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Abstract: In a motor control system, the parameters tuning of speed and position controller depend
on the value of the moment of inertia. A new moment of inertia identification scheme for permanent
magnet motor system was proposed in this paper. This is an extension of the existing acceleration
deceleration methods, which solves the large moment of inertia identification error caused by variable
angular acceleration, large calculation error of inertia torque, and large measurement noise in the
acceleration process. Based on the fact that the angular acceleration is not constant and the sampling
signal is noisy, the integral chain differentiator was used to calculate the instantaneous angular
acceleration at any time and suppress the sampling signal noise at the same time. The error function
with instantaneous angular acceleration and inertia torque as parameters was designed to estimate
the moment of inertia. In order to calculate the inertia torque accurately, viscous friction torque was
considered in the calculation of inertia torque, and Kalman filter was used to estimate the total load
torque to solve the problem of under rank of motor motion equation. Simulation and experimental
results showed that the proposed method could effectively identify the moment of inertia in both
noisy and noiseless environments.

Keywords: permanent magnet synchronous motor; moment of inertia; parameter identification;
Kalman filter; integral chain differentiator

1. Introduction

Permanent magnet synchronous motor (PMSM) has been widely used in various
industrial applications because of its high power density, high efficiency, and small size.
To improve the performance of the PMSM control system, it is necessary to tune the
parameters of the controller with the value of the moment of inertia. However, system
parameters are unknown in many motion control applications. For example, the value of
inertia converted to the motor shaft may change with the weight of goods when the robotic
arm carries goods according to command. If the prior knowledge of the moment of inertia
can be obtained and applied to the design of the control system, the dynamic and steady
performance of speed and position control will be improved.

According to whether the moment of inertia is identified in real time when the mo-
tor is running, the identification methods can be divided into on-line identification and
off-line identification. Due to the under rank of the motion equation, the identification
of the moment of inertia depends on the value of the total load torque. However, both
the moment of inertia and the total load torque may be time-varying in the actual op-
eration process. In order to realize the on-line identification of the moment of inertia,
two algorithms are usually designed to estimate the moment of inertia and the total load
torque, respectively. For example, [1] used the least square method and Kalman filter to
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estimate the moment of inertia and total load torque, respectively. In order to improve the
identification accuracy, [2] applied the fixed-order empirical frequency-domain optimal
parameter estimation method and Gopinath method to identify the moment of inertia and
total load torque respectively, but the calculation burden of this method is large. In [3],
the disturbance observer was used to estimate the disturbance torque and the estimated
value was applied to the moment of inertia identification. This method has good perfor-
mance while it has a long convergence time. Based on the principle of observer, a full
order state observer and a reduced order extended Luenberger observer were designed
respectively in [4] to estimate the total load torque and moment of inertia. The idea of
this method is simple, but the design of the reduced order extended Luenberger observer
is relatively complex. For [1–4], in the identification process, the identification values of
moment of inertia and total load torque should be transferred and iterated repeatedly in
the two algorithms, and eventually, both the identification values converge. However, the
algorithms converged slowly because the identification values of the moment of inertia
and total load torque depend on each other. Thus, two improved methods appear. The
first is to use one parameter identification algorithm to identify both the moment of inertia
and the total load torque [5–7], but this method increases the complexity of the algorithm.
For example, in [5], the Kalman filter is used to estimate the moment of inertia and total
load torque simultaneously. When the moment of inertia is regarded as the state variable,
the system’s state transition equation is nonlinear. In this case, it is necessary to apply the
Taylor formula to approximate linearization of the nonlinear equation before applying
Kalman filter theory to identify the moment of inertia and total load torque, which increases
the complexity of the algorithm and the amount of calculation. In [6], an adaptive law for
total load torque identification is needed when the Landau algorithm is used to estimate
the moment of inertia and total load torque simultaneously, which increases the complexity
of the algorithm. Compared with [5] and [6], when the least square method is used to
estimate the moment of inertia and total load torque simultaneously in [7], it only needs
to change the dimension of each matrix and vector in the algorithm, so the design and
implementation of this method are easier. The second is to apply mathematical methods to
first eliminate the total load torque item or make the load torque zero in the moment of
inertia identification algorithm, and then estimate the moment of inertia, separately [8,9].
Since the method described in [8] cannot identify the total load torque, it is unable to make
total load torque feedforward compensation. In [9], the motor was required to operate
with zero load torque so that the application range was limited. The on-line identification
method can realize real-time parameter estimation, which is conducive to the real-time
parameter tuning of the control system. However, the on-line method is usually used in the
case of time-varying inertia. When the running time at a certain inertia value is very short,
the data used for estimation are often less and contain a lot of noise, which may lead to low
identification accuracy. For the on-line identification algorithms with long convergence
time, if the transient process time is short, the identification algorithm may not converge
to the final value. In addition, for some specific on-line identification methods, there are
certain requirements for the speed reference signal. For example, in [3], the speed signal
must be a periodic varying signal.

The off-line identification method usually takes the total load torque as a known value
or eliminates the total load torque term in the expression of inertia identification value
to identify the moment of inertia separately. The most widely used off-line identification
method is the traditional acceleration deceleration method [10]. It identifies the moment
of inertia when the motor accelerates with constant electromagnetic torque. The principle
and experimental conditions are simple. However, in this method, the variable angular
acceleration is assumed to be a constant, the viscous friction torque and Coulomb friction
torque are ignored, and the experimental data are affected by the measurement noise.
Therefore, the accuracy of this method is limited. In order to improve the identification
accuracy, [11] proposed an improved acceleration deceleration method, which uses a
uniform speed change process to replace the non-uniform speed change process in a
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small time scale. This improves the identification accuracy of the moment of inertia. In
addition, [12] used the periodic sine wave position signal as the reference input, and used
the motor’s reference torque input and the motor rotor position information to calculate
the moment of inertia value, but this algorithm takes a long time to converge.

