowing multiple interacting agents to follow their specified rules and goals and to
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perform autonomously dedicated functions [115]. The principal element of MAB methods
is the agent, which can be a virtual or physical entity situated in a specified system
(e.g., buildings, MG). It is capable of autonomously reacting depending on the changes
of the system’s environment [42,116]. The authors of [117] applied a comprehensive
description about different optimization techniques to EM and a comparison with other
techniques was realized including MAB. The authors of [118] presented an EM based
on the differential evolution algorithm, developed in JADE (Java Agent Development
Environment) for grid outage. The proposed MAB approach showed its efficiency in
minimizing the load’s uncertainty as well as the generation costs from the intermittent
nature of RES generation. The approach also considered the price variation in the utility
grid, and the critical loads were considered while selecting the best solution. The authors
of [119] proposed a fault-tolerant multi-agent control approach for coordinated energy
and comfort management in integrated buildings and MG systems. Several cooperative
agents were presented and trained in order to reach a global coordination, to satisfy related
constraints, and to meet the system’s objectives. The integrated buildings and MG systems
were mathematically formulated as a multi-objective optimization problem, which was
solved under different operating conditions. Other interesting research works, which have
considered the MAB control approaches for EM in MG systems, are presented by the
authors of [120–122]. Multi-agent systems offer the opportunity to implement more than
basic control. They have three key features, namely reactive, proactive, and social abilities.
From their characteristics, the agent technology is promising for the implementation of
flexible, scalable, and distributed systems [123,124]. The usage of MAB method is rapidly
growing in power systems, especially for EM in MG systems. MABs, combined with
system modeling, make the arrangements of MG units autonomously directed making
the scheme more intelligent and protective. The deployment of MAB control in the MG
system considers each agent as an intelligent unit, which can communicate with their
neighboring agents in a collaborative way to determine future control actions to achieve the
common objective. The communication with neighboring agents requires the deployment
of advanced ICTs in order to benefit from the advantage of such approaches.

Ant Colony Optimization (ACO) is one of the more commonly used methods for EM
in MG systems due to its flexibility for specified constraints, low computational time and
complexity, and ease of implementation. This classical method is inspired by the behavior
of real ants to search for good solutions to a given optimization problem. It is a simple
computational agent that converts the optimization problems into the problems of finding
the shortest path on a weighted graph. The authors of [125] used an AOM method for EM
in demand side management. The authors first designed an EM controller model using
multiple knapsack problem and applied an ACO approach to obtain a viable solution for
the designed objective function. By simulation. the authors attempted to justify that the
ACO works efficiently in terms of electricity bill reduction and the minimization of peak-
to-average ratio while considering user satisfaction. Another ACO method was developed
by the authors of [126], who investigated a combined cost optimization scheme in order to
minimize both operational cost and emission levels while satisfying the MG’s load demand.
The proposed technique was compared with two other techniques, Lagrange and Gradient,
to evaluate the proposed method performance. Mainly, other optimization methods based
on AI have been used in the literature for EM and optimization problems. Particle Swarm
Optimization was presented by the auhors of [127] for EM fuzzy controller design in dual
source propelled electric vehicles. A systemic analysis of the power in energy storage was
established by a mathematical model of EM problem.

Despite the efficiency of the abovementioned methods, still real-time and predictive
control approaches are required for intelligent energy management in smart MG systems.

