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Abstract: Residential electricity load data can include numerous types of bad data, even clustered
bad data, as they that are typically captured by simple measurement instruments. For example,
in the case of a time-series of Not-a-Number (NaN) errors, the values before or next to a NaN may
appear as the sum of actual values during the times of the NaN series. To utilize load data that
includes such erroneous data for prediction or data mining analysis, customized detection and
imputation should be conducted. This study proposes a new joint detection and imputation method
for handling clustered bad data in residential electricity loads. Examples of these data are known
invalid data points, such as consecutive NaN or zero values followed by or being ahead of an outlier.
The proposed joint detection and imputation scheme first investigates the neighbors of the invalid
data points, using probabilistic forecasting techniques. These techniques are implemented by the
next valid neighbors to determine whether there is an anomaly or not. Then, adaptive imputations
are applied on the basis of the detection , the candidate point should be imputed simultaneously or
not. To assess the potential of the newly proposed scheme to characterize the clustered bad data,
we analyzed the electricity loads of 354 households. Moreover, joint detection and imputations are
conducted to test with the randomly injected synthesized clustered bad data (containing NaNs of
various lengths) that is followed by the summation of the actual NaN values. The proposed scheme
succeeded in detecting clustered bad data with an accuracy of 95.5% and a false alarm rate of 3.6%
for all households in the dataset. Outlier detection-assisted imputation schemes are evaluated for
NaNs with optional outliers. Results demonstrate that these schemes improve the overall accuracy
significantly compared to schemes without outlier detection.

Keywords: bad data detection; probabilistic forecasting; residential electricity load

1. Introduction

With the growing concerns on energy and environmental sustainability, a huge re-
search effort has been made to achieve a smart and efficient energy management for
decreasing the carbon footprint [1,2]. For this reason, an energy management system
(EMS) has been introduced. This system efficiently controls the energy flexibility during
generation, distribution, and consumption, considering the distributed energy resources
(DERs) [3]. It is also applied in various areas such as factories, buildings, and houses,
to conducts energy consumption forecasting and facility operation optimization on the
basis of energy data analysis [4]. For prediction and optimization, various studies, which
particularly focus on commercial or residential buildings containing several individual
entities, are being conducted [5,6]. There are also numerous studies on independent resi-
dential homes, including load pattern analysis and clustering [7], machine learning-based
prediction [8], and optimization considering renewable energy and the energy storage
system [9].
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Residential load raises a major energy management concern as it accounts for 56.9%
of the final energy consumption of buildings [10]. Data-driven methods require data
preprocessing, especially in the case of smart meter data. These methods are mainly used
for processing residential electricity load data that contains numerous outliers caused for
example by electricity theft [11]. Therefore, anomaly detection and imputation methods
play a crucial role in obtaining reliable energy data.

With regard to anomaly detection, previous studies have employed traditional algo-
rithms, such as the k-nearest neighbors (k-NN), support-vector machine (SVM), decision-
tree (DT), as well as deep-learning methods, such as convolutional neural network (CNN),
recurrent neural network (RNN), and generative adversarial network (GAN) to obtain
energy consumption data [12]. Especially regarding residential load data, Xu et al. [13]
suggested a detection method that combines RNNs and quantile regression. Various impu-
tation techniques have been used to enhance imputation. These include clustering-based
imputation with data located geographically close [14], bidirectional imputation combining
long short-term memory model (LSTM) and transfer learning [15], and learning-based
imputation based on the load pattern [16].

However, real residential energy consumption data has the tendency to include bad
data, such as Not-a-Number (NaN) or zero points that are found scattered in several
cases, even in the shape of clusters; and anomalies whose value is the sum of the actual
values during the clustered bad data points. These outliers can significantly affect the
performance of data-driven methods when handling clustered bad data. Anomaly detection
and customized imputation are highly valuable in this case.

