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Abstract: Fin arrays are widely utilized in many engineering applications, such as heat exchangers
and micro-post reactors, for higher level of fluid-solid contacts. However, high fluid pressure loss
is reportedly the major drawback of fin arrays and a challenge for pumping supply, particularly at
micro-scales. Previous studies also indicate that fin shapes, spacing and alignment play an important
role on the overall pressure losses. Therefore, we present a numerical tool to minimize pressure
losses, considering the geometrical aspects related to fin arrays. In this regard, a density-based
topology optimization approach is developed based on the pseudo-spectral scheme and Brinkman
penalization in 2D periodic domains. Discrete sensitives are derived analytically and computed at
relatively low cost using a factorization technique. We study different test cases to demonstrate the
flexibility, robustness and accuracy of the present tool. In-line and staggered arrays are considered at
various Reynolds numbers and fluid—solid volume fractions. The optimal topologies interestingly
indicate a pressure loss reduction of nearly 53.6% compared to circular fins. In passive optimization
test examples, the added solid parts reduced pressure loss of a circular fin (9%) by eliminating the
flow separation and filling the wake region.

Keywords: hydrodynamic power loss minimization; topology optimization; fin array; pseudo-spectral;
Brinkman penalization; periodic flow

1. Introduction

Fin array (FA) structural designs are broadly utilized in many devices which require a significant
level of fluid—solid contact. FAs are composed of uniformly distributed and identical structures
with a repeated pattern and large surface area to volume ratios, suitable for high performance and
compact heat or mass transfer applications, such as micro heat-exchangers [1] and micro-reactors [2].
The promising performance of FAs, however, comes with the price of high pressure drop [3,4], which can
be very challenging for pumping supply, particularly at micro-scales or applications with space
limitations. Previous numerical and experimental studies on isothermal single-phase flow across fin
arrays suggest that geometrical attributes, such as fin shape, alignment and pitch-space play a significant
role on the total flow pressure drop [5-8]. Therefore, in this work, we utilize a density-based topology
optimization approach to find the optimal fin geometries which minimize flow pressure drop (power
loss), considering the designing aspects of fin arrays, and develop a numerical tool for this purpose.

Towards minimizing pressure drops by improving fin geometry, topology optimization (TO) [9]
is fundamentally a superior approach, primarily for its ultimate ability to deal with complex
geometries. TO was originally developed for optimizing solid structures [10,11], but soon after
was extended to optimization of fluid flow systems [12-15], and in the past decade, new TO
developments have shown very promising performances in various applications, such as hydrothermal
systems [16,17], fluid-structure interaction (FSI) problems [18,19] and microfluidic mixers [20,21].
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Various TO approaches have been previously developed focusing on isothermal flow power loss
minimization for internal (channel) flow [13,15,22] and external flow problems [12,18], where the
latter is the case for flow past an array of fins, considered in the present work. In this context,
Borrvall and Petersson [12] were pioneer to achieve optimal hydrodynamic shapes, similar to rugby
balls, corresponding to a prescribed volume constraint and featuring minimized Stokes flow power
dissipation. Guest and Prévost [23] developed a Darcy-Stokes topology optimization model for very
low Reynolds flows, equipped with an inverse homogenization method to design porous material
micro-structures. Targeting maximum flow permeability, they interestingly achieved porous materials
with periodic micro-structures; however, they reported some numerical difficulties regarding the
choice of initial mWaterial distribution. Kondoh et al. [24] investigated drag minimization and lift
maximization via a convenient body force integration objective function and successfully achieved
optimal airfoils for low to moderate Reynolds numbers. Lundgaard et al. [25] studied optimal
topologies of a plate obstacle with six different objective functions such as minimum flow dissipated
energy and structural compliance, using a robust density-based TO formulation, and comprehensively
discussed the critical implementation details. Zhou et al. [26] more recently proposed a combined
shape and topology optimization method with a boundary-smoothing regularization technique to
guarantee a stable convergence, and achieved physically meaningful optimal hydrodynamic shapes,
submerged in Stokes flow.

In this work, we present a novel TO approach for drag minimization of fin arrays in isothermal
two-dimensional (2D) steady flows. We assume a doubly periodic computational domain, including
a single design region for individual fins. This assumption is well consistent with the repeated flow
pattern across uniform fins at low Reynolds numbers, and significantly saves computational efforts.
In addition, single periodic design domain, in favor of topology optimization, requires fixed number
of design variables for fin topologies independent FA size, and allows full pressure-velocity fields
decomposition which leads to reduced number of state variables by factor of 2/3. For the numerical
flow solution, we utilize highly accurate pseudo-spectral scheme, equipped with Brinkman volume
penalization technique. Pseudo-spectral scheme is based on discrete Fourier approximation of the
periodic solution on a uniform grid, which provides a desirable level of accuracy with less grid
points compared to other numerical techniques such as finite difference methods [27]. Moreover,
because of the global approximation of the flow solution, the accuracy at a solid—fluid boundary is
well satisfactory [28], especially when the boundary is moving over a fixed uniform grid, as it is the
case for optimization process.

