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Abstract: This paper proposes a novel feature construction methodology aiming at both clustering
yearly load profiles of low-voltage consumers, as well as investigating the stochastic nature of their
peak demands. These load profiles describe the electricity consumption over a one-year period,
allowing the study of seasonal dependence. The clustering of load curves has been extensively
studied in literature, where clustering of daily or weekly load curves based on temporal features has
received the most research attention. The proposed feature construction aims at generating a new
set of variables that can be used in machine learning applications, stepping away from traditional,
high dimensional, chronological feature sets. This paper presents a novel feature set based on two
types of features: respectively the consumption time window on a daily and weekly basis, and the
time of occurrence of peak demands. An analytic expression for the load duration curve is validated
and leveraged in order to define the the region that has to be considered as peak demand region.
The clustering results using the proposed set of features on a dataset of measured Flemish consumers
at 15-min resolution are evaluated and interpreted, where special attention is given to the stochastic
nature of the peak demands.

Keywords: load profiling; consumer categorization; clustering; load duration curve; peak demand;
feature construction

1. Introduction

In different regions and countries in the European Union, including Flanders, the reg-
ulator for the electricity market has proposed an update to the traditional tariff structure
for consumers connected to the low-voltage distribution grid [1,2]. The goal of this update
is to obtain a tariff structure that better reflects the real costs associated with operating
the distribution grid, as well as to incentivize consumers to change their consumption
behavior. The emergence of digital meter technology and its rollout in European countries
allows policymakers to implement these changes. Simultaneously, due to the higher time
resolution, consumers are given a tool to gain additional insight in their consumption and
related electricity invoice.

Residential and low-voltage consumers form a particularly challenging group from
the viewpoint of grid operators and parties responsable for local grid balancing. Individual
household consumption profiles are very behavior-dependent and often described as being
peak-intensive and stochastic [3]. They often exhibit short peak demands, while simulta-
neously being characterized by large periods during the day and at night with very low
energy demand. Therefore, regulators are proposing tariff structures that include cost
elements related to both energy and capacity.

Consequently, the research attention has shifted to the mitigation of the peak demands
by applying e.g., peak shaving programs or demand respons initiatives, as well as anal-
yses on the predictability and stochasticity of these peaks. The research field related to
customer categorization and load profiling aims to support policymakers and stakeholders
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by providing insights into (i) the types of consumers, and (ii) the behavior and differences
between their load profiles. The traditional example of this is the construction of synthetic
or representative load profiles. For residential consumers, the Flemish regulator currently
offers two synthetic load profiles on an annual basis, i.e., households with and without
electric heating.

In standard modeling techniques, the following steps are taken [4]. First, consumption
profiles obtained from metering data with similar behavior have to be grouped together
via a clustering algorithm. Unsupervised learning techniques are often used to detect
underlying structures in large datasets, with K-means and hierarchical clustering among
the most prevalent methods [5]. These algorithms can be performed either on the chrono-
logical data itself, or on a feature set obtained by transforming this chronological data.
Common examples for chronological data include clustering based on daily or weekly
profiles [6,7]. The seasonal influence can be taken into account by either performing a
clustering process for each individual season [8], or by determining the recurring daily load
profiles on an annual basis [9]. Typical load profiles can now be found by using statistical
measures on the grouped chronological data, such as the mean or the median value at each
time step [10]. This illustrates the main drawback during the construction of synthetic load
profiles for purposes related to peak demands, such as emerging capacity-based tariffs.
The averaging process results in a loss of important time-sensitive information unique to
the individual household, and less volatile profiles are obtained [11].

As mentioned, an alternative method to clustering via the chronological measurements
is grouping consumers based on similar properties, also called features. This work follows
the feature construction and evaluation approach. The advantages of using a limited set
of features during a clustering process are multifold. First, artificial overfitting due to
high dimensional data can be avoided [12]. Furthermore, computational time is saved
and allows easier interpretation if the features are chosen to be application-dependent [13].
Features can be constructed by performing operations on the default chronological features,
e.g., combining all daytime consumption in one single feature. However, more advanced
features can also be constructed, ranging from features generated in the frequency do-
main [14,15], to features related to the shape of the distribution of the load, such as the load
factor [16].

Features constructed in literature are often application-dependent, i.e., depending
on the goal of the work. One goal of this work is to investigate the temporal connection
between consumption and peak demand behavior, to gain insight in the stochasticity of
residential peak demands. Therefore, the features in this work are linked to either the
consumption or the occurrence of peak demands. Previous studies incorporating temporal
properties of these peaks in the clustering process either take the timing and the amplitude
of the daily peak demand into account [17,18], or use statistical measures of the distribution
of the measurement data [19]. In this work, the load duration curve (LDC), also called
the demand frequency distribution graph, of each individual consumer is used to define
which of its measurements constitute a peak demand on annual basis. The LDC is obtained
by ordering the measurements in descending order. At the macrogrid level, the LDC
has traditionally been used by electric utility engineers for network planning purposes,
to analyse the utilisation of power plants, as well as characterizing the cyclic behavior
of electricity demand [20–22]. While the LDC has not traditionally been used to model
individual consumers, it was successfully used by Poulin et al. [23] to investigate the
value of peak shaving for industrial and commercial consumers. Encouraged by these
findings, the analytical form of the load duration curve is used in this work to construct the
peak-based features. Based on the shape of the LDC, a threshold unique to each consumer
is proposed, and every demand higher than this threshold can be considered as a peak.
By determining the time of occurrence of these peak demands, the temporal properties of
the peaks are taken into account.

The main contribution of this work thus is the introduction of features related to the
peak demands. The introduced methodology combines both frequency- and time-based
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information to determine these features. The remainder of this work is organized as follows.
In Section 2.1, the dataset and the preprocessing steps are described. Section 2.2 then
proposes and validates an analytic expression for the load duration curves of low-voltage
consumers. This expression is subsequently used in Section 2.3 to define the region that
can be considered as peak demands. The features related to the timing of the consumption
and peak demands are constructed in Section 2.4. This feature set is used for two purposes,
and depending on the methodology, a different feature transformation has to be performed.
The clustering algorithm, as well as the methodology used to analyse the stochastic nature
of the peak demands, are described respectively in Sections 2.5.1 and 2.5.2. Section 3.1
reports on the findings and performance of the clustering algorithm, while Section 3.2
considers the relations between the consumption and peak demands in certain time periods
to shed light on the stochasticity of these peak demands. Finally, Section 4 concludes
this paper.