In this paper, a new joint detection and imputation method is proposed to complement
the bad data in residential electricity load that contains clusters of NaNs and invalid data
points before the clustered bad data. First, to determine whether the value is an outlier or
not, probabilistic forecasting and probability distribution is performed, and the z-score of
each invalid data point is obtained. These z-scores are utilized to detect the outlier with
selecting the threshold obtained obtained using the loss function, the mean absolute error
(MAE) after the imputation. Then, on the basis of the detection result, joint imputation
based on the forward-backward joint auto-regressive (AR) model [17] is applied to the
clusters of invalid data. If the value before the clustered bad data is detected as a normal
one, imputation is applied only to the range of clustered bad data. However, if the value
before the clustered bad data is judged it is an anomaly, it have to be handled with the
clustered bad data during imputation. That is, the imputation range should be changed to
include the previous point with clustered bad data when the detection result suspects that
the previous point is the outlier.

2. Methodologies

The overall schematic of the proposed method is presented in Figure 1. As shown in
the figure the data format is a vector, in particular univariate time-series data. Therefore,
the dataset is usually treated as a shape of vector throughout the paper. We consider the
following specific types of bad data: clustered bad data and outliers with accumulated
values. Clustered bad data (CBD) is a set of consecutive bad data such as NaN and zero
points. An outlier with accumulated values indicates the type of outlier that has a certain
value that is estimated by the sum of actual values in data.

First, to figure out whether the value is an anomaly or not, we use probabilistic fore-
casting on the candidate points located before the CBD. The candidate point indicates the
point located before the CBD because this location has the probability of having an outlier.
The z-score of these points, which can be calculated using the mean and standard deviation,
is classified by the threshold to minimize the MAE following imputation. Second, we im-
plement the adaptive imputation schemes according to the anomaly detection schemes,
based on the joint bidirectional models.
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Figure 1. The overall schematic of the proposed methodology.

2.1. Probabilistic Forecasting Based Anomaly Detection

In this section, we propose a detection algorithm based on probabilistic forecasting.
The residential dataset includes several types of bad data, and the outlier with accumu-
lated values is usually generated before or after missing points appear in our dataset.
As Algorithm 1 shows, the proposed detection algorithm that is based on the statistics and
metrics is used to detect the outlier with accumulated values.

Algorithm 1: Detection algorithm for accumulated outlier

Input: observed values in candidate points Xcandidate = {xd1,t1 , ..., xdn ,tn},
corresponding workday types vcandidate = {vd1 , ..., vdn}, selected length of NaNs Tnan,
searching range of threshold thld_max, searching step of threshold step;

Output: Outlier detection result (0 or 1) for candidate points;
for i = 1 to n do

GET Ndi ,ti
in Equation (1);

zdi ,ti
← xdi ,ti

−µ̂di ,ti
σ̂di ,ti

;

end
thld = 0;
for j = 1 to dthld_max/stepe do

for i = 1 to n do
if zdi ,ti

< thld then
imputation for {xdi ,ti+1, ..., xdi ,ti+Tnan};

else
imputation for {xdi ,ti

, ..., xdi ,ti+Tnan};
end

accuracyj ← accuracyj +
MAE(imputation)

n ;
end
thld += step;

end
thld∗ ← (argminj(accuracyj)− 1) ∗ step;
if xdi ,ti

< thld∗ then
resulti ← 0;

else
resulti ← 1;

end
return: Result ;
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First, we implement the probabilistic forecasting to the candidate points. Here, we se-
lect the k-nearest neighbors (k-NN) algorithm as a probabilistic forecasting algorithm.
The k-NN algorithm is not typically used in probabilistic forecasting, but we did so in this
study as it reveals some statistical information, such as µ, σ and the distribution. With the
basic k-NN algorithm, the physical location is only considered when collecting values;
however, in this case, the hour time index and workday type are also utilized due to the
daily and weekly pattern of the load profile. Let xd,t be the measured data at the time t of
the d and vd the indicator of the workday. Then, the nearest neighbors values are collected
from the data points that have the same time t in the day d of the same workday type vd
with the target point among the previous days data, as follows:

Ndi ,ti
=
{

xdi+α,ti

∣∣ vdi+α = vdi
, α = −k,−(k− 1), ...,−1, 1, ..., k− 1, k

}
. (1)