For gradient-based optimization, we describe the analytical sensitivity analysis for the
pseudo-spectral method, and validate its accuracy using finite differencing method. We use GCMMA [29]
as the optimizer and implement a convenient factorization technique which substantially reduces
numerical efforts with respect to computing the required sensitivities at a satisfactory accuracy level.
The remainder of the paper is organized as follows: In Section 2, we concisely introduce pseudo-spectral
scheme used for penalized Navier-Stokes, and discuss the computational model, boundary conditions
and etc. We present in Section 3 the topology optimization formulation and derive the sensitivity analysis
followed by finite differencing verification. In Section 4, we study three optimization examples to
qualitatively and quantitatively investigate flexibility, robustness, accuracy and overall performance of the
present TO approach in drag minimization of fin arrays, at different Reynolds number and solid volume
sized. Section 5 summarizes the key features and state-of-the-art achievements we investigated using the
present tool.

2. Flow Modeling and Numerical Method

2.1. Penalized Navier-Stokes

The flow system is modeled using the incompressible Naviers-Stokes equations on a 2D doubly
periodic square domain, (), as
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where u is the velocity vector, P the hydrodynamic pressure, v the kinematic viscosity and p the density
of fluid. We employ Brinkman penalization method to define a solid material distribution within
the computational domain () [28,30,31]. By using this technique, a no permeable solid zone (€);) is
formed simply by modifying the Navier-Stokes equation with the added penalization term, instead of
explicit solid zone with solid—fluid boundary definition. Therefore, in favor of numerical methods,
the computational mesh conveniently remains fixed and re-meshing is not required during formation
or movement of solid zones. The penalized Navier-Stokes form of Equation (1) is

Jdu, 1 1
a—:+ue~Vue+ EVP—vAue— E)((x)ue =0 (3)

V-u =0 4)

where u, is the approximated solution of Equations (1) and (2) for fluid velocity, € the penalization
parameter, which controls the flow permeability into solid zones and the dimensionless spatial function
X(x), ranging from 0 to 1, is the penalization function. Brinkman penalization technique is the base
tool for density-based topology optimization that we use in the present flow system. Solid material
distributions are simply controlled by x(x) function, independent of mesh treatment. Here, xy = 1
imposes full penalization to model a solid material zone. x = 0 has no penalization effect, therefore
flow equations are solved for fluid material. Any values of 0 < x < 1 treat as porous medium,
meaning a permeable solid zone with a continuous permeability level controlled by x. As it will be
discussed in the following section, the penalization function x(x) is the only varying parameter for
handling solid zones during fin topology optimization, and is referred to design parameters.

Regarding the accuracy of the penalization technique, the approximated solution of (3) and (4) is
proved to converge to the solution of (1) and (2) with the error norm bounded by

[u—ue|| < Ce'?, ®)

meaning smaller the €, smaller the penalization error [32]. The boundary conditions in this flow model
are defined as

=0 in )¢, and on 00}
{u in O)g, and on 9Q) ©)

u is double periodic on (2,

and the mean flow velocity is ue at upstream.

The pressure term in Equation (3) is eliminated by utilizing an orthogonal projector P onto the
divergence-free space (see [33]), using the Helmholtz decomposition providing a unique solution for
a space-periodic domain [34]. Equations (3) and (4) after the projection become

oue
ot

1
+ P(ue - Vue) — vAue — Ex(x)ue =0, (7)

where P is an orthogonal projection operator. Note that the projected u. automatically satisfies
Equation (4), and in what follows, the € subscription is removed for brevity.
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2.2. Numerical Methods

To numerically approximate the solution of Equation (7), we utilize the powerfull and accurate
pseudo-spectral scheme [28]. In this numerical approach, the flow velocity at point x = (x1,x7) and
time t is approximated using Fourier series as

st = oo .
kez?

where x1, x, € [0 L], L is the size of the physical domain (Q), k1, kp € {—% +1, —% +2, .., %} are
discretized points in 2D Fourier domain (wave numbers), N is an even number equal to the number
of discretization points in each direction, and uy is the corresponding value of u in the Fourier space.
The 2D discrete Fourier transform of Equation (8) in the matrix form is simply performed by