2. Materials and Methods

2.1. Consumption Profiles

The used dataset used in this work comprises 1422 consumers on the low-voltage
distribution grid in two small Flemish towns in a suburban area, measured at a 15-min
resolution during one year, leading to 35,040 time points per consumer. The data were
provided by Fluvius cvba, the Flemish distribution network operator. The metering
infrastructure was installed during a proof-of-concept study on digital meters in Flanders
during the period 2010–2014. As more than 3000 households spanning different generations
and compositions participated in this study, the dataset can be considered sufficiently
diverse for consumers on the low-voltage distribution grid.

Several preprocessing steps were undertaken to obtain the final dataset, leading to a
reduction from over 3.000 load profiles to 1422 data entries. These preprocessing steps are
as follows:

– A first preprocessing step involving possible missing data was performed by the
distribution network operator before providing the dataset for this research;

– Only meters that had measurements for the full year 2013 were included, given the
purpose of this work;

– Households equipped with a PV installation were excluded from the analysis, as it
is known that the presence of a PV installation can induce behavioral changes to
increase PV self-consumption [24]. Furthermore, the metering data for households
with PV installations merely included information on the net consumption and injec-
tion, not the gross consumption which is necessary for the proposed methodology;

– Following the Eurostat classification [25], meters indicating an annual consumption
lower than 1000 kWh or higher than 15,000 kWh were excluded, as these were
assumed to not be representative for typical household behavior, or could include
small and medium-sized enterprises (SMEs), meaning commercial meters, on the
low-voltage distribution grid.

After the preprocessing, the 1422 individual timestamped profiles are subsequently
categorised based on the thermal images obtained via heatmaps of their demand profile.
The introduced categories will not be used as input for the clustering algorithm, merely
used for a post-hoc validation and interpretation of the obtained clusters in Section 3.1.
This heatmap is the visualisation of the matrix obtained by reshaping the 35,040 ×1 vector
of the chronological data to a 96× 365 matrix. The entries belonging to the days of the
start and end of daylight saving time are removed before reshaping the matrix, resulting
in a 96× 363 matrix. These days contain 92 and 100 data points, and would therefore
distort the heatmap. Based on the obtained heatmaps, five categories are introduced that
are able to describe the typical low-voltage consumers in Flanders: four behavior-specific
categories and one so-called regular residential consumer for all consumers that do not fit
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one of the four special categories, inspired by the common Synthetic Load Profiles (SLPs)
for Flanders.

The five categories are as follows:

– SME profile: consistent load profile with a 9–18 h behavior on weekdays and
absent on weekends, as shown on Figure 1a;

– Electric heating: consumption late in the evening and at night, superimposed upon
a regular consumption profile. Two substructures are observed:
– Ripple control heating: These profiles exhibit the same moment during week-

days when the heating is turned on, and a different behavior is observed for
weekdays and weekends, as shown on Figure 1b;

– Continuous heating: Unlike the ripple control heating, the moment of switch-
ing on the heating is stochastic and no difference in heating behavior between
weekdays and weekends can be observed, as shown on Figure 1c;

– Air conditioning: profiles with a significant electric load during summer months,
superimposed upon a regular consumption profile. This heatmap is not shown
for brevity.

– Regular residential consumer: the remaining load profiles not belonging to one
of the above categories. There are typically (but not necessarily) characterized by
a morning and evening peak, with demands concentrated during the evening as
shown on Figure 1;

Figure 1. Examples of heatmaps for four different types of consumers on the low-voltage grid: (a) an SME profile,
(b) a consumer with ripple control electric heating with a fixed start time of the heating, as well as differences between
weekdays and weekends, (c) a consumer with continuous electric heating, and (d) a regular residential consumer.

As can be seen in Table 1, the majority of the considered consumers on the low-voltage
distribution grid does not fall within a category with specific features such as the SME or
the electric heating profiles, but can be considered a regular household. Table 1 gives an
overview of the number of profiles in each category, split for different consumption ranges.

The density of the regular demand profiles is the highest in the range of 2–3 MWh per
year, which is consistent with the most common household consumption in Flanders. Simi-
larly, the other categories are mostly concentrated at higher average yearly consumption.
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Table 1. Dataset composition by the defined profile categories, by consumption ranges.

Consumption Range Regular Ripple Control e-Heating Continuous e-Heating SME Airco

1–2 MWh 143 3 1 0 0
2–3 MWh 260 19 6 2 0
3–4 MWh 254 25 4 2 0
4–5 MWh 223 17 15 0 0
5–6 MWh 126 14 13 5 0
6–7 MWh 86 10 14 1 3
>7 MWh 114 19 18 10 15

Total 1.206 107 71 20 18

2.2. Load Duration Curves

The load duration curve of an individual consumer is obtained by ordering its meter-
ing data in a descending order rather than the traditional chronological order. The analytic
expression introduced by Poulin et al. [23] for commercial, institutional and industrial
consumers is taken as the starting point for the analysis on the low-voltage consumers
considered in this work. Let Pi(t) denote the chronological demand data of a specific
consumer i, its corresponding LDC P i(τ) can subsequently be written as:

P i(τ) = 1− aτ − bτc +
d

1 + e f (τ−g)
− d

1 + e f g (1)

The variables τ andP i in the expression of the LDC respectively denote the normalized
time and normalized demand, i.e., both scaled such that their range spans the interval [0, 1].
This allows for a scale-independent comparison between consumers, merely comparing the
behavior of the demand curves. The six parameters included in Equation (1) show a clear
connection to customer operations, and thus are relevant for consumer clustering purposes.
The peak height and duration are correlated with b and c respectively, while parameters d,
f and g are linked to respectively the height, slope and location of the step. Finally, a yields
information about the general slope of the curve. These six parameters and their relation to
the general shape of the LDC given by Equation (1) are given in Figure 2a.

While the six-parameter expression was previously validated to accurately model
the LDC of individual and aggregated residential consumers [26], this work aims to both
simplify this six-parameter expression, as well as to link the parameters in its simplified
expression to properties of the consumer, such as the annual consumption. Therefore,
Figure 2b displays the shape of the first proposed improvement for low-voltage consumers,
a 5-parameter model. Intuitively one could indeed expect households to spend the majority
of their year on a certain baseload, i.e., the aggregated standby demand of the appliances in
the household. As such, this would correspond to a saturation effect towards this standby
demand being present in the household LDC for limτ→1 P i(τ), in contrast to the decreasing
slope that is present in Equation (1).

Consequently, a five-parameter LDC model for low-voltage distribution grid con-
sumers is proposed in Equation (2). The linear term included in Equation (1) is omitted.

P i(τ) = 1− bτc +
d

1 + e f (τ−g)
− d

1 + e f g (2)

The LDC based on the measurement data is constructed for each individual metering
point and the values of the parameters included in Equations (1) and (2) are subsequently
determined via a curve fitting algorithm. This procedure is performed via the lmfit
package in Python, where a Least-Squares minimization with a Trust Region Reflective
method is used [27].
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(a) (b)
Figure 2. (a) Shape of the 6-parameter LDC for commercial, institutional and industrial consumers [23], and (b) shape of the
proposed 5-parameter LDC for low-voltage consumers.