Ndi ,ti
denotes the nearest neighbors samples for the i-th target point xdi ,ti

. In this method,
the z-score is used to detect the outlier with accumulated values. The z-score is calculated
by subtracting the mean value from the specific value and dividing the difference by the
standard deviation, as follows:

zdi ,ti
=

xdi ,ti
− µ̂di ,ti

σ̂di ,ti

, (2)

where µ̂di ,ti
and σ̂di ,ti

denote the mean and standard deviation of the probabilistic forecast-
ing from the nearest neighbors values Ndi ,ti

. Because the z-score measures the difference
between the observed value and the sample mean in unit of the sample standard deviation,
the large z-score value can be regarded as an indicator of the outlier. Thus, the thresh-
old that determines whether the value is outlier or not should be selected in advance.
In this study, the proper thresholds of z-scores are determined by minimizing the MAE
imputation accuracy.

2.2. Forward-Backward Joint Imputation

This section presents an accumulated outlier aware joint imputation method. Figure 2
is the framework of the joint imputation method based on outlier detection. The proposed
method considers only power data, not environmental data. It also considers time-series
specification and error information. The load data is a time-series data that is affected by
past and future data. Thus, unlike the prediction model, the imputation model can be
constructed using the past and future data.

Proper application of the regression model is critical to estimating the CBD. Several
models have been used for imputation, with the linear interpolation (LI) being the simplest
model, expressed as follows.

x̂LI
d,tn0

= xd,tn0
+

xd,tn0+Tnan+1 − xd,tn0

Tnan + 1
× (t− tn0), (3)

when the NaNs occur across the day, day and time indexes may need to be modified to
make the sequence to be consecutive, for example xd,nd+1 = xd+1,1, where nd is the number
of data points in a day. For simple description, however, xd,k is used throughout the paper
for k ≤ 0 or k > nd.

In Equation (3), xt denotes the observed power data at time t; tn0 + Tnan + 1, the time
index right after CBD; tn0 , the time index right before CBD; t ∈ {tn0 + 1, ..., tn0 + Tnan},
the time indexes for CBD; and Tnan, the length of CBD. If the CBD length is shortened
and data fluctuations are reduced, the LI model can demonstrate robust performance.
However, the LI model is not suitable for data rebuilding because of the high variation of
the household’s power data. Therefore, the AR method, can be applied to the proposed
model. AR is the statistical method that describes the value of a certain time point with
respect to the past data. If the data has high autocorrelation, AR generates more accurate
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results. Because the electricity load data has autocorrelation and numerous researchers
have investigated the whether the AR method is suitable for energy prediction, the data
can be properly described by the forward-backward joint AR model. The AR method using
the past data was designed as follows:

x̂ f wd
d,tn0

=

tn0

∑
k=tn0−l f wd

(w f wd
d,k x f wd

d,k ), (4)

where l f wd denotes the length of the past data for the imputation of forward directions,
and w f wd

d,k denotes the weight parameter of the AR method for forward directions. In addi-
tion, the future data can be obtained in the same way as follows:

x̂bwd
d,tn0

=

tn0+Tnan+1+lbwd

∑
k=tn0+Tnan+1

(wbwd
d,k xbwd

d,k ), (5)

where lbwd denotes the length of future data for the imputation of backward directions and
wbwd

d,k denotes the weight parameter of the AR method for forward directions.
Finally, the forward-backward joint imputation is designed by combining Equations (4)

and (5) because both past and future data can be considered for imputation, unlike fore-
casting. The forward-backward joint imputation is expressed as follows:

x̂joint
d,tn0

=

tn0

∑
k=tn0−l f wd

(w f wd
d,k x f wd

d,k ) +

tn0+Tnan+1+lbwd

∑
k=tn0+Tnan+1

(wbwd
d,k xbwd

d,k ). (6)

The proposed model performs the imputation process in the forward and backward
directions. The first term considers the past time index starting with tn0 − l f wd and end-
ing with tn0 , and the second term considers the future time index from tn0 + Tnan + 1
to tn0 + Tnan + 1 + lbwd. That is, with past and future sequences simultaneously for the
omitted range, {tn0 + 1, ..., tn0 + Tnan}. Meanwhile, the other case that includes the out-
lier with accumulated values in front of CBD, the imputation range should contain the
outlier point, tn0 . In other words, the imputation range should be replaced with the
range {tn0 , tn0 + 1, ..., tn0 + Tnan}, including the outlier point with accumulated values tn0

as follows:

x̂joint
d,tn0

=

tn0−1

∑
k=tn0−l f wd

(w f wd
d,k x f wd

d,k ) +

tn0+Tnan+1+lbwd

∑
k=tn0+Tnan+1

(wbwd
d,k xbwd

d,k ). (7)

Unlike (6), the time point tn0 is excluded in the upper bound of the first term, it be-
comes tn0 − 1. With this change, the omitted range is replaced with

{
tn0 , ..., tn0+Tnan

}
.

