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Abstract: Environmental considerations are motivating the adoption of low global warming potential
refrigerants. Most of these are mildly flammable, i.e., A2L. Their susceptibility to ignition from
various ignition sources is poorly understood, particularly for the stoichiometric and quiescent
mixtures that are emphasized here. The viability of fifteen residential ignition sources to ignite
four A2L refrigerants is considered. Tests are performed in a windowed chamber with a volume
of 26 L. The refrigerants are R-32 (difluoromethane); R-452B (67% R-32, 26% R-1234yf, and 7%
pentafluoroethane); R-1234yf (2,3,3,3-tetrafluoropropene); and R-1234ze (1,3,3,3-tetrafluoropropene).
Two types of ignition sources are confirmed here to be viable: a resistively heated wire at 740 ◦C and
open flames. When the refrigerant concentration was increased slowly, candle flames and butane
flames extinguished before initiating any large deflagrations. Eleven other sources were not viable: a
smoldering cigarette, a butane lighter, friction sparks, a plug and receptacle, a light switch, a hand
mixer, a cordless drill, a bread toaster, a hair dryer, a hot plate, and a space heater. The difficulty to
ignite these refrigerants in air is attributed to their long quenching distances (up to 25 mm). Under
some conditions the refrigerants were observed to act as flame suppressants.

Keywords: combustion; explosion; fire; flame; flammability; halocarbons

1. Introduction

Improved sustainability of refrigeration systems will require low global warming po-
tential (GWP) refrigerants. These are generally hydrofluorocarbons or hydrofluoroolefins,
for which the same chemistry that causes their rapid destruction in the atmosphere also ren-
ders them mildly flammable in air. This mild flammability, classified as A2L, has motivated
extensive research [1–5].

The environmental risks of conventional refrigerants must be weighed against the fire
hazards of A2L refrigerants. There have been limited risk assessments for A2L refriger-
ants [6–11], but improving these will require an improved understanding of the viability
of ignition sources to ignite these refrigerants. As of December 2019, there had been no
serious accidents in the 68 million units charged with A2L refrigerants [12], but this could
change as these new systems age.

The A2L classification indicates a lower flammability limit (LFL) above 3.5% by
volume, a lower heating value enthalpy of combustion (LHV) below 19 kJ/g, and a laminar
flame speed (SL) below 10 cm/s [13]. Mildly flammable refrigerants are well understood
in terms of their LFL, LHV, and SL. Less is known about their ignitibility by potential
ignition sources such as hot surfaces, open flames, smoldering materials, electric arcs, and
residential appliances.

Table 1 shows several combustion properties of four common A2L refrigerants in air.
These are LFL and upper flammability limit (UFL), dry and moist stoichiometric mole
fractions, LHV, SL, flame quenching distance (Lq), autoignition temperature (AIT), and
minimum ignition energy (MIE).
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Table 1. Selected combustion properties in air of four A2L refrigerants and R-290.

Refrig-
erant

Form.
Mole Fraction, % LHV [14],

kJ/g SL, (cm/s) Lq [15], mm AIT, ◦C MIE, mJ

LFL-UFL Dry Stoic.
[16]

Moist
Stoic. [16]

R-32 CH2F2 14.4–29.3 [17] 17.4 - 10.3 6.7 [14] 7.55 764 [10] 65 [18]
R-452B - 11.9–24 [11] 14.7 14.3 - - - - -

R-1234yf C3H2F4 6.2–12.3 [17] 7.8 7.2 9.3 2.7 [19] 24.8 405 [20] 7500 [18]
R-1234ze C3H2F4 7–9.5 [17] 7.8 7.2 - 2.1 [19] - 368 [21] 63,000 [17]

R-290 C3H8 2.2–10 [17] 4 - 46.4 38.7 [14] 1.75 504 [6] 0.25 [17]

Also shown in Table 1 are the corresponding properties of R-290 (n-propane). Com-
pared to the halocarbons, R-290 has the lowest LFL, stoichiometric mole fraction, Lq, and
MIE, and the highest UFL/LFL ratio, LHV, and SL. The only property here for which R-290
is not an outlier is AIT.