U= HUHT )

where U and Uy are N-by-N discretized velocity field matrices in the physical and Fourier domain,
respectively. H is the 2D discrete Fourier transform matrix, of which matrix elements h; ,,, are

i = cos( ) —ifsin( M) (10)

Back to the Navier-Stokes equations, the Equation (7) using a proper divergence-free projection
operator P becomes

%—1: =uXw+vAu+ éx(x)u = A(u, x(x)), (11)

where w is the flow vorticity. The divergence-free projection is conveniently performed in the Fourier
space for each discretization node as

2 —
H _ (k§+k§)1l Iljzk ’;’Q] M (12)
v div— free T2 1 v

And A = (A1, A\p) is defined as the time derivative of the velocity field; hence, we expect A = 0
if the flow is steady-state. Elements of matrices [A1] and [A;] are computed in few steps (see [35] for
more details). We first discretize (), N times in each direction and then compute an N-by-N matrix of
vorticity field in physical domain by

[w] = real(H(K; o (HVHT) — K, o (HUHT))AT) (13)

where H is the complex conjugate transpose of H, K; and K; are wave number matrices with

normalized k; and k; in each rows and columns, respectively and o is the Hadamard matrix product

operation. Next, we compute the convective, viscous and penalization terms of Equation (11) in Fourier

space by

[A1] = v(KioK;+KyoKy)o(HUHT)—
H(L[x) o U~ Volw])HT

[Ay] = v(KjoKy+KyoKp)o(HVHT)—
H(X[x]oV +Uo [w])HT,

(14)

where [x] is also an N-by-N matrix of penalization function values defined on all nodes over domain
Q). Using the divergence-free projection IP of Equation (12) we get

—~

[A] = P([A]) (15)
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which automatically satisfies the conservation of mass. In final step, we need to perform inverse
transform to find A in the physical space

A1 (16)

It should be noted that the discrete Fourier transforms in Equations (13), (14) and (16) could be
computed either directly or using the efficient fast Fourier transform algorithms, e.g., FFTW library [36].
It is also noticeable that so far we derived the values of A using the basic matrix operations. We will
show in the following that this approach significantly simplifies the discrete sensitivity analysis of the
numerical method, required for gradient-based optimization.

2.3. Drag Force: Computation and Validation

The drag force, which we will consider as the objective function for optimization, is simply
computed by integrating the Brinkman penalization term over the solid zones [31] by

1

1 N
Cirag = - / wdx 2 ~d? Y U, Xime (17)
ebs € I,m=1

where U°® is the stream-wise component of u and dx = L/ N the domain discretization size.

Reliability of the pseudo-spectral scheme together with the Brinkman penalization technique,
as well as the accuracy of the drag force computed from Equation (17) have been previously studied
and approved for both 2D and 3D simulations at moderate to high Reynolds numbers [37,38]. However,
for low Reynolds number flows, we need to verify the accuracy and perform the grid consistency
study. In this regard, we solved a flow problem for an in-line cylindrical fin configuration with the
pitch-to-diameter ratio of 0.4 at Re = 5 and set upstream velocity U to 1. Figure 1a demonstrates the
periodic flow field across a circular array. Note that only four computational domains (2-by-2) are
plotted in this case to demonstrate the periodicity in the flow field. The white dashed line represents
the penalized domain (()s) wherein x = 1. We also perform a series of simulations by varying the
domain discretization size (N) in order to check grid consistency and compare the calculated drag
with previous studies.

Figure 1b suggests the drag force exerted on a single fin in an in-line array, and Figure 1c illustrates
the stream-wise flow velocity profile in the cross section of the fin with respect to discretization size
and Brinkman penalization parameter (€). In penalization technique, solid structures are teated as
porous media with permeability controlled by penalization parameter. This implies that the velocities
in solid zones never become actually zero, but they are damped. From Figure 1c we observe that
smaller the €, smaller the flow seepage is. However, by reducing € we observe oscillating velocity
profile due to a known Gibbs phenomenon. Gibbs phenomenon appears in spectral methods when
a sharp discontinuity exists in the solution. We also see that this phenomenon is controlled in higher
resolutions. Considering the accuracy and consistency of the computed drag force (with respect to
the previous studies), sufficiently damped flow seepage in the solid zone, as well as the controlled
Gibbs oscillations, we find the 1282 resolution and € = 10~3 adequately precise and satisfying values
in this work.