Generally, in (6) and (7), both sequences are considered containing both x f wd
d,tn0

and xbwd
d,tn0

in

the vector x f b
d,tn0

, while calculating the weight matrix ŵd,tn0+k as follows:

x f b
d,tn0

=

[
x f wd

d,tn0

T
xbwd

d,tn0

T
]T

ŵd,tn0+k = (X f b
d,tn0

T
X f b

d,tn0
)
−1

X f b
d,tn0

T
xtg

d,tn0+k (k = 0, ..., Tnan)

x̂d,tn0
=
[

x̂d,tn0
x̂d,tn0+1...x̂d,tn0+Tnan

]T
=


ŵT

d,tn0
ŵT

d,tn0+1
...

ŵT
d,tn0+Tnan

x f b
d,tn0

.

(8)
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where X f b
d,tn0

= [ . . . x f b
d−bi ,tn0

T
. . . ] and xtg

d,tn0+k = [ . . . xd−bi ,tn0+k . . . ]T for bis where vd−bi
=

vd, bi ∈ {−b, ...,−1, 1, ..., b}.
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Figure 2. The framework of the forward-backward joint imputation.

3. Numerical Evaluation

To verify the feasibility of the newly proposed method, we applied it to 354 residential
electricity load data [18] to verify the feasibility of the proposed method. We obtained the
energy consumption data from households in Incheon, South Korea, with a resolution of
15 min. But the dataset was preprocessed to change the resolution from 15 min to 1 h by
the cooperating organization, because of invasion of privacy issues. This data includes
CBDs obtained from metering system faults or communication errors.

The simulation involves artificially injecting CBD to the valid points to calculate the
accuracy and compare performance of the proposed method. Two types of anomaly group
are injected: one is the plain CBD that includes only NaNs, and the other one is the CBD that
includes an outlier with accumulated values in front of it. Although it is possible to vary
and treat the length of injected CBDs, their length is fixed to five to prevent disturbances
during simulation. The valid points, wherein the outlier will be placed, are the same as in
Section 2.1.

3.1. Data Analysis

In this section, the used data was analysed about outlier with accumulated values.
Dataset have to contain CBDs and outliers in front of CBDs to apply the proposed method.
To confirm whether these pattern is included or not in the dataset rapidly, 5 households was
randomly selected and analyzed. It was verified whether there are the values that increase
in proportion to the length of NaNs, and the ratio of potential outliers was analyzed with a
conventional method.

As stated previously, in residential electricity load data, NaN and zero padding
appear as points or clusters, and the outliers are estimated as the sum of existing actual
data. In particular, we analyzed whether the outlier with accumulated values exists or not
in the actual data, because the proposed method is concerned with adaptive imputation.
The analysis was conducted on five random households. As the dataset was preprocessed to
change the resolution from 15 min to 1 h, it was estimated that an outlier with accumulated
values will appear at 1/4 ratio due to NaN processing method. The point in front of CBD
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is termed ’candidate point’, and the z-score of candidate points according to the length of
CBD is shown in Figure 3. The z-score was calculated in the same manner as the k-NN
method in Section 2.1. The blue ellipse in the figure indicates potential outliers according
to increasing the length of CBD, which means that the sum of NaNs exist in used data.
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Figure 3. Analysis of the potential outliers and the length of not-a-number (NaN) sequences.