Compared with on-line identification, off-line identification methods can obtain
enough experimental data and can deal with the noisy data. Therefore, when the mo-
ment of inertia and total load torque are unchanged during the motor operation, off-line
methods are more accurate than on-line methods. In addition, the experimental conditions
of the off-line identification methods are relatively simple. In [10,11], the velocity and elec-
tromagnetic torque data are used to identify the moment of inertia during one acceleration
process. [13] used the particle swarm optimization algorithm to realize parameter identifica-
tion, and [14] added learning strategy to the particle swarm optimization algorithm, which
improved the adaptability and reliability of the algorithm. A new optimization algorithm
that was easy to implement and had good accuracy was proposed in [15]. The methods
shown in [13–15] have simple experimental conditions and high accuracy of parameter
identification, but it needs to carry out separate subsequent processing for the sampled
data, which has low practicability. Based on the characteristics of the off-line identification
methods, these identification methods are mainly used to measure the nominal value of
the motor’s moment of inertia, control the motor’s constant inertia running process, and
provide the initial value of the moment of inertia for the on-line identification methods.

Taking off-line identification as the research focus, since the equation is established by
replacing the instantaneous angular acceleration with the average angular acceleration in
a certain period of time, the calculation of the inertia torque (the product of the moment
of inertia and the angular acceleration) ignores the viscous friction torque, and sampled
data are affected by measurement noise. It is difficult to improve the accuracy of inertia
identification. Aiming at the above problem, the old idea in the existing acceleration
deceleration methods, replacing a non-uniform speed change process with a uniform
speed change process, was discarded in this paper. Instead, the instantaneous angular
acceleration and inertia torque were solved at several moments directly to establish the
error function. The estimated value of the moment of inertia can be obtained by optimizing
the error function. The viscous friction torque is considered when calculating the inertia
torque. Furthermore, in order to reduce the influence of measurement noise on the moment
of inertia identification, this paper used an integral chain differentiator (ICD) to obtain the
electromagnetic torque and angular velocity signals after noise suppression while solving
the angular acceleration at any time. Since the motor motion equation is under rank, a
Kalman filter (KF) was employed to estimate the total load torque and the estimated value
was applied to the identification of the moment of inertia.

2. Error Analysis of Existing Methods and the Identification Strategy Proposed in
This Paper
2.1. Error Analysis of Existing Acceleration Deceleration Moment of Inertia Identification Methods

2.1.1. Traditional Acceleration Deceleration Moment of Inertia Identification Method

The motion equation of the motor can be expressed by Equation (1):{
Te = Jm

dω
dt + Bmω + Tm

Tm = sgn(ω)Cm + TL
(1)

where Te/Nm, TL/Nm, and Tm/Nm are the electromagnetic torque, load torque, and total
load torque, respectively; Jm/kg m2 is the moment of inertia converted to the motor shaft;
ω/rads−1 is the motor angular velocity; Bm/(Nms/rad) is the viscous friction coefficient;
Cm/Nm is the Coulomb friction torque; t/s is time variable; and sgn is the sign function.

The premise of the traditional acceleration deceleration method for identification is
to ignore the viscous friction torque and Coulomb friction torque of the motor under the
condition of the motor with no load or the load torque is known. Setting the appropriate



Energies 2021, 14, 166 4 of 23

electromagnetic torque limit value, the electromagnetic torque reaches the limit value and
is maintained during the speed increasing process of the motor. During the acceleration
process, the motor can be regarded as rotating with constant acceleration approximately.
By measuring the angular velocity variation over a period of time, the motor’s moment
of inertia can be calculated using the motor’s motion equation, and it can be expressed as
Equation (2):

Ĵm =
(Te − TL)∆t

∆ω
(2)

where Ĵm/kg m2 is the identification value of the moment of inertia; ∆t/s is the time
length of the calculation interval selected in the acceleration process; and ∆ω/rads−1 is the
angular velocity variation within ∆t.

The error analysis is performed below. Suppose the direction of rotation of the motor
is unchanged, and the load torque is the resistance torque. The starting and ending time of
∆t are t1/s and t2/s, respectively, and satisfying ∆t = t2 − t1. Integrate the time variable on
both sides of Equation (1) in the interval (t1, t2). Equation (3) can be obtained.∫ t2

t1

Tedt = Jm

∫ t2

t1

dω + Bm

∫ t2

t1

ωdt+
∫ t2

t1

(Cm + TL)dt (3)

Since the electromagnetic torque does not change during the acceleration process, we
can obtain Jm from Equation (3) as Equation (4):

Jm =
(Te − TL)∆t− Cm∆t− Bm

∫ t2
t1

ωdt

∆ω
(4)

Record the moment of inertia identification error as Equation (5):

eJ =

∣∣Jm − Ĵm
∣∣

Jm
(5)

From Equations (2), (4) and (5), the inertia identification error of the traditional
acceleration deceleration method is shown in Equation (6):

eJ =
Cm∆t + Bm

∫ t2
t1

ωdt

Jm × ∆ω
(6)

According to the mean value theorem of integral, Equation (6) can be expressed as
Equation (7): 

eJ =
Cm∆t+Bmωξ ∆t

Jm×∆ω =
Cm+Bmωξ

Jm×∆ω/∆t

ωξ =

∫ t2
t1

ωdt
∆t

(7)

where ωξ/rads−1 is the angular velocity value at a certain time between t1 and t2 deter-
mined by the Mean Value Theorem of Integral.

It can be seen from Equation (7) that under ideal conditions, the identification error of
the traditional acceleration deceleration method is related to viscous friction coefficient,
Coulomb friction torque, and ∆t. The identification error increases with the increase in
the viscous friction coefficient and Coulomb friction torque. Theoretically, as the viscous
friction torque increases during the acceleration process, the angular acceleration gets
smaller and smaller. Therefore, after the initial time t1 of ∆t is determined, the smaller ∆t
is, then the smaller the value of ωξ , and the larger the value of ∆ω/∆t, the identification
error eJ is smaller. Therefore, ∆t should take smaller value. However, in the experiment,
due to the influence of measurement noise and various interferences, too small value of ∆t
will increase the identification error. Therefore, ∆t should be selected reasonably.
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2.1.2. Improved Acceleration Deceleration Moment of Inertia Identification Method

In light of the shortcomings of the traditional acceleration deceleration method, an
improved acceleration deceleration method was proposed in [11]. Select two running
processes when the motor rotates in the same direction, and the duration of each running
process is ∆T. The variation of angular velocity in two ∆T is not equal. The two operation
processes of the motors in two ∆T are divided into n segments, respectively. It is assumed
that the motor angular acceleration is constant in each small period of time ∆T/n. In this
paper, the motor rotates with constant velocity in the first ∆T.