Several conditions are necessary to ignite a gas mixture: it must be between the LFL
and UFL; the ignition source must exceed the MIE and/or the AIT; and the flame must
have a path that is free of cool surfaces within a distance of 0.5 Lq. These conditions are
necessary but not sufficient. For example, they do not consider fluid motion or the duration
of the ignition source. Therefore, the most conclusive way to assess the viability of an
ignition source is to perform tests.

Potential ignition sources for A2L refrigerants were identified and tested by many
past studies [6,8,9,18,21–24]. These emphasized refrigerant jets in air. Open flames can
ignite jets of A2L refrigerants [6,8,18,24–26], but this is not universally observed [1,21] and
it has not been tested when the refrigerant concentration increases slowly. Hot surfaces can
ignite A2L refrigerants [10,18,20,21,24,27,28], but again the results are found to vary with
the conditions and, often, to be stochastic.

Unfortunately, past studies did not consider a sufficiently wide array of ignition
sources or refrigerants. Furthermore, jets and slowly increasing refrigerant concentrations
are less likely to ignite than quiescent premixtures, which have only been tested with strong
electric arcs and hot wires [3,14,29–32].

Thus motivated, the objective of this study is to observe the viability of various poten-
tial residential ignition sources to ignite A2L refrigerants in air. The refrigerants considered
are R-32 (difluoromethane), R-452B (67% R-32, 26% R-1234yf, and 7% pentafluoroethane),
R-1234yf (2,3,3,3-tetrafluoropropene), and R-1234ze (1,3,3,3-tetrafluoropropene). For weak
ignition sources, only stoichiometric mixtures are considered. For strong sources, leaner
but still flammable mixtures are considered owing to safety considerations.

Several factors are not considered in these tests. For example, a refrigerant leak can be
accompanied with a release of flammable oil mist [10,20,25], which increases flammability,
or flashing refrigerant, which decreases flammability. Turbulence generally decreases the
ignition propensity, but can increase the rate of transport of reactants toward the ignition
source. Humidity is not expected to affect R-32 ignition, but it can for A2L refrigerants
with F:H atomic ratios above unity.

2. Experimental Methods

The apparatus is shown in Figure 1. The chamber is cubical with an internal dimension
of 29.7 cm and a volume of 26 L. Three of the chamber’s sides and its bottom are made of
3 mm thick stainless steel. The front is 10 mm thick transparent poly(methyl methacrylate)
for optical access. All tests were recorded with a video camera (Casio Exilim EX-FH100)
at 30 frames/s. For several potential ignition sources, temperatures were measured with
bare-wire type K thermocouples with wire diameters of 125 µm. The mixing fan had a
flowrate of 3 m3/min.
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Before each test the chamber was flushed with air (at 22 ◦C, 1.01 bar, and a relative
humidity of 40%). The chamber top was sealed with aluminum foil, tape, and (for most
tests) a chimney, as shown in Figure 1b. When so sealed the chamber was airtight. The foil
leading to the chimney was thinner, such that it ruptured during tests with sufficient heat
release rates.

The monomer refrigerants were extracted from their containers in the vapor phase,
but R-452B, a non-azeotropic blend, was extracted in the liquid phase and flashed upon
leaving the pressure regulator. The refrigerants were supplied to the chamber via a pressure
regulator, a copper tube in a water bath at 22 ◦C to facilitate flow measurement, and a
rotameter flowmeter.