The result of calculating the ratio of values classified as outliers based on the 3-sigma
rule is shown in Figure 4. The case that has a length of nine or more was excluded, as there
are only 1 or 2 sequences for each household. The total ratio of potential outlier was 0.32,
which is close to the estimated value (1/4). Considering that the outlier can appear for
other reasons, we did not reject the assumption that the outlier with accumulated values
occurs at a quarter ratio. Therefore, outliers with accumulated values have been observed
in the dataset and can be imputed with customized methods.
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Figure 4. Analysis of the potential outliers and the length of NaN sequences with a preliminary
3-sigma threshold.

Figure 5 presents normalized residue analysis results, where we can see whether
the z-score follows the standard normal distribution [19]. Due to the uncertainty of the
probabilistic forecasting, the residue is not identically distributed as standard norma,
and the threshold for decision may need to be set larger than the preliminary three sigma,
which will be discussed in the following subsection.
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Figure 5. Normalized residue analysis: comparison between normal distribution and result from
nearest neighbors.

3.2. Detection Results for Residential Data

In this section, we evaluate the performance of the anomaly detection based on
probabilistic forecasting. The proposed method is compared with the 3-sigma rule in
statistics, which is the case when the decision criteria is 3.0 and prove the performance
of proper z-score threshold. First, while searching the threshold, MAE after imputation
for varying thresholds is shown as Figure 6. The test result in this particular household
indicates that when the threshold is changed to 7.8, the total imputed MAE is the lowest,
which is indicated by the red dashed line in Figure 6. The proper thresholds are selected
depending on each household.

0 10 20 30 40
z-score threshold

0.010

0.015

0.020

0.025

0.030

to
ta

l M
AE

w/ AOD-AI
w/o AOD-AI
selected

Figure 6. Total mean absolute error (MAE) with varying z-score thresholds.

Second, the result of the anomaly detection for the proper threshold is presented
as a confusion matrix and compared with the result for the threshold of 3, as presented
in Table 1. The number of the overall injected bad data series is 72,882, 24,113 of which
include anomaly in front of NaNs. The total accuracy is 95.5% and 91.6% with the results
from selected threshold and preliminary threshold, respectively. The proposed method
demonstrated a false alarm rate of 3.6%, while the preliminary case demonstrated a false
alarm rate of 9.7%. The scanning process enhanced the performance in terms of true
negative (TN) and false positive (FN). Comparing by cases, TN and false positive (FP)
were improved in the proposed method; TN was increased by 6.8%, and FP was decreased
by 63.0%. Conversely, true positive (TP) and false negative (FN) slightly deteriorated
due to the trade-off in binary classification. Although the accuracy decreased in the
case of true anomaly, this result can be significant in terms of the FP has been notably
improved. Because the normal value point is corrupted during the imputation, the FP must
be minimized as much as possible. The proposed method demonstrated the lowest total
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MAE at the proper threshold. It also demonstrated better performance compared with
conventional methods.

Table 1. Detection results of the residential dataset (a) with the selected threshold from scanning and
(b) with a preliminary threshold of 3-sigma.

(a)

Prediction

Normal Anomaly

True Normal 70,272 2610
Anomaly 1765 22,348

(b)

Prediction

Normal Anomaly

True Normal 65,821 7061
Anomaly 1065 23,048

3.3. Imputation Results of the Residential Data

In this section, we implemented two cases to compare the performance of the accumu-
lated outlier detection aware imputation (AOD-AI)—one without AOD-AI and the other
one with AOD-AI. To compared the accuracy of the joint imputation, we used two methods:
LI as a baseline, and optimally weighted average (OWA) [20] as one of the recent promising
imputation scheme. OWA is the imputation method for smart meter data that combines LI
and historical average (HA) imputation by the weighted sum with optimized weights.

In Figure 7a, the imputation results without outliers are presented in three methods.
LI method exhibits low accuracy as the power data is affected by human patterns and has
a specific shape by household. Conversely, the performances of the joint imputation and
OWA methods were found to be better compared with those of the LI model, consider-
ing the historical data. In Figure 7b, the imputation results with outliers are presented
only AOD-AI applied. If the outlier with accumulated values are not removed, all meth-
ods will derive terrible results. When the outlier was removed and imputed with CBD,
the imputation performance was improved in all cases.
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(a)
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(b)
Figure 7. The imputation results of the residential dataset (a) without outliers when detected as
non-outliers (TN) and (b) with outliers of accumulated values when detected as outliers (TP).