For the motor running process given in Figure 1, there is the following expression in
the second time period ∆T.

Te2(1)− Tm = Jm(ω21 −ω20)n/∆T
Te2(2)− Tm = Jm(ω22 −ω21)n/∆T

...
Te2(n)− Tm = Jm(ω2n −ω2(n−1))n/∆T

(8)

where Te2(i)/Nm and ω2i(0 < I < n)/rads−1 are the electromagnetic torque and angular
velocity of the i-th sampling point in the second ∆T/s; ω20/rads−1 and ω2n/rads−1 are the
starting and ending angular velocity of the second ∆T, respectively. From (8), Equation (9)
can be obtained.

1
n

n

∑
i=1

Te2(i)− Tm = Jm(ω2n −ω20)/∆T (9)

Figure 1. Schematic diagram of the improved acceleration deceleration method.

Similarly, in the first ∆T, Equation (10) can be obtained as

1
n

n

∑
i=1

Te1(i)− Tm = Jm(ω1n −ω10)/∆T (10)

where Te1(i)/Nm is the electromagnetic torque of the i-th sampling point in the first ∆T;
ω10/rads−1; and ω1n/rads−1 are the starting and ending angular velocity of the first ∆T.

Eliminate the term of total load torque by Equations (9) and (10), and the expression
of moment of inertia is obtained as Equation (11):

Ĵm =

(
n
∑

i=1
Te1(i)−

n
∑

i=1
Te2(i))∆T

(ω1n −ω10 −ω2n + ω20)n
(11)
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In (11), Te and ω are calculated according to Equation (12):
Te = 1.5p(ψdiq − ψqid)
ψd = Ldid + ψf
ψq = Lqiq
ω = nrπ/30

(12)

where p is the number of pole-pairs of the motor; Ld/H and Lq/H are the inductance of
d-axis and q-axis, respectively; ψd/Wb and ψq/Wb are the flux linkage of the d-axis and
q-axis, respectively; id/A and iq/A are the current of d-axis and q-axis, respectively; ψf/Wb
is the rotor flux linkage; and nr/rmin−1 is the motor speed.

In order to reduce the influence of the variable acceleration of the motor, the idea of
improving the acceleration deceleration method is to segment the variable acceleration
motion process (2n segments in total). In the small time scale ∆T/n, acceleration is assumed
to be constant, and the influence of the total load torque on the identification result is
eliminated by combining Equations (9) and (10). However, it should be noted that the idea
of the improved method is still to replace the angular acceleration at a certain time by the
average angular acceleration in a period of time, and the viscous friction torque is ignored
in the calculation of inertia torque. Thus, there was still an error in the identification result.
The error analysis is as follows.

Theoretically, the electromagnetic torque value of the motor is invariant during two
∆T. Therefore, Equation (11) can be expressed as Equation (13):

Ĵm =
(Te1 − Te2)∆T

∆ω1 − ∆ω2
(13)

where Te1/Nm and Te2/Nm are the electromagnetic torques corresponding to the first and
second ∆T, respectively; ∆ω1 = ω1n − ω10; ∆ω2 = ω2n − ω20. Since the motor in the first
∆T rotates at a constant speed, Equation (14) can be obtained as{

∆ω1 = 0
Te1 = Bmω10 + Tm

(14)

By substituting Equation (14) into (13), Equation (15) can be obtained as

Ĵm =
(Te2 − Bmω10 − Tm)∆T

∆ω2
(15)

In the second ∆T, from Equation (4), Equation (16) can be shown as

Jm =
(Te2 − Tm)∆T − Bm

∫ t2n
t20

ω2dt

∆ω2
(16)

where t20/s and t2n/s are the starting and ending moments of the second ∆T, respectively,
satisfying ∆T = t2n − t20; and the angular velocity in the second ∆T is ω2/rads−1.

From Equations (15) and (16), the identification error expression of the improved
acceleration deceleration method can be expressed as Equation (17):

eJ = Bm

∫ t2n
t20

ω2dt−ω10∆T

Jm × ∆ω2
(17)

In the second ∆T, as the viscous friction torque increases gradually and the angular
acceleration decreases gradually, the angular velocity curve with time is convex, which
satisfies Equation (18):

ω2n + ω20

2
∆T ≤

∫ t2n

t20

ω2dt (18)
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By substituting (18) into (17), Equation (19) can be obtained as

eJ ≥
1
2 (ω2n + ω20)−ω10

Jm × ∆ω2
Bm∆T (19)

Since ω20 ≥ ω10 > 0, and ω2 ≤ ω2n within (t20, t2n), Equation (20) is possible to be
obtained as  eJ ≥

1
2 (ω2n+ω20)−ω20

Jm×∆ω2
Bm∆T = 1

2Jm
Bm∆T

eJ ≤ Bm
(ω2n−ω10)∆T

Jm×∆ω2
= Bm∆T

Jm
+ Bm(ω20−ω10)

Jm×∆ω2/∆T

(20)

From Equation (20), the upper and lower bounds of the identification error are related
to the viscous friction coefficient and the value of ∆T. After the determination of t20, the
smaller the ∆T, the greater the ∆ω2/∆T, then the eJ is smaller. Therefore, the value of
∆T should be smaller. However, if ∆T is too small, the identification value will be more
significantly affected by noise and various disturbances. Therefore, the value of ∆T should
be selected reasonably. In addition, the number of segments n of ∆T should also be taken
as an appropriate value.