Energies 2020, 13, 1987 6 of 20

34
—8— Pseudo-spectral
Kuwabara
33| Drummond et. al.| |
o Sangani et. al.
R
= )
5 2
g S 32 r
= Il
.g Q
E 31+
30 ‘ ‘ ‘ ‘ ‘
I | i | : 16> 322 642 1282 2562
05 1 15 2 25 Discretization
a) Flow fie 0 = 1). rag validation and grid consistency.
Fl field (U, 1 b) Drag validati d grid istency.
10!
------- 642, e=1le—1
I e | 642, e =1le—2
= 10%¢ ——-64%,e=1e—-3
g —— 642, e=1le—4
.*5 1070 W e e M e 1282, e=1le—1
s K a1 |- 128%, e=1le — 2
4 10-2 ——-128% e=1le—3
[} 3 — 1282, e=1le—4
w0
S-S R | MU | I . 2562, e =1e—1
g103, |l T |- 2562, e = le — 2
s ——-256%, e=1le—3
£ 91l —256%, e=1le—4
107° :
0 1.25 2.5

Ty at x;y = 1.25

(c) Stream-wise flow profile (1) at x, = 1.25.

Figure 1. (a) the periodic flow velocity field arround fins for an in-line configration. (b) the normalized
drag force experienced by a single fin for different resolutions compared to previous studies ([39-41]).
(c) Cross-section flow velocity profile for different resolution sizes and penalization parameter values.

It should be noted that the drag force by integration of Equation (17) is calculated at a very low
computational cost, in the absence of explicit knowledge of solid—fluid boundary. This is a great
advantage of penalization technique in favor of topology optimization where the geometry varies
during the optimization process and an accurate drag values at intermediate steps are required and
explicit boundary tracking is not always straightforward.

3. Topology Optimization

The required hydrodynamic power supply (Whydm) to compensate the fluid pressure drop is
computed by

. 11
Whydro = EAPI (18)

where the required power is linearly proportional to pressure drop, assuming that the flow rate (ri)
and density are constant. Moreover, the total pressure drop is a function of hydrodynamic drag forces
exerted on fins. Therefore, to minimize the required pumping power supply, we aim to establish
a hydrodynamic drag minimization problem, given by:
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subjectto  V* < V(x(7)) (19)
0<y <1 Yvi € Qp.

where C is the drag force and the objective function, V the fin volume (cross-section area), V* the
minimum desired fin volume, and -y the vector of design variables in the design domain Qp C Q.
Design variables 7;’s are uniformly defined on entire the design domain, located at each discretization
point x;. The topology function y is then calculated at each point x; from the corresponding design
variable ; using a continuous interpolation function [12], as

14
x(y) = T+ L(1=7) (20)
where, I, is a parameter which controls the interpolation convexity, i.e., the transition from fluid to
solid for intermediate design variables (0 < ¢y < 1).

For the present gradient-based optimization problem we use the globally convergent method
of moving asymptotes (GCMMA) [29] optimizer. GCMMA algorithm is particularly developed for
TO problems with large number of design variables, which is up to 1282 in our test cases. We adjust
the algorithm with the standard settings, however, the move step parameter is reduced to 0.1 and
the maximum number of sub-cycles is limited to 10 sub-iterations. In practice, we observed a very
satisfactory performance by using GCMMA, in terms of efficiency as well as accuracy and robustness.

3.1. Sensitivity Analysis

The goal of sensitivity analysis is to precisely calculate changes of a desirable function caused
by varying the design variables. This step is essential for gradient-based topology optimization,
especially when there are very large number of design variables such that finite difference
approximation of the sensitivities become significantly expensive. In our particular case, we need to
accurately compute the drag force gradients with respect to y’s, at a reasonable computational cost.

The objective function in Equation (19), computed by Equation (17), is a function of velocity field
and the topology (penalization) function and is concisely defined as

C=C(u(x), v(x), x)- (21)

And we derive the total derivative of C with respect to the vector of design variables, -y, using the
chain rule of differentiation by

DC_ aCax , aCDuDx € Do Dx o)
Dy 9xdy ouDxyDy 0vDxDy’

We note that the simplicity of Equation (17) allows a convenient calculation of partial derivatives g—;,

% and % at a very low cost. We also calculate % simply from Equation (20). The total derivatives B—;’(

and B—; represent the total rate of change in flow velocity field with respect to change of design variables
and are generally difficult to derive analytically and expensive to compute. For pseudo-spectral scheme,
however, it is rather straightforward to derive those derivatives by analytical differentiation of the
discrete solution of Equation (11). In this regard, we integrate the solution of Equation (11) in time
using Euler method and derive it for discretized u at time step n + 1 by