Figure 8 presents the evaluation of the residual errors by the result of outlier detection.
In Figure 8a, the results indicate how the imputation model handles the historical or
surrounding data well. OWA accuracy is the best, and it seems that the combination of
LI reflected the level of imputation range to the imputation result. But with joint method,
it is possible to derive better performance with introduce additional criterion in searching
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training set. In Figure 8b, the application of AOD-AI is worse than the case without AOD-
AI. The corruption of normal values in candidate points produced poor imputation results.
In Figure 8c, the best method is OWA and the worst is LI. While the joint method and LI
are influenced by remaining outliers in front of CBD, it seems OWA is robust due to the
historical average method. In Figure 8d, outliers are detected precisely and imputed with
CBD. So, the result of AOD-AI shows similar accuracy as in the case (a).
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Figure 8. The imputation error evaluation with the residential dataset in case of (a) true negative (b)
false positive (c) false negative (d) true positive.

The overall performance of the imputation is summarized in Table 2. From the ta-
ble, we observe that the overall performance of the joint method with AOD-AI is 0.108,
OWA method with AOD-AI is 0.100, and LI with AOD-AI is 0.131 in MAE, which corre-
spond to the reductions in MAE by 71.9%, 60.3%, and 63.9% respectively, relative to the
schemes without AOD-AI. OWA shows the best performance considering the detection re-
sult. Except for OWA, other methods were also improved with AOD-AI. This result shows
the strength of AOD-AI and the necessity of outlier detection and adaptive imputation.

Table 2. Total imputation results of residential dataset.

Method AOD MAE [kW]

Joint method without AOD-AI 0.385
with AOD-AI 0.108

Linear interp. without AOD-AI 0.363
with AOD-AI 0.131

OWA without AOD-AI 0.252
with AOD-AI 0.100
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4. Conclusions

In this paper, we introduce the joint detection and imputation scheme for residential
electrical load data. To impute the missing values, the proposed method considers two
types of bad data—CBD and outliers with accumulated values. Since outliers with accu-
mulated values deteriorate imputation performance, the proposed method estimates the
missing values while detecting the accumulated outlier. It also provides numerous benefits:

• The outlier can be detected without any labeled data about bad data. Since the anno-
tated data is rare in smart meter data, it is appropriate for the residential load dataset.

• The data was analyzed that some outliers are located in front of CBD. The possibility
of outlier is considered and excludes not only bad data but the point before and after
CBD during probabilistic forecasting, enabling more accurate detection.

In numerical evaluations, the imputation models are simulated using a residential
dataset. The imputation accuracy can be increased by 60.3% to 71.9% by the proposed AOD-
AI approach with the imputation schemes of LI, OWA, and joint feed-forward. Since the
proposed imputation method combined outlier detection and joint imputation, only the
method without AOD-AI can be compared as a previous research. Therefore, the joint
imputation with AOD-AI shows better performance than any other method. As shown
as the total imputation result, the AOD-AI can be applied to any imputation model and
enhance the accuracy of imputation enormously. The proposed imputation model is
influenced by the detection errors. Thus, it is important to properly control the threshold
for the detection to reduce errors. Also, deep learning can be applied to the imputation
and detection models to increase the performance of the proposed scheme.
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Nomenclature

The following nomenclatures are listed including the abbreviations to referring terms
and variables used in equations:
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AOD-AI Accumulated outlier detection aware imputation
AR Autoregression
CBD Clustered bad data
k-NN k-nearest neighbors
MAE Mean absolute error
NaN Not-a-Number
FN False negative
FP False positive
TN True negative
TP True positive
LI Linear interpolation
OWA Optimally weighted average
Candidate point The point located in front of clustered bad data
xd,t Observed values at day d, hour t
d Day index
t Time index [hour]
vd Workday type (Binary) in day d
tn0 The time point that occurred accumulated outlier (AO)
Tnan The length of clustered bad data (CBD)
zd,t Z-score of xd,t
µ̂d,t Mean from the result of probabilistic forecasting
σ̂d,t Standard deviation from the result of probabilistic forecasting
ŵd,t Weight matrix for autoregression (AR)
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