For premixed tests the vent tube connecting the chamber to the exhaust was open and
the fan was on while refrigerant was flowed at 1 LPM into the chamber. Assuming the
chamber contents were fully mixed, the refrigerant mole fraction in the chamber, X, was

dX/dt = (1 - X) Q/V (1)

where Q is the refrigerant volumetric flow rate, t is time, and V is the chamber volume.
When the desired concentration was established (typically after 5 min) the flow was
terminated and the vent tube was closed. The fan remained enabled for 1 min, during
which it delivered 54 times the chamber volume. The fan was then turned off and a thermal-
conductivity gas analyzer (New Cosmos XP-3140) confirmed the refrigerant concentration.
The gas analyzer was calibrated for each refrigerant using partial pressures in a 12 L vessel.
After a hold of 2 min to ensure quiescent conditions, the ignition test was performed.

For jet tests, the ignition source was energized and then the refrigerant was introduced
at 1 LPM with the fan off.

In the presence of flames or sufficient heat, these refrigerants produce toxic HF and
COF2. To prevent their release into the laboratory the chamber was installed inside a sash
fume hood. After each test, the chamber was flushed with nitrogen and air for at least
10 min with the fan running.

Ignition limits can be difficult to measure repeatably, as they can vary with small
changes in the test conditions [3,7,19,29,30,33–37]. Fortunately, the tests reported here are
not believed to be close to ignition limits. Nevertheless, the test conditions were carefully
controlled and sufficient repeat tests were performed.
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3. Results
3.1. Premixed Tests with Resistively Heated Wires

Tests were performed with resistively heated Ni-Cr wires located 7 cm above the
chamber floor. Each wire had a diameter of 0.32 mm, a length of 16 cm, and 10 coils formed
by wrapping the wire around a 4 mm tube that was then removed. The relationship between
wire excitation and temperature was measured in air with a thermocouple. For a slowly
increasing excitation, the wires ruptured at an excitation of 12 VAC and a temperature
of 1140 ◦C.

The chamber was filled with the refrigerant/air mixtures shown in Table 2. The cham-
ber contents were well mixed and quiescent. The wire was then energized with a variable
transformer whose output was increased at a rate of 0.5 V/s.

Table 2. Hot wire tests that resulted in ignition.

Test Refrigerant X, % Mixture V, VAC Wire T, ◦C

1
R-32

13 Lean 8 788
2 17 Lean 7.5 744
3 17.4 Stoichiometric 8.9 863

4
R-452B

10 Lean 8 788
5 14.7 Stoichiometric 9.4 911

6 R-1234yf 7.8 Stoichiometric 9.5 921

7
R-1234ze

6.5 Lean 8 788
8 7.8 Stoichiometric 9.5 921

Table 2 shows the excitation, V, and corresponding wire temperature at which igni-
tion was observed. (Tests with 7.8–10% R-32 were also performed but are not shown in
Table 2 because no combustion was detected before the wire ruptured.) These mixtures
are generally between the LFL and UFL of Table 1, but tests 1 and 4 are slightly below the
LFL, which is defined based on a weaker ignition source and a larger flame threshold. For
each test in Table 2, the flames remained anchored to the hot wire, burned for about 3 s,
and then self-extinguished.

Figure 2 shows a representative flame image (tests 3, 5, 6, and 8) for each refrigerant.
The R-32 flames propagated upward and outward from the hot wire, reached the top of
the chamber, and then propagated downward until reaching the chamber floor. The other
flames propagated upward to the ceiling, where they spread to the walls but not far
downward. The flame surfaces for R-32 were generally smoother and less cellular.
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The flames were mostly blue, although yellow emissions, attributed to metals from
the wires, were occasionally visible. The R-32 flames were the brightest.

It is clear from these tests that a resistively heated wire at 740 ◦C or above can be a
viable ignition source for premixtures of these refrigerants.
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3.2. Premixed Tests with Open Flames

Open flames were tested in premixtures using safety match heads and butane flames.
The safety matches were 50 mm long and vertical. Their heads had diameters and

lengths of 2 and 3 mm, respectively, and were 10 cm above the chamber floor. The heads
were wrapped with and ignited by Ni-Cr wires with diameters and lengths of 0.32 and
10 mm, respectively.