2.1.3. Simulation Verification of Error Analysis

In order to verify the correctness of the error analysis, a simulation model was built in
MATLAB/Simulink. The main parameters of the motor used in the simulation are shown
in Table 1.

Table 1. Parameters of the motor.

Parameter Quantity

Rated Power 6 kW
Rated Torque 192 Nm
Rated Speed 300 r/min

Rated Current 11.8 A
Number of pole-pairs 8

Stator resistance 0.76 Ω
Stator inductance 13 mH

Moment of inertia (with loading motor) 0.97 kg m2

The initial reference speed was set to 50 rmin−1 (5.24 rads−1) and the reference speed
changed to 250 rmin−1(26.18 rads−1) at 0.3 s. The load torque was set to 50 Nm. Start
with load and the electromagnetic torque limit was set to 90 Nm. Bm = 0.1645 Nms/rad,
Cm = 3.986 Nm. The variation curve of electromagnetic torque and angular velocity is
shown in Figure 2.

Figure 2. Simulation waveform when Bm = 0.1645, Cm = 3.986.
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In the traditional acceleration deceleration method, t1 is 0.4 s; in the improved acceler-
ation deceleration method, t10 was 0.2 s and t20 was 0.4 s. Under the condition of different
values of Bm, Cm, ∆t, and ∆T, identification value and identification error were calculated.
The results are listed in Table 2.

Table 2. Comparison of the simulation results of identification value and identification error.

Parameter Value Method ∆t(∆T)/s ^
Jm/kg m2 eJ/%

Bm = 0.1645 Conventional
0.1 1.1461 18.15
0.2 1.1564 19.22

Cm = 3.986 Improved 0.02 0.9817 1.21
0.1 0.9902 2.08

Bm = 0 Conventional 0.1 0.9806 1.09

Cm = 0 Improved 0.02 0.9666 0.35

Bm = 0 Conventional 0.1 1.0905 12.42

Cm = 3.986 Improved 0.02 0.9639 0.63

In Table 2, the data in rows 5 and 7 showed that when Bm was zero, the identifica-
tion error increased with the increase of Cm, so Cm was one of the factors affecting the
identification error of the traditional acceleration deceleration method. The data in rows
1 and 7 showed that when Cm was the same, the identification error increased with the
increase of Bm, so Bm was also a factor increasing the identification error of the traditional
method. The data of rows 6 and 8 showed that when the value of Bm was the same but the
value of Cm was different, the difference in the identification value of the improved method
was only 0.0027 kg m2, so the influence of Cm on the identification error of the improved
acceleration deceleration method was very small. At the same time, the data of rows 3 and
8 showed that the identification error increased with the increase of Bm when the value of
Cm was the same, so Bm was the main factor affecting the error of the improved method.
In addition, from the first four rows of data in Table 2, it can be seen that regardless of
the traditional or improved method, once the starting time of ∆t(∆T) is determined, the
identification error increased with the increase of ∆t(∆T).The above results confirmed the
previous analysis about the influence of Bm, Cm, ∆T, and ∆t on the identification error.

It can be found from the simulation results that when Bm = Cm = 0, the identification
error of the traditional method and the improved method was not strictly zero. The reason
is that the electromagnetic torque is not strictly constant, the rounding error exists, and
the simulation step size is not infinitely small. For the improved acceleration deceleration
method, the error of identification result is smaller, so it is more easily affected by the
above factors.

2.2. Moment of Inertia Identification Based on ICD and KF
2.2.1. Method Principle

Through the introduction of the existing methods in Section 2.1, it can be found
that the improved acceleration deceleration method eliminated the influence of Coulomb
friction torque on the identification result. By replacing the non-uniform speed change
process with the uniform speed change process in a small time scale, the influence of
angular acceleration on the identification result is reduced. However, according to (8), it
can be found that the idea of the improved acceleration deceleration method is to establish
the equation through the relationship among the inertia torque, the moment of inertia, and
angular acceleration. Combined with the error analysis in Section 2.1, the error causes of
the improved acceleration deceleration method can be summarized as follows.

(1) The viscous friction torque is not considered when solving the inertia torque at a
certain moment, which leads to the error in the calculation value of the inertia torque;
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(2) The angular acceleration is not constant when the motor speeds up. However, in (8),
the angular acceleration corresponding to the inertia torque at a certain moment is
not the instantaneous angular acceleration at that moment but the average angular
acceleration in ∆T/n. This will also bring error to the identification of the moment of
inertia. Combined with (1), why the identification error of this method in Section 2.1
is related to Bm and ∆T can be realized, intuitively;

(3) In the experiment of the moment of inertia identification, there is a lot of noise in the
sampling signal, which will affect the result of moment of inertia identification.

In light of the shortcomings of the above acceleration deceleration method, the identi-
fication accuracy of the moment of inertia was improved from three aspects in this paper.
First, viscous friction torque is considered in the calculation of inertia torque. Second, the
instantaneous angular acceleration of several moments can be calculated by the integral
chain differentiator. Thus, it is avoided to replace the instantaneous angular acceleration
at a certain time with the average angular acceleration in a certain period of time. Then,
the error function is constructed with the principle of the least square sum of errors, and
the moment of inertia is solved by optimizing the error function. Third, the integral chain
differentiator is used to suppress the noise in the sampling signal so as to reduce the
influence of measurement noise on the identification results. The schematic diagram of the
identification method is shown in Figure 3.

Figure 3a shows the experimental process of the proposed moment of inertia identifi-
cation method. ωref1 and ωref2 are the reference values of angular velocity in steady-state
operation before and after speed increase, respectively. tb and tc are two different moments
in the acceleration process, and the angular velocities at the corresponding time are ωs1
and ωs2, respectively. Figure 3b shows the identification process of the moment of inertia,
Tef and ωf are electromagnetic torque and angular velocity signals obtained after noise sup-
pression; Jm(0) is the initial value of moment of inertia. N groups of stored data between tb
and tc participate in each calculation of the moment of inertia. The error function designed
according to the least square sum of errors is shown as Equation (21):

F(Jm) =
N−1
∑

l=0
[u(l)− β(l)Jm]2

u(l) = Tef(l)− B̂mωf(l)− T̂m

(21)

where u/Nm is defined as the inertia torque in this paper and β/rads−2 is the angular acceleration.