Upy1 = Uy + At g (un/ Unr)() and ug = Uiy (23)
Uyl = Un + At Ap(uy, vy, x) and  vg = vjpit,
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where At is the time step size, chosen based on CFL condition for numerical stability. Next, by taking
the derivative of Equation (23) directly with respect to ), we obtain

Duy,yq _ Duy, LA [BAM OA1, Du,  0Aq, Dvn] Duy —0

Dyx Dyx X ou Dy dv Dx" Dy ’ (24)
Dv,1q _ Dv, LA [E)Az,n n 0N, Duy,  9Ay, Dvn] Dy —0

Dy Dy ax ou Dy dov Dx*’ Dy ’

where the Jacobian matrices (aa%, -+ ) are derived directly from differentiation of Equations (13)—(16).
For instance, we compute the matrix of dA1/9)y, using the chain rule of differentiation by

OAL _ OAy 0N Ry | 9N 0Ky

— ===+t -—F p (25)
X A, 9Ky 9x  9A, 9x )
where dA1 /9y and dA, /) are simply calculated from differentiating Equation (14).

Direct Computation of B—)"( and g—;, as derived in Equation (24), is very expensive, but we employ
a few techniques that substantially reduces the computational costs for it. In this regards, we first
reformulate Equation (24) to obtain an unified matrix form, as

Du aaﬁ 2SIV Du
Dx — X Ju v Dx
[Dv] = At oA + (At N Ay +1) Dv} , (26)
Dx 141 ax 1, Pu v dn Dxlyu
or in a succinct form such as
Dy = Ay + By x Dy (27)

To save computational effort, we compute A, and B, matrices with the converged flow solutions
of Equation (23) only once. Since the initial guess for velocity is always fixed, Dy equals zero. Therefore,
we obtain
Di=A+BxDy=A
DZIA—f—BXDl =A+BxA
D;=A+BxD,=A+BxA+B2xA (28)

Dy =O+B+B>+---+B" 1) x A.

We further simplify Equation (28) using algebraic factorization. For steps which m equals to 2¢
(k is a natural number), we can derive

Dy = ([+B) x (1+B?) x ([+B*) x -~ x (I+B ") x A
= [['2) ([+B?)] x A )
:RkXA.

Therefore, instead of iterating over Equation (26) for every single step of m, we only compute Dy,
atm =1,2,4,---,2, which leads to an extremely fast convergence. More precisely, for solution of
Equation (26), 2F matrix additions and multiplications are required if m = 2; on the other hand, only k
matrix additions and 2k + 1 multiplications are required for Equation (29). Numerical experiments,
as shown in Figure 2a, suggest that DC/ Dy reasonably converges after only k = 12 iteration steps for
Reynolds numbers up to 75, where the flow remains laminar and steady-state.
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Figure 2. Convergence, computational cost and accuracy verification of sensitivity analysis.

3.2. Accuracy Verification and Cost of Sensitivity Computation

A crucial step for a gradient-based topology optimization approach is the accuracy of the
sensitivities. In our case, sensitivities are derived based on an analytical differentiation which is exact,
however, they are computed via an iterative factorization technique (Equations (27)-(29)). Therefore the
accuracy of the converged sensitivities as well as the implementation correctness have to be verified.
For this purpose, we approximate the sensitivities DC/D1y; using central differencing finite difference

method (FDM), as the reference of comparison, via:

FDM , _ R

where ¢ is the design variable perturbation. Then, the relative error between analytical and FDM

sensitivities for design variable 7 is computed by

B DC/D’)/Z'FDM _ DC/D,)/iunalytic
= DC; D PO (31)
i

E;

Figure 2c illustrates the relative errors for a 9 x 9 design space for various perturbation sizes. We can
observe a perfect match between the obtained sensitivities for § = 10~, which verifies the accuracy to

a desirable level of E < 107°.
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For every single iteration of optimization steps, we need to calculate objective function via
pseudo-spectral solver (Equations (13)—(16)) and sensitivities corresponding to the current state of
design variables. Computing sensitivities mainly consists of two parts: (a) calculation/assembly
of matrices in Equation (26), and (b) computing Equation (29) in an iterative manner. Figure 2b
illustrates an averaged CPU time required to compute the three stated tasks on a 14-core processor,
for various problem sizes. The computational cost of pseudo-spectral solver is reasonably low and
scales roughly with total number of grid points. The main computational burden is dedicated to
computing Equation (29), since Jacobian matrices sizes are N> x N? and grow rapidly by problem
size N. Using our current code implementation and for N = 128 size, which is sufficiently accurate
as discussed before, it takes roughly 15-20 min for a single optimization iteration on a multi-core
processor and requires up to 18 GB of memory in total.