3.2.5. Other Interesting Approaches

One of the more interesting approaches for EM is proactive control. The principal
of this approach is a mixed-integer optimal control problem that can be presented as a
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mixed-integer nonlinear programming problem [128]. The problem consists of finding
optimal rules for a set of binary and continuous control variables that minimize the future
predictable cost of the system over the time horizon. The proactive control is an “operation-
oriented measures” scheme that makes the system capable of dealing with the unfavorable
condition for the system operation. The authors of [129] presented an MG proactive
control approach to manage the adverse impacts of extreme windstorms. When alerts were
received for the forecasted windstorm, the approach found a conservative schedule of MG
with the minimum number of vulnerable branches in service while the total load was served.
The conservative schedule ensured the MG normal operation prior to the windstorm while
reducing the MG vulnerability at the event arrival. This method increased the benefits
for generation reschedule, conservation voltage regulation, network reconfiguration, and
optimal parameter settings of droop-controlled units. The authors of [130] discussed unified
resilience evaluation and the operational enhancement approach, including a procedure for
assessing the impact of severe weather on power systems. The proposed approach aimed
to mitigate the cascading effects that may occur during weather emergencies. Another
work, presented by the authors of [131], studied the installation of a battery energy storage
system with a PV system in a hierarchical trans-active EM approach in order to reduce
consumer’s electricity bills. A cost-benefit analysis approach was developed for proactive
houses which combined PV units and battery storage systems. The developed control
algorithm controlled the charge/discharge cycle of the battery based on an economic
benefit analysis in real-time electricity rate and battery cost to give an exact idea of returns
and yearly savings to consumers on their investment. The performance of this method
can be enhanced when a proactive system is managed using predictive approaches. The
authors of [101] compared reactive feedback control and Model Predictive Control in terms
of energy consumed, energy error, and management effort for a given data center. The
work proposed a feedback control strategy based on the data center model in order to
optimize the quality of service, the energy consumed, and the management effort. It is
perceived from the literature that the concept of proactive control for energy management
in MG systems is rarely used. The concept is very interesting for control-based predictive
decisions. Due to the development of information and communication technologies,
especially microcontrollers, proactive control can be improved in future researches for EM
in MG systems. The method is capable of making the system more preferment with the
existing disturbances system operation.

Another interesting control approach is the FL. Like neural networks, the FL method
is considered as one of the nonlinear techniques that are used for power regulation with
power electronics-based converters. This intelligent control consists of a fuzzifier, rule
evaluator, and a defuzzifier, while a set of rules known as rule-based and database is
considered for the control strategy deployment. Mainly, the FL method is used to control
space vector PWM based three-phase rectifier and is used with intelligent techniques-based
Droop-Control to manage multiple distributed energy DC-MG systems [132]. For instance,
the authors of [133] proposed a voltage control technic using an FL-based centralized
controller with gain scheduling control for DC-MG with an electric-double-layer-capacitor
as energy storage. A fuzzy-based control strategy, proposed by the authors of [134,135],
is capable of determining small voltage and frequency steps regulations to improve the
performance of Droop-Control by diminishing the mismatch in the common bus without
heavy communication links. This work considered the frequency and voltage as uncoupled
variables and then corrected each one separately by considering that the voltage is a local
variable and the frequency is a global variable of the system. The proposed fuzzy method
changed the frequency and the voltage reference value in the droop equation of the Voltage
Sources Inverters to correct its variation. The authors of [102] used FL and a metaheuristic
algorithm known as Grey-Wolf optimization to optimize the interconnection between
multiple MG systems. The main aims of this method were to minimize both the costs
for the generator units and the emission levels of the fossil fuel sources. Several works
have studied the use of FL for energy management in MG systems. The authors of [136]
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deployed a mode transition strategy to smooth the mode variation and a fuzzy controller
was used to determine the operation mode of coupled MG system with 20 different grid-
connected and standalone MG systems. The FL was also considered as a deterministic
algorithm for frequency and voltage regulation in both primary and secondary control
levels and was characterized by low computational cost and easiness of implementation.
In the literature, FL is the most deterministic approaches used together with PI controller.
Some FL methods can be classified as AI methods.

4. Comparison of Control Approaches for MG Systems

The choice of an EM approach is an essential requirement for the reliable and stable
operation for MG system. Depending on the characteristics of the deployed system (e.g.,
topologies, operation modes, structure), an EM can be selected. However, the deployment
of an approach does not signify that the others are not reliable, and the studied constraints
and the fixed objective of the control strategy are the main issue in order to identify
the utility of the deployed method. In the rest of this section, the advantages and the
disadvantages of different control techniques are presented (see Table 4).

Table 4. Brief comparison of control approaches.

Control Approach Application Advantage Disadvantage

Model predictive
control [85,137,138]

• Reliable for power
sharing between MG
and the utility grid

• Hybrid AC/DC
coupled MG

• Robust against uncertainty
• Power smoothing
• Multiple control objective and

constraint functions are
implemented for the same
control strategy

• Optimal control

• Requiring the use of advanced
ICTs

• Control parameters
information should be defined
in advance

Adaptive droop
[139,140]

• Hybrid system of RESs
• Parallel DC/DC

converter
• Heavy loading

conditions

• The different operation modes
eliminate the overload
conditions between generator
unites, storage devices, and
utility grid;

• Minimizing circulating current.

• Difficult to select the proper
voltage levels

• Generating interconnection
resistances between the
installed converter and
requiring information about
the DC bus

• Control parameters should be
known in advance.