The parameters are constrained according to following boundaries:
0 ≤ a, b, c ≤ 1
0.02 ≤ d ≤ 1
25 ≤ f ≤ +∞
0.025 ≤ g ≤ 1

The boundaries were chosen nearly identical to those used for the LDC fitting pro-
cedure in [23]. The only deviation from the boundaries in [23] is the lower bound of the
g parameter. Therein, a lower bound of 0.1 for g was assumed. However, as mentioned
in Section 1, residential consumers are more peak-intensive and their peaks are more
stochastic. It is expected that this behavior is reflected in the shape of the LDC with a
shorter duration of the peak and step. Therefore, the lower bound for g, the parameter
linked to the location of the step, can be taken smaller than the aforementioned 0.1. A value
of 0.025 was chosen for this lower bound.

On average, the correlation coefficient R2 is 0.977 for both expressions. However,
for 91% of the consumers in the dataset, both the Akaike and the Bayesian information
criterion point toward Equation (2) as the most suitable expression to describe the LDC.
This is further supported by the very small value of a for the 6-parameter expression: on
average, a has a value of 0.0026, corresponding to a near negligible slope in Equation (1).

However, describing consumers via their load duration curve has several disadvan-
tages. One inherent disadvantage of the load duration curve is the loss of all temporal
information, which forms the subject of Section 2.4. A second disadvantage is related
to the use of the expression for the demand-normalized LDC. While this allows for a
more straightforward and scale-independent comparison of the parameters describing the
behavior of individual consumers, all information related to the original peak demand
is lost, and no information on the traditional properties such as the annual consumption
is retained.

Therefore, the second step of this analysis entails incorporating possible correlation
between the values of the parameters in Equation (2) and the annual consumption. The re-
lation between the individual parameters of the LDC and the yearly consumption of the
consumer is given in Figure 3. Despite a large spread being present in the scatterplot, the
parameter c describing the power law in Equation (2) is noticeably correlated with the
yearly consumption. Consequently, Equation (3) fixes the parameter c at the value c0 + c1Y.
The values of c0 and c1 are determined by an ordinary least-squares fitting procedure on
the relation between Y, the yearly consumption in kWh, and c, as shown in Figure 3.

P i(τ) = 1− bτc0+c1Y +
d

1 + e f (τ−g)
− d

1 + e f g (3)
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Figure 3. Scatterplots of the parameters included in Equation (2), plotted versus the yearly consumption.

With an obtained value of 0.0345 and 0.456× 10−6 for c0 and c1 respectively, an analo-
gous fitting procedure of the LDC to Equation (3) is performed. The result and a comparison
with the previous two models is listed in Table 2. While a decrease in median R2 value
can be observed, this value is still acceptable. However, the observed mean value is signif-
icantly lower and exhibits an increasing difference with the median value, highlighting
that the 4-parameter model of Equation (3) leads to a worse fit for a non-negligible amount
of consumers.

Table 2. Comparison of the fitting result of the three considered LDC models.

Model Median R2 Value Mean R2 Value

6-parameter model, Equation (1) 0.987 0.977
5-parameter model, Equation (2) 0.987 0.977
4-parameter model, Equation (3) 0.968 0.937

As expected, given the high spread in the linear relation between c and the yearly
consumption, the reduction in accuracy of modeling the LDC is a trade-off that has to
be made in order to incorporate the dependency on the consumer’s yearly consumption.
Given the importance of the fitted parameters of the LDC in the remainder of this work,
the further analyses are performed on Equation (2), the model that exhibited superior
performance in the fitting procedure.

2.3. Definition of Peak Demands

The validated analytic expression of the load duration curve can now be used to
introduce a binary classification for peak demands, i.e., all values P i(τ) for τ smaller
than a certain threshold τ∗ can be considered peaks for the individual consumer while all
other values cannot. The challenge now lies in determining τ∗, the value of this threshold.
The only condition a proposed expression or value for τ∗ has to fulfill for the purposes
intended in this work is that it has to be sufficiently small in order to yield usable results.
Although the term “usable” implies a certain level of arbitrariness, it should be clear that a
threshold value that labels 50% of all demands on yearly basis as peaks is not practical for
e.g., peak shaving algorithms. Therefore, given the continuous nature of the load duration
curve, it is inevitable that any proposed threshold value will have its own advantages
and disadvantages.

This work proposes using the point of maximum curvature as this threshold, for the
function for τ sufficiently small. Intuitively, the curvature of a function is the amount by
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which this function deviates from a straight line in a certain point. Therefore, the maximum
of this curvature function denotes the point where the curve has the sharpest bend.

For τ sufficiently small, the LDC as defined in Equation (2) can be approximated
by Equation (4), which is dominated by the power law responsible for the peak demand
features and the steep decay of the LDC:

P i(τ) ≈ 1− bτc. (4)

Using the point of maximum curvature of Equation (4) as the threshold value to define
the area of peak demands has two major advantages. First, this threshold is different for
each individual as it depends on the shape of the individual load duration curve, allowing
for a differentiation among low-voltage consumers. Second, the point of maximum curva-
ture for an analytic function can be unambiguously described analytically. The curvature
function κ(τ) of Equation (4) is given by:

κ(τ) =

∣∣(P i)′′(τ)
∣∣[

1 +
[
(P i)′(τ)

]2] 3
2

(5)

Maximizing κ(τ) with respect to τ yields following value for the point of
maximum curvature:

τ∗ =

(
c− 2

b2c2(2c− 1)

) 1
2(c−1)

(6)

The histogram of the calculated values of τ∗ and the corresponding value P i(τ∗)
for the considered dataset is given in Figure 4. A beta probability density function is
successfully fitted and shown to be able to describe the density functions, as shown
overlaid in Figure 4. The distribution of τ∗ has a 10–90 percentile range of [0.017, 0.041],
with a mean value of 0.028. Translating this mean value of the normalised time τ to a yearly
basis means that, on average across the distribution, 2.8% of the values on a yearly basis can
be labeled as peaks, corresponding with 981 values of the 35.040 data points. Furthermore,
the distribution of P i(τ∗) shows the large potential of peak shaving initiatives: the mean
value of P i(τ∗) is 0.35, i.e., 35% of the original maximum demand.

Figure 4. Density histogram of the calculated values of τ∗ and P i(τ∗), as defined by Equation (6).