Figure 3. Cont.
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Figure 3. Principle of method: (a) Experimental process of moment of inertia identification; (b)
Identification flow chart.

Jm, the minimum value of the error function, is the identification value of the moment
of inertia. The minimum point of the objective function is determined by the derivative of
the objective function. Let the derivative of (21) with respect to Jm be 0. Equation (22) can
be obtained as

dF(Jm)

dJm
= 2

N−1

∑
l=0

[β(l)Jm − u(l)]β(l) = 0 (22)
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From (22), the estimated moment of inertia can be expressed as Equation (23):

Ĵm =

N−1
∑

l=0
u(l)β(l)

N−1
∑

l=0
β(l)2

(23)

It can be seen from Equations (21) and (23) that viscous friction coefficient, electromag-
netic torque, and angular velocity after noise suppression, angular acceleration, and total
load torque are required to calculate the moment of inertia. The solution methods of each
parameter are introduced below.

2.2.2. Estimation of Viscous Friction Coefficient and Coulomb Friction Torque

Friction torque causes loss, which affects the efficiency of the motor during operation.
These losses can be relatively important, especially for actuators running at high speed [16]
for oil compensated motors used for a marine environment [17], more generally for ac-
tuators coupled with viscous loads such as the ones used, for example, for underground
robotics [18]. In addition, moment of inertia identification also depends on the value of
the friction torque. Therefore, it is necessary to estimate the viscous friction coefficient and
Coulomb friction torque.

The angular acceleration is zero when the motor rotates at a constant speed and the
load torque is zero. Then, Equation (24) can be obtained as

Te = Bmω + sgn(ω)Cm (24)

Under the condition that the rotation direction of the motor is constant, the relationship
between the electromagnetic torque Te and the angular velocity ω is linear when the motor
runs stably at different speeds. Design M experiments, and measure the electromagnetic
torque Te(i) and angular velocity ω(i) during steady-state operation of the motor during
the i-th (i = 1, . . . , M) experiment, as shown in Figure 4. The slope and intercept of the
fitted line are the viscous friction coefficient and Coulomb friction torque, respectively.
Telim is the limit amplitude of the electromagnetic torque. According to the principle of
least squares, Equation (25) should be taken as the minimum with Bm and Cm.

G(Bm, Cm) =
M

∑
i=1

(Te(i)− Bmω(i)− Cm)2 (25)

Figure 4. Diagram of torque and speed waveform in the measurement of viscous friction coefficient
and Coulomb friction torque.
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By using the method of the partial derivative of function to find the extremum,
Equation (26) can be obtained as

∂G
∂Bm

= −2
M
∑

i=1
(Te(i)− Bmω(i)− Cm) = 0

∂G
∂Cm

= −2
M
∑

i=1
(Te(i)− Bmω(i)− Cm)ω(i) = 0

(26)

From Equation (26), the estimated values of the viscous friction coefficient and
Coulomb friction torque are shown in Equation (27):

B̂m =
M

M
∑

i=1
Te(i)ω(i)−

M
∑

i=1
Te(i)

M
∑

i=1
ω(i)

M
M
∑

i=1
ω2(i)−(

M
∑

i=1
ω(i))

2

Ĉm =

M
∑

i=1
Te(i)

M
∑

i=1
ω2(i)−

M
∑

i=1
Te(i)ω(i)

M
∑

i=1
ω(i)

M
M
∑

i=1
ω2(i)−(

M
∑

i=1
ω(i))

2

(27)

2.2.3. Sampling Noise Suppression and Instantaneous Angular Acceleration Solution

In the motor control system, it will inevitably bring a large error to the approximate
estimation of angular acceleration by using difference instead of differential because the
speed sampling signal is discontinuous and contains noise. State observer and Kalman
filter can be used to estimate differential signals and suppress noise effectively, but it
is inconvenient to adjust their parameters. Therefore, in this paper, the integral chain
differentiator was introduced to suppress the noise in the electromagnetic torque and speed
signals and realize the solution of the instantaneous angular acceleration. The integral
chain differentiator can effectively suppress the signal noise while solving the differential
of the signal, and has the advantage of convenient parameter adjustment at the same time.

In order to obtain better noise suppression effect, in this paper, the third order integral
chain differentiator was used to obtain the signal of angular velocity and electromagnetic
torque after noise suppression and angular acceleration signal. According to [19], the
third-order integral chain differentiator can be expressed as Equations (28)–(30):

dωf(t)
dt

= β(t) (28)

dβ(t)
dt

= α(t) (29)

dα(t)
dt

=
a1

ε3 [ω(t)−ωf(t)]−
a2

ε2 β(t)− a3

ε
α(t) (30)

where angular velocity ω(t)/rads−1 is the input signal of differentiator; ωf(t)/rads−1 and
β(t)/rads−2 are the angular velocity and angular acceleration output by the integral chain
differentiator, respectively; α(t)/rads−3 is the differential of angular acceleration; ε is a
sufficiently small positive value; and a1, a2, and a3 are the system parameters.

In order to meet the system stability requirements, parameters a1, a2, a3 should meet
the requirements of Equation (31) [19].{

aj > 0, j = 1, 2, 3.

a2a3 > a1
(31)

The structure of the integral chain differentiator to solve the angular acceleration and
the angular velocity signal after noise suppression is shown in Figure 5.
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Figure 5. Solution of angular acceleration signal and angular velocity signal after noise suppression.

The noise of the signal exists in the input term ω(t). From Figure 5, it can be seen
that the input term only exists in the lowest differential Equation (30). β(t) and ωf(t) are
obtained by two and three times integral of dα(t)/dt, respectively. The integral is not
sensitive to noise. Therefore, the integral chain differentiator structure shown in Figure 5
can effectively suppress the noise in the sampling signal. The following theoretical analysis
was carried out.