Artificial neural
networks [141,142]

• Distributed power
generation units

• Multiple MG system
interconnection

• The approach can control,
optimize, and identify the
system’s parameters in online or
offline applications

• Solve problems with nonlinear
data approaches in large-scale
systems in MG

• Solve the system’s stability and
fault tolerance via self-learning
and prediction

• Complexity of the model
structure

• Experimental interpretation of
the model is difficult (black
boxes)

• Difficult to determine the best
network structure in case of
adding or raising units from
the MG topology

• Possibility only on stable
system structure

Distributed
cooperation

control [143–145]

• The control is optimal
for DC-MG system

• Improving voltage
levels for DC-MG

• Flexible, robust, and, extensible
• Optimal coordination control

and improved voltage profile

• Less security for the
communication system

• Frequency response nature
cannot be visualized
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Table 4. Cont.

Control Approach Application Advantage Disadvantage

Conventional
droop [146,147]

• Reliable for DC-MG
• Linear loads
• Inductive transmission

lines

• Easy implementation for the
primary control

• Voltage regulation is not
ensured

• The voltage drops across the
bus resistance, causing a
current sharing degradation

• Active and reactive power
bandwidth variation of the
controllers affects the voltage
and frequency controls

FL based control
[148,149]

• Reliable for primary
control

• Voltage and frequency
regulation

• Improved voltage and frequency
regulation and power sharing
for multiple MG

• Requiring a high processing
unit

• Errors methods adopted for
the participation function and
time-consuming process

Multi-agent-based
control

[123,150,151]

• Distributed power
generation units

• Multiple MG system
interconnection

• The group of agents can address
larger problems than any
individual is capable to do in
MG system

• Redundancy and economies of
large scale

• The ability to meet global
constraints

• Flexibility to work in uncertain
environments under unforeseen
conditions

• Potential for conflicts; need for
increased agent sophistication

• Short term benefits may not
outweigh organization
construction costs for the
installed MG systems

• Requiring a high connectivity
between agents and the LC

• The agent should operate at
the same parameters of the
other agents, especially for
voltage and frequency
regulation

A good approach must consider the stochastic nature of different control parameters,
the installation cost, the components lifetime, the distributed resources, and the reliable
and safety operation of the MG system. In fact, the deployment of an EM control strategy
requires the classification of the whole system into different levels, while each level should
operate by coordinating with the other levels from the sources (e.g., maximum power
point tracking) to the end consumers, which can be a local consumer or a neighboring
MG consumer. Nowadays, smart components are installed for each source and for each
MG system, which can cooperate between them due to the new ICTs. Especially, the
actual inverters can execute different control strategies from the source power regulation
to the interconnectivity to the utility grid or to the neighboring MG. In addition, the
inverters can be installed for a large scale of MG systems, creating a cluster of data and
electricity exchange, while these inverters could be connected to the internet in order to
store the historic data in the cloud. Mainly, the main objective function for each inverter is
ensuring continuous power supply to the consumers without considering the lifetime of
the battery storage system or the cost of electricity. In this context, the development of an
EM control strategy that considers the electricity price variation and minimizes the battery
C/D cycle is required. These two issues allow the maximization of the system profitability
by minimizing the electricity bill and avoiding a frequent replacement of battery storage in
a MG system. The main idea is to develop an intelligent and predictive control strategy
that can optimally control the distributed resources in the MG by considering multiple
constraints and objective functions at the same time.
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5. State of the Art Synthesis and Our Contribution

Control strategies generally use single-objective function procedures (e.g., maximizing
the quality of the services). Without considering different operating constraints, these
procedures are easier to implement and to deploy in real-sitting scenarios. Moreover,
control strategies, which take into consideration only the energy availability within MG
components (e.g., energy sources, storage devices, traditional electric grid), could be
implemented by simple algorithms. These algorithms implement procedures that switch, at
each time, from RES either to storage devices or to the TEG. For instance, actual commercial
inverters are able to efficiently manage the interconnection between RESs, energy storage
systems, and the utility grid by incorporating a single-objective function. In particular,
the MG system’s EM takes into consideration only the availability of the electricity for
being supplied to buildings loads. The inverter can use either batteries or the utility grid
once without taking into account other parameters, such as the actual electricity cost as
well as battery C/D cycles. However, in a limited time, high battery C/D cycles could
decrease their performance, which impact on the profitability of the system. In other cases,
controllers can interact with energy sources generators (e.g., solar, wind) in real-time in
order to limit the power generation (LPPT). The aim is to ensure the quality of the electrical
services (e.g., frequency, voltage), and consequently, to minimize the profitability of MG
system’s components. Despite their advantages, they could have negative impacts on the
batteries’ lifecycle and system’s profitability. Therefore, context-awareness principles and
predictive analytics could be exploited for developing context-driven control approaches.