2.4. Feature Construction

The aim of this work is to construct a feature set that can be used for dual purposes.
First, to group similar consumers together in so-called clusters based on properties that
are relevant for (i) distribution network operators with respect to their operating and
tariffing purposes, as well as for (ii) individual consumers, i.e., for the local applicability
of distributed energy resources and how evolving tariff structures impact them. Second,
to investigate the stochastic nature of peak demands, given the current trend of countries
to introduce capacity-based tariff schemes for low-voltage consumers combined with
the uptake of small-scale storage systems that can be used for peak shaving purposes
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in residential areas. Given the intended purposes and the large temporal dependence
of renewable yields, we choose to explicitly incorporate the temporal influence on the
demand profile in the construction of the feature set.

Two different temporal levels relevant for low-voltage distribution grids are con-
sidered for these time-dependent features: the daily and the weekly level. At the daily
level, the time periods are defined based on the time of day. Similarly, at the weekly level
the distinction between weekday and weekend is maintained. In order to distinguish
between intervals I defined on either the daily level and the weekly level, two notations
are introduced: Id and Iw. The superscript d stands for daily, w for weekly.

While the definition of the intervals Iw is unambiguous, i.e., weekdays versus week-
ends, distinct intervals at the daily level Id for residential consumers are not universally
agreed upon. In [17], Haben et al. identified four key time periods for residential con-
sumers: overnight, breakfast, daytime and evening period. Inspired by their findings,
the distinction as listed in Table 3 is introduced for the daily level. In this work, the daytime
period is further subdivided in a morning and afternoon range. Furthermore, while the
daytime period in Ref. [17] ended at 15:30, it is extended to 18:00 for this work.

Table 3. Definition of the considered time periods Id at the daily level, based on the hour of the day, h.

Id Definition

Early morning h ∈ [ 06:00–08:30 ]
Morning h ∈ [ 08:30–12:00 ]

Afternoon h ∈ [ 12:00–18:00 ]
Evening h ∈ [ 18:00–22:30 ]

Night h ∈ [ 22:30–06:00 ]

Other temporal levels can easily be incorporated in the feature set, e.g., the seasonal
influence by including four time periods at the annual level corresponding with the seasons.
However, this seasonal variation is omitted in this work, as these features were found to
not significantly impact the clustering result in Section 3.1 and rather obfuscated the results,
limiting the ease of interpretation.

Based on these time periods at two different temporal levels, a two-pronged approach
is introduced in the subsequent subsections. The first class of features, which will be
discussed in Section 2.4.1, considers the relation between the temporal property and the
consumption: which fraction of the demand occurs during a certain predefined time
interval? In contrast, the second class of features, discussed in Section 2.4.2, considers the
temporal properties of the peak demands: when do these peak demands occur? In order
to unambiguously define which values constitute a peak, the analysis performed on the
analytic form of the load duration curve in Section 2.3 is used.

The individual features are suitable to characterize consumers, e.g., for assessing
household compatibility with renewable energy sources (households with high daytime
consumption are more favorable for rooftop-integrated PV installations without a battery),
or for the timing of the individual peak demands, which is beneficial information for
distribution network operators. However, it is the knowledge on the fraction of the
demand combined with the simultaneous occurence or absence of peak demands in that
time period that can clarify the stochastic nature of these peak demands. Consumers that
consistently exhibit a disproportionate amount of peak demands in a certain time period
can be targeted for peak shaving initiatives, either via demand response programs or by
utilising an energy storage system.

2.4.1. Temporal Dependence of Consumption

Let Bi
Ix be the subset of all measured values Pi(t) of consumer i that occur in one of

the previously defined time periods Ix, with the superscript x denoting the considered
temporal level. This yields following definition of this subset:
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Bi
Ix =

{
Pi(t) | t ∈ Ix }, x ∈ {d, w} (7)

The fraction f i,c
Ix of the demand of consumer i in time period Ixi is given by:

f i,c
Ix =

∑y∈Bi
Ix

y

∑t Pi(t)
(8)

This definition yields a total of seven features: five features for the daily level, two for
the weekly level. However, as the subsets Bi

Ix for a given temporal level x are disjoint by
construction, the sum of f i,c

Ix over all Ix for a fixed x is equal to 1. Therefore, this reduces
down to five linearly independent features: four for the daily level, one for the weekly level.

2.4.2. Temporal Dependence of Peak Demands

The features related to the peak demands are treated in a different way than those
linked to the consumption. While the amplitude of the demand Pi(t) at a certain point
in time is important to determine the fraction of consumption that happens in a time
interval, only the presence of peak demands is of importance for the second set of features,
not the size of the peaks. Let Di be the subset of all measured demand values Pi(t) of
consumer i that can be considered as a peak demand, as defined in Section 2.3. As the
LDC is normalized with respect to the annual peak demand Pi

max, the value P i(τ∗) has to
be rescaled:

Di =
{

Pi(t)| Pi(t) ≥ P i(τ∗) · Pi
max
}

(9)

Analogous to the previous section, let Di
Ix now be the subset of Di that occurs in time

period Ix:

Di
Ix =

{
Pi(t) | Pi(t) ≥ P i(τ∗) · Pi

max ∧ t ∈ Ix }, x ∈ {d, w} (10)

The number of peak demands per time interval can be found via the cardinality of the
setDi

Ix , i.e.,
∣∣Di
Ix

∣∣. The fraction of peak demands for consumer i in a certain time period, f i,p
Ix ,

can therefore be found via Equation (11). Analogous to the features related to the temporal
aspect of the consumption behavior, this leads to another five linearly independent features.
Consequently, this brings the number of considered linearly independent features for the
clustering algorithm up to ten parameters.

f i,p
Ix =

∣∣Di
Ix

∣∣∣∣Di
∣∣ (11)

These 14 features can now describe the temporal behavior and distribution of the
consumption and peak demands, as illustrated for one randomly chosen regular household,
household 802, in Figure 5. Both the fraction of the consumption and the fraction of peaks
are shown for each time period at the daily and the weekly level. Major differences between
the distribution describing the consumption and peaks can be observed. At the weekly
level, 65% of the household’s peaks are observed in the weekend, while only 35% of the
consumption occurs during weekends. Similarly, more than 25% of consumption for this
consumer happens at night, as defined by Table 3, while 10% of the peak demands lie
in this time period. It is this difference between distributions of consumption and peak
behavior at the same temporal level that forms the subject of the following sections, as the
presence or absence of differences can clarify whether or not peak demands tend to be
more stochastic or more deterministic.
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Figure 5. Example of the 14 features describing the temporal behavior of the consumption and peak demands at the daily
and weekly level of household 802 in the dataset.

2.5. Transformation & Analyses on the Feature Set

One additional step is performed on the proposed set of features before proceeding to
either the clustering algorithm or the distributional analysis: the feature transformation. De-
pending on the proposed methodology for each analysis, a different feature transformation
is more appropriate. Therefore, this section discusses both the proposed methodology for
each performed analysis, as well as the corresponding most suitable feature transformation.