We point out that we derived the discrete sensitives of the pseudo-spectral fluid solver via an
analytical process and direct differentiation. However, in general, for other complex flow solvers such
as finite volume method (FVM) with an iterative SIMPLE scheme [42], exact sensitivity derivation
is not straightforward [15], and often this crucial task is delivered to automatic differentiation (AD)
tools [43,44]. AD tools are accurate to the machine precision, but they normally require significant
amount of memory and are sometimes very time consuming. In addition, computing the required
sensitivities are performed using discrete adjoint method [45]. This is a commonly utilized approach
to reduce computational costs independent of number of design variables. Adjoint method, however,
requires solving a linear system of equations, while the present approach does not require solving any
system of equations, its cost is also independent of design variable numbers and relies only on the
basic matrix operation, which could be easily implemented and computed via parallel processing.

4. Optimization Results and Discussion

In this section, we study several test problems to investigate the utility and flexibility of the
present topology optimization approach for fin array drag (pressure loss) minimization. As illustrated
in the schematic Figure 3a,b, we consider two fin array configurations: in-line, and staggered (45°)
alignments. Figure 3¢ presents our computational model as well as the design space. The dashed
square area represents the periodic computational domain (2 = L x L, and the gray area shows the
design domain Qp = Lp x Lp. We take Lr = L/2 as the characteristic length, and circular fins as
the reference design. Length of the design domain (Lp) varies between Lr and L, depending on the
simulation case . For consistency among different simulations and fin shapes, we always calculate
Reynolds number based on the characteristic length Lr. In addition, for sake of convenience, we rotate
upstream flow direction by 45° to model staggered array instead of rotating computational domain
(compare Figure 3a,b).

2000 w0 O

- - — N

| 2 s
U°° I Uoo 7 AN o =3
— Q I I — < > Um/{ 21 or 12
| ' \ / /a2 Solid 13

[

—_ - = 4

Q Q Q Q\/ Q T Tompouag

Figure 3. Schematic illustration of (a) an in-line array, (b) a staggered (45°) array and (c) the periodic
computational flow domain (dashed) and the design domain (gray area).

Since we employ a gradient-based optimization approach, it is important to analyze the
sensitivities we obtained from Section 3.1, prior to studying the optimization results. Figure 4
demonstrates the contour field of hydrodynamic drag sensitivities for a staggered circular fin array
(o« = 45°). The dashed white circle defines the penalized (no permeable) solid zone, and the red
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line indicates DC/Dvy = 0 contour level. Inside the red enclosure sensitivities are negative, i.e.,
DC/Dvy < 0. Negative gradient zones are of critical importance, because by increasing design
variables <y or equivalently the solid zones, drag force decreases. We can then anticipate the potentials
for new topologies such that produce less drags. It should be noted that the red contour does not
necessarily represent the final optimum fin geometry. The sensitivity field which is plotted here
corresponds to the circular fin before optimization, and by changing the fin geometry during the
optimization process, sensitivities change as well. What we can also expect from sensitivity analysis
is that the optimum topology should match the zero gradient contour for unconstrained volume
optimization, i.e., no unfilled negative gradient zones should be left.

-0.06

Figure 4. Drag sensitivity field of a circular staggered fin array at Re = 40. Red contour indicates
DC;/Dvy = 0level.

In the following, we study different example problems, to investigate the utility of our topology
optimization approach for fin array drag minimization. In the first case, we begin with optimizing
circular in-line and staggered fin arrays with constrained volume and explore the robustness of our TO
approach in terms of insensitiveness to the initial (unoptimized) design. In the second case, we study
the optimal fin topologies by varying the flow conditions, particularly the Reynolds number. In the
last case, we aim to optimize passive (circular) designs, by restricting the optimizer to solid volume
augmentations, in order to investigate the flexibility and accuracy of the present approach in different
settings. The computational domain for all considered examples is discretized with 128-by-128 grid
points and all of the simulations are computed using an in-house developed code, with shared-memory
parallel computing.