The chamber was filled with the nearly stoichiometric refrigerant/air mixtures shown
in Figure 3. The chamber contents were well mixed and quiescent. The wires were energized
suddenly at 2 VAC, igniting the match heads within 2 s. Tests performed without match heads
established that the wires alone were too short and cool to ignite the refrigerant mixtures.
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Figure 3. Images from safety match tests corresponding to the largest flame for each test. The times shown are elapsed
times after the onset of flaming. A video of these tests is provided in the Supplementary Materials Video S3.

As shown in Figure 3, all four mixtures were ignited by the open flames. The flames
burned for about 3 s and then self-extinguished. In these images the blue regions are the
refrigerant flames and the yellow regions are soot from the burning match heads.

The R-32 and R-1234ze flames were similar: blue flames propagated upward and
outward from the match heads, reached the top of the chamber, and then propagated
downward to the chamber floor. The flame surface for R-32 was smoother and less cellular.
For R-452B and R-1234yf the flames propagated upward from the safety match and then
downward after reaching the top of the chamber, but never reached the chamber floor.

Premixed tests were also performed with butane flames. For these the quiescent
flammable mixtures of Figure 4 were prepared in the chamber. A butane lighter was ignited
outside the chamber and then inserted in a 10 mm hole in the right side of the chamber about
40 mm above the chamber floor. Deflagrations resulted that lasted about 3 s.
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In every case with flammable mixtures flames propagated in the refrigerants. Only
for R-32 did the flame burn upward to the ceiling and then downward to the floor. For the
other refrigerants the flames propagated upward to the ceiling, but not downward.

Tests were also performed where the butane flame was introduced into homogeneous
mixtures of R-32 below the LFL. The butane flame extinguished quickly, but this did not
happen when the chamber was filled with air. As discussed in Section 3.5, this behavior is
attributed to the suppressive effects these refrigerants can have for some flames.
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It is clear from these tests that an open flame—either a match head or a lighter—can
be a viable ignition source for these refrigerants. This is consistent with past observations
of R-32 and R-1234yf [6,18,24,26].

3.3. Jet Tests with Open Flames

Open flames were tested with refrigerant jets using candles and butane flames.
For most of the candle tests a lit candle with a flame height of 50 mm was installed in

the center of the chamber with its flame base 50 mm above the chamber floor. The chamber
was quickly sealed, the 1 LPM flow of gaseous refrigerant commenced, and the flaming
behavior was observed until all flames were extinguished. The fan was not used, but there
was considerable convective mixing owing to the refrigerant jet and the flame buoyancy.
For most tests the refrigerant jet was near the floor, but similar results were obtained when
it was near the ceiling.

A total of 25 candle tests were performed. Representative images are shown in
Figure 5. The flames were initially yellow, but as the tests progressed blue emissions also
appeared except for R-452B. The blue emissions, attributed to refrigerant burning, were
always limited to the region near the candle axis. The large refrigerant deflagrations
observed for premixed tests above were not observed for these jet tests.
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The yellow and blue flames of Figure 5 shrank until they extinguished after 65–84 s
of flow, corresponding to 3–4.7% refrigerant mole fractions assuming perfect mixing. The
21 other tests extinguished after 60–177 s of refrigerant flow, corresponding to refrigerant
mole fractions of 3.5–9.2%.

For several tests the candle was placed near a corner, with similar results. For several
others the flame base was at a height of 150 mm, which delayed the extinction times (for a
R-32 mean of 140 s compared to a mean of 80 s at a height of 50 mm).

A jet test was also performed with a butane lighter. The chamber was filled with
quiescent air and the top was sealed. The butane flame was ignited and inserted in a
10 mm hole 40 mm above the chamber floor. The flow of R-32 was commenced. Yellow
and blue flames were observed until they shrank and extinguished after 70 s and could not
be reignited with the lighter’s piezoelectric arc ignitor. Assuming well-mixed conditions,
the R-32 mole fraction was 3.8%.