2.5.1. Clustering Algorithm

No additional information or metadata is included in the dataset of load profiles.
As such, the true underlying structure or the optimal amount of clusters to segmentate the
dataset into is unknown. Therefore, unsupervised machine learning is used to cluster those
profiles that exhibit similar behavior. The majority of the rich body of literature available
on the unsupervised clustering of load profiles, whether chronologically ordered profiles
or based on a constructed feature set, is based on one of two techniques: either a variant
of the K-means clustering algorithm or via agglomerative clustering. In the structured
literature review on the classification of consumption profiles performed by Tureczek and
Nielsen, 65% of the considered papers included a K-means-based method, while another
29% performed analyses based on agglomerative clustering [4].

There are several differences between K-means and agglomerative clustering, both
from a conceptual viewpoint, as well as the computational aspect. Agglomerative clustering
offers a visualisation in a so-called dendrogram of the clustering results, intuitively showing
how substructures in the dataset emerge when dividing or merging clusters. Furthermore,
when a feature set is used as input for the agglomerative clustering, further analysis on the
merging of clusters offers the possibility of tracking which features are the driving force that
distinguish clusters. However, agglomerative clustering is a so-called greedy algorithm:
at each step, the two closest clusters as defined by a linkage method are merged together.
Therefore, agglomerative clustering techniques are prone to yield a sub-optimal solution
instead of a global optimum. In contrast, given an input k, the number of desired clusters,
a K-means algorithm partitions the dataset into k clusters. However, K-means tends to
get stuck in a local minimum instead of the global minimum. The main challenge for a
K-means approach lies in finding the optimal amount of clusters. From a computational
point of view, K-means is preferable for larger datasets as the time complexity for K-means
algorithms typically is linear in the input data size, O(n), while the time complexity for
agglomerative clustering is quadratic, O(n2).

In this work, an agglomerative clustering algorithm with Ward’s linkage method is
used, as implemented in Python’s scipy package [28,29]. The main contribution of this
work is introducing and validating a novel feature set. Therefore, the visualisation and
emergence of substructures in the dataset in the clustering process is of major importance,
justifying the choice for an agglomerative clustering algorithm. The proposed linkage
method minimizes the total within-cluster variance for each merging step, which tends to
yield approximately equally sized clusters. Following the arguments presented by Kang
and Lee in [30], it is a necessary condition for clusters to have a roughly equal size, in order
to be useful in real life applications according to expert opinions. Therefore, Ward’s linkage
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method can be deemed appropriate, as the tendency of clustering algorithms to propose
singular clusters that contain outliers is avoided.

For the proposed feature set, Ward’s linkage method for agglomerative clustering
relies on the Euclidean distance between the 10 linearly independent features in the 10-
dimensional feature space. Therefore, obtained results will depend on the scale of the input
features. However, when looking at both Table 3 and Figure 5 it is clear that the proposed
features are not yet at the same scale.

By construction, the proposed time periods are not of the same scale, e.g., the weekend
period is not the same length as the weekday period, nor is the early morning of similar
length as the night interval. Therefore, even a uniform distribution would not lead to
similarly scaled features, leading to a distortion of importance of several features.

Therefore, an initial transformation is performed that rescales the features based on
the length of their time period such that in the case of a uniform distribution, the value of
all features f i

Ix would be equal to 1. Any deviation of a uniform distribution will then lead
to a deviation of this unity value for each parameter, while avoiding an artificial inflation of
the importance of an individual feature or one set of features. However, of the ten proposed
linearly independent features, eight are defined on daily basis, while only two are defined
on weekly basis. While this initially proposed transformation aims to give each individual
feature the same weight, the two sets of features defined on different temporal levels are
not a priori equally represented in the feature set. Consequently, instead of transforming
the features on weekly basis to be equal to 1 in the case of a uniform distribution, they
are assigned an additional weighting factor equal to 2 to partially offset the numerical
advantage of daily features.

In summary, the two sets of features proposed in Section 2.4 are transformed in a
two-step transformation before being used as input for the hierarchical clustering, using
a Ward’s linkage method. First, the features are rescaled based on the length of the time
interval in which they are defined, which leads to individual features of the same scale.
In the second step, an additional weighting factor is assigned based on the amount of
features for each temporal level. A weighting factor of 2 is proposed for the weekly-level
features, which partially offsets the numerical advantage daily-level features have in the
proposed feature set. Further increasing this weighting factor would put a higher emphasis
on the difference between weekdays and weekends in the clustering algorithm.

2.5.2. Distribution Analysis

The distribution of features f i
Ix at the daily or weekly level x can yield interesting

information. As mentioned before, households with high daytime consumption are ideal
candidates for PV installations, whereas households that exhibit a large amount of peak
demands in a certain time interval, could be targeted via demand response initiatives.
However, it is the difference between the distributions describing the consumption and
peak behavior at the daily or weekly level that yields information about the disproportion-
ate presence of peak demands at a certain time interval, and thus about how stochastic the
presence of peak demands are for an individual household. Therefore, two measures are
proposed to investigate these distributions.

At the level of the individual distributions, we propose using the concept of entropy
at the daily or weekly level to characterize the variability of household behavior. Similar to
the goal of this work, Ref. [9] introduced entropy to study the variability of households,
not with respect to features based on consumption of peak behavior, but based on the
variability of consumption behavior described by the frequency of different representative
daily load shapes during the year. Shannon entropy as introduced in information theory is
defined in Equation (12), with xi being a possible outcome and p(xi) the probability of this
outcome [31].

H(x) = −
k

∑
i=1

p(xi) ln p(xi) (12)
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This definition of entropy has several interesting properties for this research. First, in
the case of a uniform distribution, the entropy reaches its maximum and thus yields maxi-
mum uncertainty. Second, any deviation from a uniform distribution results in a decreasing
entropy, and thus less uncertainty. If there is no uncertainty, then the entropy becomes
0. In order for these properties to hold in the analysis of the introduced features, it is
important that these features are consistent with the assumptions in the Shannon entropy.
First, in the case of a uniform distribution, the entropy becomes maximal. A uniform
distribution for the consumption behavior would entail having the same consumption at
each time period.

However, as mentioned in Section 2.5.1, the periods as defined in Section 2.4 are not
of equal length, which leads to inequal features in the case of a uniform consumption
distribution. Therefore, the features are rescaled based on the length of the interval for
which they are defined such that a uniform consumption distribution leads to identical
consumption-related features. Furthermore, Equation (12) is defined for probabilities p(x).
As such, the features defined on the five periods at the daily level are rescaled to 0.2,
while those defined at the two periods at the weekly level are rescaled to 0.5.