Through Laplace transformation of (28)–(30), the result is as Equation (32):

ωf(s)
ω(s)

=
a1

ε3s3 + a3ε2s2 + a2εs + a1
(32)

where ωf(s) and ω(s) are the Laplace transform forms of ωf(t) and ω(t), respectively.
The amplitude frequency characteristics and phase frequency characteristics corre-

sponding to (32) are shown in Equation (33):
A(υ) = 1√

1+τ1ε6υ6+τ2ε4υ4+τ3ε2υ2

φ(υ) = −arctan ε(a2υ−ε2υ3)
a1−a3ε2υ2

(33)

where υ is the frequency of the input signal and τm(m = 1,2,3) is shown in Equation (34):

τ1 = 1
a2

1

τ2 =
a2

3−2a2
a2

1

τ3 =
a2

2−2a1a3
a2

1

(34)

By analyzing the amplitude phase frequency characteristics, the following conclusions
can be obtained.

(1) It can be obtained that A(υ) ≈ 1 and φ(υ) ≈ 0, when ε→0 and the frequency of the
input signal is not large enough. Therefore, ωf(t) can track the original signal ω(t)
accurately. Therefore, combined with (28), it can be considered that ωf(t) and β(t)
approximately equal the angular velocity and its differential signal, respectively;

(2) In general, the frequency of noise in the input signal is far greater than that of the
ideal input signal. From (33), when the input signal frequency is very high, there
is A(υ) << 1, indicating that the integrator chain differentiator can suppress the high-
frequency noise in the input signal;

(3) According to (33), when the parameters a1, a2, and a3 are determined, the tracking
performance and noise suppression performance of the integral chain differentiator
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are only related to ε and the parameter adjustment is convenient. The smaller the
value of ε, the better the tracking effect, but the ability of suppressing high-frequency
noise will become worse; the larger the value of ε, the worse the tracking perfor-
mance of ωf(t) will be, but the ability to resist high-frequency interference will be
stronger. Therefore, it is necessary to select a suitable ε value to balance the tracking
performance and anti-interference performance of the differentiator.

In order to observe the amplitude frequency and phase frequency characteristics of
Equation (32) intuitively, a corresponding bode diagram was made, as shown in Figure 6,
where a1 = a2 = a3 = 10 was taken to satisfy the conditions shown in Equation (31). The
values of ε were 0.1, 0.01, 0.001, and 0.0001, respectively.

Figure 6. Bode diagram of the integral chain differentiator.

It can be seen from Figure 6 that after the parameters a1, a2, and a3 were determined,
the influence of parameter ε on the tracking and noise suppression performance of the
integrator chain differentiator conformed to the above analysis. Adjusting the parameter ε
can change the tracking and noise suppression ability of the integrator chain differentiator.
In the same way, Tef can be obtained.

2.2.4. Estimation of Total Load Torque

The motor angular speed ω and the total load torque Tm were selected as the state
variables. Due to the short sampling time, the value of Tm can be considered unchanged in
a sampling period, which is, dTm/dt = 0. Thus, the state equation of the motor is expressed
by Equation (35): [ dω

dt
dTm
dt

]
=

[
− Bm

Jm
− 1

Jm

0 0

][
ω

Tm

]
+

[ 1
Jm

0

]
Tef (35)

By using the forward Euler method and substituting difference for differential, (35)
can be discretized as Equation (36):{

x(k) = Ax(k− 1) + Bu(k− 1) + w(k)

y(k) = Hx(k) + η(k)
(36)
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where A =

[
1− TsBm

Jm
− Ts

Jm

0 1

]
; B =

[ Ts
Jm

0

]
; H = [1 0] is the output matrix; x = [ω Tm]T

is the state variable; u = Tef is the input variable; and y = ω is the output variable; and w
= [wω wT]T and η = [ηω] are system noise and measurement noise, respectively, and their
covariance matrices are Γ and R, respectively.

In fact, wω is related to wT. Therefore, Γ is not a diagonal matrix, strictly. However, its
non-diagonal elements are difficult to determine, and the influence of the non-diagonal
elements on the state estimation of the Kalman filter can be ignored. Therefore, it can be
considered that the non-diagonal elements of Γ are zero [5].

Under such conditions, Equation (37) can be obtained as Γ =

[
Γω 0
0 ΓT

]
R = [Rω ]

(37)

where Γω, ΓT, and Rω are the variances of wω, wT, and ηω, respectively.
With (35) and (36), the Kalman filter algorithm is as Equation (38) [1].

x̂(k|k− 1) = Ax̂(k− 1) + Bu(k− 1)

P(k
∣∣k− 1) = AP(k− 1)AT + Γ(k)

K(k) = P(k
∣∣∣k− 1)HT [HP(k

∣∣k− 1)HT + R(k)]−1

x̂(k) = x̂(k|k− 1) + K(k)[ωf −Hx̂(k|k− 1)]

P(k) = [I−K(k)H]P(k|k− 1)

(38)

where x̂(k|k− 1) and P(k|k − 1) are the k-th prediction value and prediction error covari-
ance matrix of state variables, respectively; x̂(k) and P(k) are the k-th estimation value of
state variables and the estimation error covariance matrix, respectively; K(k) is the Kalman
gain; and I is the identity matrix.

2.2.5. Simulation Results

In the simulation, the motor parameters are shown in Table 1, where the viscous
friction coefficient was 0.1645 Nms/rad, and the Coulomb friction torque was 3.986 Nm.
The parameters of the Kalman filter were set as Γ = diag(0.00001,2), R = [2], and the
parameters of the integral chain differentiator were a1 = a2 = a3 = 10, ε = 8 × 10−3. The total
load torque Tm was 53.986 Nm when a load torque of 50 Nm was applied to the motor.
The initial speed of the motor was 50 rmin−1. The motor will speed up to 250 rmin−1 after
stable operation. The initial moment of inertia of the motor was set to 3 kg m2 and 0.1 kg
m2. The waveform of the simulation and identification process is shown in Figure 7.