The current state of knowledge aims to develop context-driven control approaches for
the energy management of MG systems in the context of smart buildings. Mainly, a pre-
dictive control approach, named MAPCASTE (Measure, Analyze, Predict, foreCAST, and
Execute) [37], is developed and deployed in real-sitting scenarios for energy management
in MG systems (see Figure 9). Unlike the control approaches from literature, MAPCASTE
considers multiple-objective functions, which take into consideration battery C/D cycles as
well as electricity price forecasting [37]. The main aim is to ensure, in an optimal way, the
continuous electricity supply from different installed sources (e.g., RESs, batteries, TEG) to
building’s services. The proposed approach is based on predictive control models, which
are able to generate a sequence of future control actions over a prediction horizon.
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However, in order to carry out the MAPCASTE, several forecasted inputs values are
required, mainly the power production/consumption and batteries SoC. This requires
an advanced metering infrastructure, which makes it possible to measure and predict all
inputs values. Therefore, an MG was deployed together with an IoT/Big data platform
in order to conduct experiments and validate developed models. The deployed MG
system contains RESs and battery storage systems, which are connected together with
the TEG in order to supply the electrical energy to the building’s loads (e.g., lighting,
ventilation). The IoT/Big data platform was developed and deployed in order to allow
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measuring and forecasting RESs power generation, loads consumption, and batteries
SoC. Sensing/actuating components with a control card are installed in order to monitor
and manage the whole MG system, offering the possibility to test the developed control
techniques in real context [37,152]. Moreover, based on this review, ongoing works focus
on the development of smart converters. In fact, the actual commercial inverters offer the
possibility to manage the power flows between different power sources, loads, energy
storage systems, and utility grids with high performance. However, these inverters are
limited generally to a single-objective function, the satisfaction of the load demand, without
considering other operating constraints, such as the electricity price and the battery state of
health. Moreover, the integration of new IoT/Big-data technologies to the actual inverter
has improved the performance of the system to control and predict the suitable actions
for EM and control. Mainly, the integration of machine-learning algorithms is required
to analyze the data and to predict the actions for EM in MG systems. In this way, the
development of smart inverter has enhanced the possibility to integrate multiple-objective
functions and operating constraints that can be integrated in the EM approaches. Therefore,
the deployment of predictive control strategies in real scenarios requires the use of open-
access power converter. For that, we are deploying our proper power inverter in order
to have the ability to conduct real testing of predictive control strategies with specific
constraints and multiple-objective functions. The deployment of smart inverter offers
the possibility to create MG networks using IoT/Big-data technologies. In this context, a
platform for MG2MG energy and data exchange will be developed based on the predictive
control deployed in the smart inverters.

6. Conclusions

The energy management and optimization control in MG systems are becoming a
multiple-objective “management/optimization” function to be satisfied by solving simulta-
neously technical, economic, and environmental problems. Therefore, several approaches
(e.g., exact, stochastic, and predictive) have been proposed for energy management. These
approaches were chosen based on their practicality, reliability, and resource availability
in MG environment. This work reviewed recent research work related to EM in MG sys-
tems. In particular, we focused on different control approaches that have been proposed to
efficiently operate MG systems, including centralized, decentralized, and hierarchical man-
agement structures. A comprehensive description of control and optimization methods was
highlighted, particularly to identify the most common and effective method for EM in MG
systems. Predictive control was a good candidate, since it integrates optimal control and
multivariable processes and is a flexible control scheme that allows the easy inclusion of
system constraints and optimization functions. It is robust against uncertainty and power-
smoothing problems. Thus, multiple control objective and constraint functions can be
implemented for the same control strategy. However, despite the power of these predictive
control techniques, their deployment in real-sitting scenarios requires a holistic platform
that integrates MG components together with all equipment for measuring and predicting
important input data. With recent technological advances in microprocessors, data analysis,
and machine learning, predictive control can be seen as a promising alternative for energy
management in MG systems.
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