The second part of the distributional analysis entails a comparison between the
distributions of the consumption behavior and the occurrence of peak demands at the daily
and weekly level. As such, a measure for the distance between these two distributions
has to be introduced. In this work, the Wasserstein-1 distance is used to characterize the
distance metric between two probability distributions [32]. Here, the formal definition of
the Wasserstein-1 distance as integrated in Python’s scipy package is used [29]:

l1(p, q) = inf
π∈Γ(p,q)

∫
R×R
|x− y|dπ(x, y) (13)

Here, p and q are two distribution functions, and Γ(p, q) is the set of probability func-
tions on R×R whose marginals are p and q on the first and second marginals respectively.
This Wasserstein distance is also commonly called the earth-mover’s distance, as it origi-
nated in the field of optimal transport issues. Intuitively, it can be seen as the minimum
amount of “work” that has to be done to transform one distribution into the other, if each
distribution could be considered as a pile of earth. The “work” takes into account both the
distance it has to move, as well as the amount of earth it has to move. As such, distributions
P and Q that are different over “long” (horizontal) regions will be far away from each other
in the Wasserstein distance sense [33].

It is this property of the Wasserstein distance that is appropriate for this work. As the
time periods at the daily level were introduced in an ad hoc way in Table 3, a distance
metric that takes the horizontal difference into account instead of performing a pointwise
comparison partly compensates the arbitrary nature of the definition. For a given con-
sumption behavior, this allows us to identify distributions of the peak demands that are
closer in time. This property is illustrated in Figure 6, where an artifical distribution of the
consumption at the daily level is compared with two peak demand distributions. As the
first probability distribution of the peak demands has a maximum chronologically closer to
that of the normalised consumption, the Wasserstein distance is lower. The chronological
ordering of the time periods as given in Figure 6 is chosen for the remainder of this analysis.
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Figure 6. Illustration of how the Wasserstein distance is able to capture chronological differences between the probability
distributions of consumption and peak demands.

3. Results

First, the results for the agglomerative clustering algorithm are illustrated based on
the calculated dendrogram. The results for a low number of features are benchmarked to
the available synthetic load profiles in Flanders, subsequently highlight how differences in
feature behavior lead to the emergence of distinct and compact clusters, and argue how
this knowledge can be leveraged from the viewpoint of demand response programs or
peak shaving initiatives. Second, the distributions of the features at the same time levels are
analysed. On the one hand, the Shannon entropy is used to characterize the variability of
each type of feature. On the other hand, the Wasserstein-1 distance is used for an in-depth
analysis of the stochastic nature of the peak demands, by comparing the distributions
describing the household consumption and peak demand behavior.

3.1. Clustering Result

The dendrogram visualizing the hierarchical clustering process using Ward’s linkage
method on the proposed feature set is shown in Figure 7. Two horizontal cuts are included
in the figure. The black line at y = 30 denotes the height where three clusters are obtained.
This can serve as an initial benchmark, as there are three synthetic load profiles available
for low-voltage consumers in Flanders: residential with and without electric heating, and
non-residential. The red line was chosen such that 10 disjoint clusters emerge, leading to the
color threshold of the highlighted clusters in the dendrogram. This threshold of 10 clusters
was chosen based on two independent studies stating that for practical considerations,
the total number of clusters should not exceed 10 [13,30]. This argument is based on the
opinions of industrial experts, as these clusters are often used for tariffing or marketing
purposes.

First, it is necessary to benchmark the clustering result to the available residential
SLPs in Flanders. As the color threshold and further discussion in this section is based
on 10 clusters, the analysis is performed based on the highlighted 10 clusters. By tracking
the merging clusters into the three branches of the dendrogram at the cut y = 30, a bench-
mark can be performed. Figures 8 and 9, displaying respectively the distributions of the
14 untransformed features for the individual clusters, and the distributions of the yearly
consumption of the consumers assigned to each clusters, allow for an interpretation of the
obtained clusters based on consumer properties.

The first branch separates into clusters 1–3, the second into clusters 4–5, while the
final branch leads to clusters 6–10. The clusters originating from these three branches are
partitioned by dashed lines in Figure 8 for an easier comparison.

The following discussion on the benchmarking of the results is based on the observed
feature distributions in Figure 8. The first branch groups consumers with a high fraction of
consumption and peaks in the evening, which is typical for regular households. The second
branch, containing clusters 4–5, groups consumers with a high fraction of the consumption
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and peaks at night. This is encouraging, as this could indicate the presence of electric
heating, one of two major categories of residential consumers.

Figure 7. Dendrogram obtained via hierarchical clustering, with a color threshold highlighting
10 clusters. Individual profiles are given on the x-axis, while the y-axis denotes the distance.

The interpretation of the third branch is less straightforward, as the properties of the
clusters composing this branch are more diffuse: (i) clusters 6–7 group consumers with a
disproportionate amount of peaks during the weekend, (ii) cluster 8 collects the consumers
with a significant amount of peaks during the early morning, whereas (iii) clusters 9–10
exhibit a large number of peaks during the morning and afternoon.

Figure 8. Boxplots visualizing the distribution of the 14 untransformed features for 10 clusters, with
the 10 features at the daily level displayed on the left and the 4 features at the weekly level on the
right. The whiskers of the boxplots describe the [10, 90] percentiles.
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Figure 9. Density histograms with shared y-axes, displaying the distribution of the yearly consumption of the individual
consumers assigned to each of the 10 considered clusters. The black plot denotes the density for the individual cluster,
while the plot in yellow indicates the density of the full dataset.

It is clear that for each time period and in the same branch of the dendrogram,
the differences between the fractions of total consumption for that period are limited.
Rather, the temporal behavior of the peak demands is the driving force to further separate
clusters in each of the three major branches of the dendrogram. Furthermore, the clustering
process yields compact clusters with comprehensive results.

This illustrates the usefulness of a feature set that includes the temporal properties of
peak demands, especially with the advent of capacity-based tariff schemes for low-voltage
consumers. With the introduction of capacity-based tariffs, it is no longer sufficient to
know when consumption occurs. Additional knowledge about when peak demands tend
to happen is vital to offer consumers the most suitable techno-economic solution.