These candle and butane flame extinction events are attributed here to the ability of
halocarbons to suppress some flames, see Section 3.5. However, several other factors could
have contributed, as discussed next.
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Turbulence from the jets was ruled out as a factor by performing candle tests with
air jets far larger than 1 LPM. Although the candles flickered, they did not extinguish.
Furthermore, jet turbulence is not evident in the images or video of Figure 5.

Gas stratification is possible in these tests, as the refrigerants have higher molar masses
than air. It is possible that the tests involved rich regions near the floor, lean regions near
the ceiling, and only a thin layer between the LFL and UFL. The approximate diffusion
layer thickness for a planar stratified layer of these refrigerants and air is

L = (D t) 0.5 (2)

where D is the mass diffusivity of C3H2F4 in air at 298 K, i.e., 8.0 mm2/s [38], and t is time.
For the present candle extinction times of around 100 s, this thickness is 28 mm, which is
not thin relative to the candle flame length. Furthermore, the turbulence in the jets and
buoyant flows near the flames serve to decrease any stratification.

Chemical reactions in these jet tests deplete the oxygen available for combustion.
Tests with a candle burning in the chamber without any refrigerant found the flame to
extinguish after 15 min owing to oxygen starvation. Based on the measured change in
candle mass and an assumed wax composition of C24H50, the final oxygen mole fraction in
the chamber is estimated at 17%. This is reasonably close to the limiting oxygen index (LOI)
of 14.5% for heptane [39], which is a good surrogate for candle wax. For tests with candles
and refrigerant, the flame sizes can increase, and the mean oxygen consumption rate is
estimated conservatively at twice that of a candle in air. The refrigerant mole fraction at
the time of extinction for these tests was 9.2% or less. Therefore, the time at which the LOI
was reached in these tests is estimated at:

t = (15 min) 0.5 (1 − 0.092) = 6.8 min (3)

Any test that continues for 6.8 min or longer could be corrupted by effects of oxygen
depletion. However, all these flames extinguished within 3 min.

3.4. Non-Viable Ignition Sources

As discussed below, quiescent premixed tests with all four refrigerants at stoichiomet-
ric conditions were performed with eleven potential ignition sources. None resulted in any
visible flames in the refrigerant/air mixtures. Table 3 summarizes these tests, showing the
excitation, V, the current, I, the peak measured temperature, T, and the number of trials, N,
or the test time, t, for each refrigerant. Additional details are provided in [16].

Table 3. List of non-viable ignition sources.

Source V, VAC I, Amps T, ◦C N t, s

Smoldering cigarette - - 490 4 -

Butane lighter - - - 10 -

Friction sparks - - 3000 a - 60

Plug and receptacle 120 15 - 10 -

Light switch 120 15 - 20 -

Hand mixer 120 1.7 - - 120

Cordless drill 18 21 - - 120

Bread toaster 120 6 500 - 120

Hair dryer 120 13 200 - 60

Hot plate 120 6 540 1 -

Space heater 120 12 100 1 -
a. Not measured in this study.
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Smoldering cigarettes were tested by inserting them after the chamber was filled with
refrigerant and air. The ember temperature was similar to the AIT for these refrigerants.
In each test the cigarette extinguished within 100 s, which is consistent with past results of
R-32 and R-1234yf [18]. Oxygen depletion was ruled out because when the chamber was
filled with only air the cigarettes smoldered until the tobacco was depleted after 16 min.

A butane lighter with a piezoelectric arc ignitor was tested with the lighter tip inside
the chamber and the trigger outside and activated with a solenoid. The butane flame
ignited when the chamber contained 2% R-32, but not when it contained 3% or more R-32.