It can be seen from Figure 7 that the overshoot occurs at the torque step when the
integral chain differentiator tracks the electromagnetic torque. In order to ensure the
accuracy of the identification results, the data in the overshoot phase should be avoided
when the moment of inertia is identified with the data of the acceleration stage. At the
same time, it can be seen from Figure 7b that when the integral chain differentiator tracks
the angular velocity, the tracking curve has a slight lag compared with the actual angular
velocity curve in the acceleration stage, but the phase lag almost has no impact on the
identification results since the electromagnetic torque is approximately constant in the
acceleration stage. It can be seen from the acceleration curve that the angular acceleration
of the motor gradually decreased from 35.5 rads−2 to 31.2 rads−2 in the acceleration stage.
The variable angular acceleration of the motor is one of the error sources of the traditional
acceleration deceleration method and the improved acceleration deceleration method.
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Figure 7. Simulation results: (a) Electromagnetic torque waveform when Jm(0) = 3 kg m2; (b) Waveform of angular velocity
and angular acceleration when Jm(0) = 3 kg m2; (c) Identification waveforms of moment of inertia and total load torque
when Jm(0) = 3 kg m2; (d) Simulation and identification waveform when Jm(0) = 3 kg m2.

The identification values of the moment of inertia and total load torque with the tradi-
tional acceleration deceleration method, the improved acceleration deceleration method
and the proposed method were calculated, respectively, and the identification error was
calculated. The calculation results are listed in Table 3. The total load torque identification
error eT can be calculated by Equation (39):

eT =

∣∣T̂m − Tm
∣∣

Tm
(39)

Table 3. Comparison of the simulation results of the identification value and identification error.

Method
Moment of Inertia Total Load Torque

^
Jm/kg m2 eJ/%

^
Tm/Nm eT/%

Conventional 1.1547 19.04 - -
Improved 0.9980 2.89 - -

Proposed in this paper 0.9700 0 53.9860 0

The simulation results show that compared with the traditional acceleration decelera-
tion method and the improved acceleration deceleration method, the inertia identification
accuracy of proposed method was greatly improved, and the total load torque was accu-
rately estimated.

3. Experimental Results

The experimental platform is shown in Figure 8. The experimental motor was a 6 kW
surface mounted PMSM, and its parameters are shown in Table 1. The control system of
PMSM adopted a TMS320F28335 DSP chip and EP3C40Q240C8N FPGA as the control
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core. The load motor was an 11.2 kW induction motor, which was connected with PMSM
through the reduction gear box. The load motor was controlled by the SINAMICS S120
series frequency converter by the Siemens company. The sampling period of the ADC
module was 100 µs and the sampling period of the oscilloscope was 1.6 µs.

Figure 8. Experimental platform.

3.1. Identification of Viscous Friction Coefficient and Coulomb Friction Torque

According to the method described in Section 2.2, M (value 11) experiments were
carried out. The electromagnetic torque and angular velocity data of the motor during
steady-state operation were collected during each experiment to identify the viscous friction
coefficient and Coulomb friction torque of the tested motor system. The experimental
results are shown in Figure 9.

Figure 9. Fitting curve of viscous friction coefficient and Coulomb friction torque.
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It can be seen from the figure that the linear relationship between the electromagnetic
torque and the angular velocity of the motor is presented in steady-state operation at
different speeds when the angular speed range is 5.24–26.18 rads−1 and the load torque is
zero. Therefore, the slope and intercept of the fitting line can be used to express the viscous
friction coefficient and Coulomb friction torque, which are 0.1645 Nms/rad and 3.986 Nm,
respectively.

3.2. Experimental Results of Moment of Inertia and Total Load Torque Identification When
TL = 50 Nm, TL = 100 Nm

The parameters of the Kalman filter and integral chain differentiator are consistent
with the simulation. During the experiment, the motor was loaded and operated stably
at 50 rmin−1, then the reference signal of motor speed was stepped to 250 rmin−1. In the
process of increasing speed from 50 rmin−1 to 250 rmin−1, part data of the acceleration
stage were stored. In the experiment, the moment of inertia identification was started
when the speed nf after noise suppression reached 219.63 rmin−1 (ωs2 = 23 rads−1). The
load torque was set to 50 Nm and 100 Nm, respectively. The experimental results are
shown in Figures 10 and 12. The initial values of the moment of inertia in each group of
experiments were set as 3 kg m2 and 0.1 kg m2, respectively. In the figure, ia, ib, and ic
are the three-phase current of the motor stator, respectively, and StdDev represents the
standard deviation of the corresponding physical quantity when the motor operates at
steady-state, so as to judge the noise suppression ability of the integral chain differentiator.
The electromagnetic torque Te is calculated by Equation (12), and the speed nr is obtained
by DSP processing the pulse signal of photoelectric encoder.

The standard deviation of electromagnetic torque sample signal is calculated by
Equation (40): 

E(Te) =
1
X

X
∑

i=1
Te(i)

StdDev =

√
X
∑

i=1
(Te(i)−E(Te))

2

X−1

(40)

where E is the sample mean of the correlation quantity and X is the sample number of the
sample signal. In the same way, the standard deviation of Tef can be calculated.

Figure 10. Cont.
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Figure 10. Experimental results with load torque of 50 Nm: (a) Three phase current and stator flux waveform; (b)
Electromagnetic torque waveform; (c) Velocity and acceleration waveform; (d) Identification waveforms of moment of
inertia and total load torque when Jm(0) = 3 kg m2; (e) Identification waveforms of moment of inertia and total load torque
when Jm(0) = 0.1 kg m2.

Figure 11. Cont.
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Figure 12. Experimental results with a load torque of 100 Nm: (a) Three phase current waveform; (b) Electromagnetic
torque waveform; (c) Velocity and acceleration waveform; (d) Identification waveforms of moment of inertia and total load
torque when Jm(0) = 3 kg m2; (e) Identification waveforms of moment of inertia and total load torque when Jm(0) = 0.1 kg
m2.