As a post-hoc validation of the performance of the proposed feature set in determining
customer categories, the clusters of the different consumer types in the dataset as introduced
in Section 2.1 are determined and given in Table 4. Clusters 4 and 5 are predominantely
populated by households with electric heating, while cluster 10 groups households with
high daytime consumption as well as the majority of the SMEs. However, not all profiles
with electric heating are categorised inside clusters 4–5. This is further investigated in
Figure 9, which displays the density plots of the yearly consumption for each individual
cluster compared to the density plot of the full dataset. Matched against the density plot of
the complete dataset, clusters 4, 6, 8 and 10 are skewed towards households with lower to
average yearly consumption in the Eurostat classification. This distribution for cluster 4 is
expected and can clarify the diffusion of households with electric heating over different
clusters. As the demand profiles of these households can be considered an aggregation
of the profile of a regular household with a load profile of an electric heating appliance,
the features connected to the peak demands are intrinsically linked to the behavior of that
load profile and the timing of the peak demands without the electric heating. The heating
load profile for households with otherwise relatively low yearly consumption dominates
the aggregated load profile, and consequently encounter the majority of their consumption
peaks during the night, consistent with the behavior of cluster 4. For households with
electric heating in e.g., cluster 3, the consumption and peak demands during the evening
outweigh those during the night.
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Table 4. Relative frequency of consumer categories over the 10 different clusters.

# of Profiles 1 2 3 4 5 6 7 8 9 10

SME 20 0% 5% 0% 0% 0% 0% 0% 10% 10% 75%
Ripple control heating 107 2% 6% 6% 18% 36% 9% 20% 2% 2% 0%
Continuous heating 77 14% 8% 15% 11% 31% 1% 10% 4% 4% 0%
Air conditioning 18 17% 17% 6% 0% 6% 0% 33% 6% 17% 0%
Regular consumer 1206 17% 25% 5% 0.1% 1% 7% 17% 8% 16% 5%

It can be concluded that the proposed feature set is able to capture the known con-
sumer categories from existing SLPs, and thus passes our self-imposed benchmark test.
Three clusters can be attributed to known differences in behavior for low-voltage con-
sumers: the presence of electric heating is captured in clusters 4–5, while the high daytime
consumption of SME profiles is present in cluster 10. Deviations from these two clusters
for electric heating can be traced back to differing contributions of the electric heating load
to the total yearly consumption of the households.

3.2. Stochastic Nature of Peak Demands

The variability of the daily and weekly consumption and peak patterns are described
by the entropy of their probability distribution, where the individual fractions are nor-
malized with respect to the length of the considered time period. A uniform distribution
with maximum uncertainty leads to a maximal value of the entropy, while the absence of
uncertainty leads to an entropy value of 0.

For example, a situation where all peak demands occur during the night due to an
electric heating would lead to 0 entropy at the daily level for the consumption probability
distribution. The obtained distributions for the entropy at the daily and weekly level
for the consumption and peak probability distributions of the full dataset are given in
Figure 10. At the daily level, the peak demands exhibit a much larger variability than the
consumption. This is unsurprising, given the continuous nature of the consumption. At the
weekly level, this difference is less pronounced.

Figure 10. Density histograms of the entropy of the consumption and peak demands at the daily and weekly level, with a
fitted beta probability density function overlaid in yellow.

A beta distribution was successfully fitted to each individual density histogram. The
2-parameter beta probability distribution, defined on the interval [0,1], is defined as follows,
with a > 0 and b > 0:

f (x, a, b) =
Γ(a, b)xa−1(1− x)b−1

Γ(a)Γ(b)
(14)
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The beta function offers several properties that make it suitable to describe the ob-
tained distributions. First, it has a finite support: the regular 2-parameter beta function in
Equation (14) has a [0,1] support. As the entropy can vary from 0 to a maximum of− ln(0.2)
for the daily level and − ln(0.5) for the weekly level, the finite support of a rescaled and
shifted beta function is appropriate. Second, as can be observed in Figure 10, the shapes of
the daily and weekly behaviors differ significantly. The two shape parameters a and b in
the definition of the beta probability function allow us to describe the four distributions
with the same formula. For the distributions shown in Figure 10, it merely means that
b > 1 for the distributions at the daily level, while b < 1 for those at the weekly level.

The relation between the entropy and the clusters obtained in Section 3.1 is inves-
tigated in Figure 11, which displays the mean values of the entropy for each individual
cluster. The significantly lower entropy of the probability distribution describing the peak
demands can be traced back to the clustering results. The overwhelming presence of peak
demands during the night period results in low entropy for cluster 4, while cluster 10
exhibited a majority of its peaks during daytime. Similarly, half of the peak demands for
cluster 1 occurred during the evening. On a weekly basis, clusters 6–7 showed a significant
amount of peak demands during the weekend, leading to a lower entropy for this period.
A low entropy of the probability function describing the peak demands can be taken as an
indicator for the presence of a large amount of peaks in a certain time period, which can
be leveraged to target demand response programs or peak shaving via an energy storage
system. Furthermore, a clear relation can be observed between the obtained clusters on the
introduced feature set and the entropy values of the peak demands. The lower entropy
values in certain clusters can be traced back to differing intercluster consumer operations
at the daily or weekly level.

Figure 11. Mean values of the calculated entropy of the distributions of the normalized consumption and peak demands at
the daily and weekly level of the individual consumers populating each cluster.

However, the stochastic nature of these peak demands remains an open question.
The probability distributions of the peak demands tend to be significantly more variable
than those of the consumption behavior, according to the entropy. Even so, this entropy as
a single variable does not reveal anything about whether or not the amount of peaks in a
certain time period is disproportional relative to the consumption in that time period.

Therefore, the Wasserstein-1 distance is used to quantify the difference between the
probability distributions of the consumption and peak demands at the daily and weekly
level for each individual consumer. A larger distance corresponds to a stronger deviation
of the peak distribution from the distribution of the consumption, and thus peaks are more
deterministic. Figures 12 and 13 yield the distributions for the Wasserstein-1 distances at
the daily and weekly level, separated by individual cluster. Analogous to Figure 9, the
distribution of the Wasserstein-1 distance calculated for each profile in the full dataset is
included for comparison to cluster-specific behavior.
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Figure 12. Histograms of the Wasserstein-1 distance between the distributions of the consumption and peak demands
probability functions at the daily level. The black plot denotes the density for the individual cluster, while the plot in yellow
indicates the density of the full dataset.

Figure 13. Histograms of the Wasserstein-1 distance between the distributions of the consumption and peak demands
probability functions at the weekly level. The black plot denotes the density for the individual cluster, while the plot in
yellow indicates the density of the full dataset.

The distributions of the Wasserstein-1 distances further confirm the findings concern-
ing the behavior of consumers constituting each cluster. At the weekly level, clusters 6 and
7 show a major deviation from the dataset behavior, due to the presence of a dispropor-
tionate amount of peak demands in the weekend. Similarly for the daily level, cluster 4
displays a large Wasserstein-1 distance, pointing to the electric heating which pushes nearly
all peak demands to nighttime.