Friction sparks were tested in the chamber using a grinding stone, driven by a cordless
drill, in contact with a ferrocerium flint rod. Temperatures of 3000 ◦C are typical of such
friction sparks. Continuous streaks of friction sparks 3 cm long were generated.

The plug and receptacle and the single-pull light switch were cycled in the chamber
using a solenoid while a load outside the chamber was connected. Continuous electric
arcs were visible. For both the hand mixer and the cordless drill with a brushed motor,
continuous blue arcs were visible. The two-slice bread toaster had outside dimensions of
15 × 29 × 18 cm. The hand-held hair dryer had a blower and a heating element.

The countertop hot plate could not be operated for long periods inside the chamber
without damaging the window. Instead it was inverted and heated and then lowered into
the chamber by quickly rupturing the aluminum foil. No chimney was used. Similarly, the
ceramic tower space heater was too high (0.58 m) to be sealed in the chamber so it was
heated and then lowered into the chamber by quickly rupturing the aluminum foil without
the chimney present.

The hair dryer and space heater did not ignite the refrigerants because their peak tem-
peratures were below the mixture AITs. The other sources in Table 3 had sufficiently high
temperatures, but did not ignite the refrigerants owing to the large Lq of these refrigerants.
The AITs were not exceeded beyond distances on the order of 0.5 Lq from solid surfaces.

3.5. Halocarbons as Fuels or Suppressants

As the above tests demonstrate, these halocarbon refrigerants can act either as fuels
or suppressants. For mixtures between the LFL and UFL and a strong ignition source,
large deflagrations result. On the other hand, slowly increasing refrigerant concentrations
suppress candle and butane flames; quiescent homogeneous mixtures well below the LFL
suppress butane flames; smoldering cigarettes are suppressed by homogeneous stoichio-
metric mixtures; and an arc is unable to ignite a butane flame for R-32 mole fractions above
3%. Such evidently conflicting behavior was previously reported for halocarbons by [30],
who found that C6F12O, C3H2F3Br, and C2HF5 can either enhance or suppress burning.

4. Conclusions

Fifteen potential ignition sources were tested to determine their viability to ignite
mixtures of mildly flammable refrigerants and air. The refrigerants were R-32, R-452B,
R-1234yf, and R-1234ze. Both quiescent premixed tests and jet tests were performed. The
key conclusions are as follows.

1. NiCr wires heated resistively to 740 ◦C and open flames (burning safety matches and
butane) are viable ignition sources for quiescent premixtures of refrigerant and air
above the LFL. Large deflagrations were observed that propagated up to the ceiling
and then down to the floor.

2. When the refrigerant concentration was increased slowly, every candle or butane
flame extinguished before initiating any large deflagrations.

3. Eleven other potential residential ignition sources did not produce any flames in qui-
escent stoichiometric refrigerant/air mixtures. These included a smoldering cigarette,
a pizeoelectric butane lighter, electric arcs, motors, and various residential heating
elements at 540 ◦C and below.

4. Depending on the conditions, these A2L halocarbon refrigerants can act as either fuels
or suppressants. They act as fuels for a strong ignition source like a resistively heated
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hot wire or for an open flame suddenly introduced into a flammable mixture. For
weaker sources or refrigerant mixtures below the LFL, they act as suppressants.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
073/14/1/121/s1, Videos S2.mp4, S3.mp4, S4.mp4, and S5.mp4 are color videos of the tests of
Figures 2–5, respectively.
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Nomenclature
AIT Autoignition temperature
D Mass diffusivity
I Current
L Approximate diffusion layer thickness
LFL Lower flammability limit
LHV Lower heating value enthalpy of combustion
LOI Limiting oxygen index
LPM Liter per minute
Lq Quenching distance
MIE Minimum ignition energy
N Number of trials
Q Refrigerant volumetric flow rate
SL Laminal flame speed
T Temperature
t Time
UFL Upper flammability limit
V Chamber volume; also excitation
X Refrigerant mole fraction
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