4.1. Case 1: Pressure Loss Minimization and Robustness Verification

We study two cases in this example: case (a), drag minimization topology optimization of
a circular fin array, and in case (b), we examine the optimization robustness in terms of the initial input.
In case (a), the optimizer is free to modify the initial fins to minimize drag by appending or removing
solid zones in the design domain (QQp). We also impose a minimum volume (cross-section area)
constraint, equivalent to the initial volume for optimization. We consider both in-line and staggered
configurations and set the periodic flow domain length, L, to 2, the design domain length Lp to 0.64L,
and the upstream flow velocity U = 2. All the parameters are non-dimensionalized with respect to
the characteristic length of Lr = 1. In case (b), we employ the similar problem setting, but start the
optimization with different initial fin design variables to investigate the robustness.

Figure 5 shows the initial and optimal fin topologies as well as the flow velocity field, for both
in-line and staggered arrays at Re = 25. For in-line array, as shown in Figure 5b, the optimum design
is stretched stream-wise to increase the cross-section aspect-ratio and reduce the frontal area to for
a more hydrodynamic fin. The upper and lower surface curvatures facilitate the flow from tip to tail,
because the main flow stream has a periodic converging—diverging format. As the result, the optimal
design features ~39% less drag force, as listed in Table 1. The first reason is that the frontal area is
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now smaller than the initial circular fin and each fins. The second reason is that the increased gap
space between fin rows reduces the maximum flow velocity, and consequently the exerted drag force.
We should also note that the front and end of the optimal fins are attached to the the border of design
domain. This is not surprising, since at Re = 25 the viscous drag is less severe than the pressure drag,
and theoretically we know that parallel plates produce minimum drag. Therefore we observe that by
increasing Lp, the optimizer minimizes the pressure drag by increasing gap space between fin rows
and filling the gap space between upstream and downstream fins, until the fins are fully attached and
a uniform parallel channels are created.

Velocity magnitude
Velocity magnitude

0.5 1 1.5 2 0.5 1 1.5 2

(a) Initial design (in-line).
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(c) Initial design (staggered). (d) Optimum design (staggered).

Figure 5. Flow contours and solid geometries (black regions). The red line is the solid—fluid boundary
and the dashed white line shows design domain (Qp).

Table 1. Initial and optimum drag coefficients (Cp) for case 1.

Initial Max. Final Max.
Gap Velocity Gap Velocity

(a) In-line 2.5717 1.5673 —39.06% 4.29 412
(a) Staggered 4.3207 2.6159 —39.45% 3.58 3.40

Test Problem: Case 1 (a) Initial Cp Final Cp Drag Change

In staggered alignment, as shown in Figure 5c, the flow is not unidirectional and the fluid velocity
magnitude in front of the fins is not negligible, which results in higher fin drag force and total pressure
drop in staggered alignment compared to in-line. The optimal staggered fin, as shown in Figure 5d,
is a symmetric convex cross-section shape, with sharp fronts and tails and less frontal areas, similar to
airfoils. The wake region behind the original cylindrical fin is almost eliminated after the optimization
which demonstrates a better flow guidance within the fin array. The maximum flow velocity is also
reduced considerably, because of the increased cross-gap space. The drag force in staggered fin array
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after the optimization is 39.45% less, while the total cross-section area is equivalent to the initial fin
array. Overall, we find the results to be consistent with the physics of flow across the fins and the
performance of the TO well satisfactory.

In case (b) of the first example, our goal is to investigate the robustness of our TO tool by
examining different initial values for design variables and compare the final optimum topologies
to verify whether the results are insensitive to the initial (unoptimized) designs. For this purpose,
we repeat the previous topology optimization example of staggered configuration in case (a), but we
set all the initial 7’s to either 1 (full solid) or 0 (no solid) and compare them with the initial circular fin.
We note that the same volume constraint as the circular fin of case (a) is imposed; therefore, starting the
optimization with no solid area violates the volume constraint in the beginning, however, we expect
the optimizer to eventually satisfy that. Figure 6 illustrates the topology optimization process for those
three different initial designs, and Figure 7 shows the convergence history of the drag forces, as well
as the total fin volumes. We note that the optimization process for circular and full initial designs
are rather smooth, because the optimization starts from feasible design space. On the other hand,
for the case of empty initial design, the optimization process begins from infeasible state; therefore,
the optimizer uniformly fills the design domain to first satisfy the minimum volume constraint (near
to iteration 10), and then continues an optimization process similar to full solid case. Regardless of
the starting phase, all three cases reached similar final topologies with closely identical drag forces.
We also obtained similar performance for in-line configuration, and overall, we find the optimization
processes promisingly insensitive to the initial design which confirm the robustness as we desired.

Iteration = 1 Iteration = 6 Iteration = 14 Iteration = 18 Iteration = 100

(a) Starting from a circular fin.

Iteration = 1 Iteration = 20 Iteration = 33 Iteration = 100

(b) Starting from y = 1 (full).