Clusters 1 and 2 exhibited similar behavior for their consumption at the daily level in
Figure 8. However, households in cluster 1 are characterized by an even higher amount of
peak demands in the evening than those in cluster 2, translating to a higher than average
Wasserstein-1 distance for cluster 1 at the daily level. This variability and disproportionate
amount of peaks in a certain time interval offers insight in possibilities for targeted demand
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response initiatives or peak shaving via a residential energy storage system. While cluster 6–
7 and 8–9 have a similar consumption pattern, the time of occurrence of peak demands is
significantly different, which leads to distinct solutions.

As peak demands are typically generated by the simultaneous use of individual appli-
ances, targeted demand response initiatives can be effective for cluster 6 and 7, where the
majority of peaks occurs in the weekend. Scattering the use of individual appliances
over different days or being mindful of the simultaneous use in the weekend by inducing
behavioral changes can reduce the number of peak demands. However, this requires a
trigger for the behavioral changes and for these appliances to be available in different
time periods. If this is not an option, investing in an energy storage system applying a
peak shaving algorithm during weekends, while e.g., maximising the PV self-consumption
during weekdays could offer an alternative, although the economic viability depends on
the local tariff structure and the investment cost. In contrast, cluster 8 is characterized by
peak demands in the early morning and during the daytime, while households in cluster 9
exhibit peaks during the whole day. Consequently, for these households, a PV installation
combined with a storage system can already offer a solution to reduce the demand from
the grid, while maintaining a high self-consumption.

As a final check on the stochastic nature of peak demands, the relationship between
the consumption in a time period and the presence of peak demands is investigated.
Figure 14 displays the relations between the (untransformed) fractions of the consumption
and peak demands at the daily level, with an ordinary least-squares (OLS) regression fit
overlaid given the observed linear relation. The coefficients obtained in the OLS regres-
sion for f p = a× f c + b, with f p and f c the fraction of respectively the peak demands
and consumption in that time period, are given in Table 5. As the presence of electric
heating heavily skewed previous results for the consumption and peak demands at night,
consumers with and without electric heating are treated separately for this analysis.

A correlation between the fraction of the consumption and that of the peak demands
is present in Figure 14 and 15. As the presence of consumption in a certain time period
is a prerequisite for a peak demand, some relation between the two types of parameters
was expected. At first sight, the linear relation could be interpreted as an indication of
predictability of peak demands in a certain time period. However, it is the spread on this
relation that is the indicator of the stochasticity of the peak demands. For example, if 30%
of a household’s total consumption is observed occurring during the evenings, the results
shown in Figure 14 suggests that 30–60% of the peak demands can occur in this same time
period. This large uncertainty, which is present for each of the considered time periods,
severely limits the usability of this linear relation, observed for the full dataset.

Figure 14. Relation between the fraction of consumption and peak demands in the time periods at the daily level, with an
OLS regression estimate overlaid.
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Figure 15. Relation between the fraction of consumption and peak demands in the time periods at the weekly level, with an
OLS regression estimate overlaid.

However, the knowledge of the introduced clusters can partly alleviate this uncertainty.
This is illustrated in Figure 16 for clusters 1–3, which group households with a large
fraction of their consumption during the evening, with a high number of peak demands
simultaneously occurring in this time period. While we should be cautious drawing
conclusions based on clusters that only include a limited amount of households, it appears
that the spread on the fraction of peak demands for the individual clusters is smaller than
those in Figure 14 for the full dataset, while the linear correlation that was observed before
is nearly non-existent in some relations.

Figure 16. Relation between the fraction of consumption and peak demands in three time periods at the daily level for
clusters 1–3.
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Table 5. Coefficients of the OLS regressions shown in Figures 14 and 15 at the daily and weekly level.

Time Period a b

Early morning 1.88 −0.11
Morning 2.58 −0.22

Afternoon 2.34 −0.31
Evening 2.53 −0.33

Night (regular consumer) 1.41 −0.21
Night (electric heating) 1.99 −0.33

Weekday 3.06 −1.50
Weekend 3.06 −0.56

4. Conclusions

The introduction of capacity-based tariffs poses a major challenge for residential
load modeling. The construction of representative load profiles traditionally involves
an averaging process. However, this involuntarily leads to less volatile profiles and
time-sensitive information about the peak demands is smoothened out. Consequently,
we set out to construct a new feature set that would be able to capture the stochastic
behavior of the peak demands. An expression for the load duration curve of individual
low-voltage consumers was initially validated. Using the point of maximum curvature
of the exponential decay as threshold, it was possible to define the individual’s region of
peak demands.

Two types of features were subsequently constructed. First, the fraction of consump-
tion that occurs in a certain time period at the daily or weekly level. Second, the fractions
of peak demands that occur in these same periods. The proposed feature set was used
in a hierarchical clustering process to build 10 clusters from a dataset of 1.422 profiles
of low-voltage consumers from a suburban region in Flanders. The clustering algorithm
yielded compact clusters that showed a clear connection to real-life applications concerning
the peak demands such as demand response initiatives, or the applicability of e.g., battery
storage systems for peak shaving purposes.

Furthermore, differences in the behavior of the peak demands were found to be
the main drivers of the clustering procedure. The presence of electric heating could be
identified for several clusters, while others exhibited high daytime consumption during
weekdays, which is typical for SMEs.

In the final analysis of this work, the stochastic nature of the peak demands was
investigated by considering the relation between the consumption and the presence of peak
demands in the same time period. The disproportionate presence of peak demands in a
certain time period was quantified, and a linear relation was observed between the fraction
of the consumption and peak demands in each time period. The spread on the results
quantified the stochasticity of the peak demands, which limited the general applicability of
the found relations. The obtained clusters showed a clear relation to the predictability and
variability of the consumption and peak behavior, reducing the stochasticity of these peak
demands and when they tend to occur.

The constructed feature set and performed clustering algorithm have several impli-
cations for the integration and application of new technologies on the low-voltage grid,
which can be further investigated. First, knowledge about the time of occurrence of peak
demands throughout the day and week allows for value stacking of residential energy stor-
age systems combined with PV installations for capacity-based tariffs. This can be achieved
by e.g., performing a control strategy that maximizes the PV self-consumption during the
week, but applies a peak shaving algorithm during the weekend if peaks predominantly
occur then. Second, the integration of electric vehicles for low-voltage consumers can
be further investigated. Optimal charging schemes can be suggested based on periods
where the household is typically occupied, but peak demands are absent. This could
avoid additional costs related to higher peak demands for capacity-based tariffs. In both
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cases, the clustering result can be used to propose generic strategies for consumers with
similar intracluster behavior. However, future experimental research and knowledge of
upcoming capacity-based tariffs are both necessary to validate the economic and technical
feasibility of these applications. A final possible research direction is related to the use
of stochastic load models. The obtained relation between the fraction of consumption
and peak demands in certain time periods can be used to validate and improve existing
stochastic load models. This could allow for more accurate stochastic modeling of the
temporal dependency of peak demands.
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