4. Discussion

The experimental results showed that the standard deviation of the electromagnetic
torque signal was 7.7562 Nm and 7.6584 Nm, respectively when the motor was loaded with
50 Nm and 100 Nm while the standard deviation of the signal after noise suppression by
the integral chain differentiator was 1.5570 Nm and 2.0887 Nm, respectively. It showed that
the integral chain differentiator could effectively suppress the noise in the electromagnetic
torque signal, which is conducive to the reduction in identification error and the fluctuation
of identification results. The integral chain differentiator had no obvious effect on the noise
suppression of the speed signal due to the other speed filtering algorithms included in
the algorithm. From the acceleration waveform in Figures 10c and 12c, it can be seen that
the angular acceleration first reached the maximum value in the acceleration stage, and
then decreased slowly, which was similar to the simulation results. Therefore, it will bring
about a large error when the angular acceleration is seen as a constant value to identify the
moment of inertia in the process of acceleration. Additionally, it shows the rationality to
solve the real-time angular acceleration and inertia torque with the proposed method in
this paper. Table 4 lists the identification values and errors of the traditional acceleration
deceleration method, the improved acceleration deceleration method, and the method
proposed in this paper.

It can be seen that the identification error of the proposed method slightly increased
with the increase of load torque, but its identification accuracy was still higher than that
of the existing acceleration deceleration identification methods, and the total load torque
could be accurately estimated.
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Table 4. Comparison of the experimental results of the identification value and identification error.

Tm/Nm Method
Moment of Inertia Total Load Torque

^
Jm/kg m2 eJ/%

^
Tm/Nm eT/%

53.986
Conventional 1.1558 19.15 - -

Improved 1.0452 7.75 - -
Proposed in this paper 1.0103 4.15 51.353 4.88

103.986
Conventional 1.0756 10.89 - -

Improved 0.9131 5.87 - -
Proposed in this paper 1.0176 4.91 98.097 5.66

5. Conclusions

In this paper, the error analysis of the existing acceleration deceleration moment of
the inertia identification method was carried out. It showed that the error of the moment
of inertia came from the measurement noise, inaccurate calculation of the instantaneous
angular acceleration, and the corresponding moment of inertia torque in the existing
identification method. The correctness of the error analysis was verified by simulation.
In light of the shortcomings of the existing methods and the influence of sampling noise
on the identification results in the experimental process, the inertial torque calculation,
instantaneous angular acceleration calculation, and sampling noise suppression were
considered in this paper. Based on the unsimplified PMSM model, a method based on the
Kalman filter and integral chain differentiator was established to identify the moment of
inertia. Simulation results showed that the proposed identification method could accurately
identify the moment of inertia and total load torque without noise. In the experiment,
the viscous friction coefficient was first identified by the experiments. It showed that the
viscous friction coefficient is approximately a constant in a small speed range, and the
speed range in the moment of inertia identification experiment was the same as that of
the motor in the experiment of identifying the viscous friction coefficient. Therefore, the
value of the inertia torque will be more accurate when the viscous friction coefficient is
applied to the calculation of the inertia torque. By comparing the waveform and standard
deviation of electromagnetic torque and the electromagnetic torque after noise suppression
by the integral chain differentiator, it can be found that a satisfactory noise suppression
effect can be obtained by setting appropriate parameters of an integral chain differentiator,
which is conducive to reducing identification error and identification result fluctuation.
Furthermore, it can be seen from the experimental waveform of angular acceleration that
the integral chain differentiator has better performance in solving the instantaneous angular
acceleration, which is conducive to further improving the identification accuracy. The
application of the Kalman filter means that the method does not need to consider the load
condition. At the same time, the Kalman filter has a faster convergence speed when the
Kalman filter parameters are set properly, which improves the practicability of the method.
In conclusion, the proposed method can effectively identify the moment of inertia and
accurately estimate the total load torque with or without noise.
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Nomenclature
a1, a2, a3 system parameters of Integral Chain Differentiator
Bm viscous friction coefficient
Cm Coulomb friction torque
eJ moment of inertia identification error
eT total load torque identification error
id current of d-axis
iq current of q-axis
Jm moment of inertia
Ĵm identification value of moment of inertia
k iteration times of Kalman Filter
Ld inductance of d-axis
Lq inductance of q-axis
n number of segments in each ∆T
nr motor speed
p number of pole-pairs of the motor
R covariance matrix of measurement noise
t time variable
t1 starting time of ∆t
t2 ending time of ∆t
t20 starting moment of the second ∆T
t2n ending moment of the second ∆T
Te electromagnetic torque
Te1 electromagnetic torques corresponding to the first ∆T
Te2 electromagnetic torques corresponding to the second ∆T
Te1(i) electromagnetic torque of the i-th sampling point in the first ∆T
Te2(i) electromagnetic torque of the i-th sampling point in the second ∆T
TL load torque
Tm total load torque
T̂m estimated value of total load torque
Ts sampling period
u inertia torque
α(t) differential signal of β

β angular acceleration
ε a sufficiently small positive value
Γ covariance matrix of system noise
ω angular velocity
ω10 starting angular velocity of the first ∆T
ω20 starting angular velocity of the second ∆T
ω1n ending angular velocity of the first ∆T
ω2n ending angular velocity of the second ∆T
ω2 angular velocity in the second ∆T
ω2i angular velocity of the i-th sampling point in the second ∆T
ω(t) input signal of Integral Chain Differentiator
ωf(t) angular velocity after noise suppression
ω(s) Laplace transform form of ω(t)
ωf(s) Laplace transform form of ωf(t)
ωξ angular velocity at time ξ

ψd flux linkage of d-axis
ψf rotor flux linkage
ψq flux linkage of q-axis
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∆t time length of the calculation interval in traditional acceleration deceleration method
∆T time length of the calculation interval in improved acceleration deceleration method
∆ω angular velocity variation within ∆t
∆ω1 angular velocity variation within the first ∆T
∆ω2 angular velocity variation within the second ∆T
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