Iteration = 1 Iteration = 7 Iteration = 24 Iteration = 33 Iteration = 100

(c) Starting from v = 0 (empty).

Figure 6. Optimization process of staggered configuration for robustness verification.
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Figure 7. Optimization process for robustness tests.

4.2. Case 2: Fin Geometry at Different Flow Reynolds Numbers

In this test example, we aim to investigate optimal fin topologies at different flow conditions,
particularly at different Reynolds numbers. More precisely, the flow Reynolds number is the only
variant in this study, and the rest of the parameters such as volume constraint are similar to the
staggered case of 1-(a).

Figure 8 shows the schematic of optimized staggered fin arrays for Reynolds numbers of 2,
10 and 50, and in addition Table 2 also lists the fin aspect ratios as well as the optimal drag force
compared to circular (unoptimized) fins. At first glance, we observe that optimizer has reduced
the frontal areas and increased the spanwise length, to produce a better hydrodynamical shapes.
At Re = 50, drag force is 53.58% reduced and fin cross-section shapes suggest the minimum frontal
area as well as the maximum aspect ratio. In this case, the viscous drag is much less severe than
the pressure drag, consequently fin has a relatively large aspect ratio of 3.63. On the other hand,
at Re = 2 flow is more viscus and therefore viscus drag is more dominant. In such case, fin shape
has comparatively the least aspect ratio (1.99) with only 12.61% reduced drag. As the flow Reynolds
increases, the boundary layer becomes thiner and fins aspect ratios increases. The gap space between
fins are larger and we observe a more straight flow stream which confirms a less dissipative flow.
We note that for higher Reynolds numbers (Re > 100), flow becomes unsteady and requires unsteady
sensitivity analysis which is beyond the scope of this paper.

The promising fin array optimization results consistent with the flow conditions confirms the
utility and flexibility of the present topology optimization approach to find the optimal geometries
featuring the minimized pressure loss, as initially was targeted.
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Figure 8. Fin topology and the corresponding array cross-section at different Reynolds number.

Table 2. Final drag forces and aspect ratios for different Re numbers.

Reynolds Number Drag Change (Reduction) (%) Fin Aspect Ratio

2 —12.62% 1.99
5 —18.35% 2.39
10 —25.99% 2.68
25 —40.06% 3.22
50 —53.59% 3.63

4.3. Case 3: Drag Minimization of Passive Designs

For the last example, we further consider to minimize drag (pressure loss) particularly for
pre-designed circular arrays. More precisely, we keep the initial design unchanged during optimization
such that the optimizer is allowed to merely add solid zones to the initial fins. In this regard,
we decompose the design domain into two parts: passive domain, QpD, and active domain, Q)f,.
In the passive domain corresponding to the initial fin design, 9’s are fixed to 1 during optimization,
however, in the active domain, the design variables are free to change as before. In summary, we can
define the two domains by

yi=1 if v, € Q) (only solid) 32
0<7; <1 ify; €Qf (solid or fluid),
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where Q% + Q4 = Qp.

The main purpose of this example is to demonstrate the utility of our TO tool to minimize fin
drag force, while the frontal projected area as well as the gap spaces can not be reduced anymore.
We perform unconstrained optimization procedure, therefore, no volume constraint is imposed in this
case, however, increasing solid volumes reduces the total empty space for fluid to flow, which may
cause higher flow velocity and drag forces. For this task, we use again staggered cylindrical fin arrays
with various sizes as the initial designs, at Re = 50. Figure 9 shows the initial designs in white and
the newly added parts after optimization in black. In all cases, after the optimization two solid parts
are created and attached to the cylinders, one to the tip and one to the tail of the cylinders, in the
streamwise direction The added parts facilitate fluid flow in front and in wake spaces to reduce high
stagnation pressure and modify the low pressure wake region, respectively. As listed in Table 3,
the optimal topologies with better hydrodynamical profiles promisingly produce up to 9% less drag
forces, while the frontal projected areas remained fixed.

Table 3. Drag reduction of passive fin design by topology optimization.

Initial Optimized

Solid Volume Fraction Cp  Solid Volume Fraction Cp  Drag Changes (%)

0.10 3.41 0.151 3.19 —6.54
0.15 4.32 0.216 3.95 —8.57
0.20 543 0.271 4.94 —9.02
0.25 6.45 0.310 5.97 —7.44
0.30 7.43 0.343 7.07 —4.85

To better understand functionality and reveal the importance of an added tail, we examine the
vorticity fields before and after the optimization. As plotted in Figure 10a, two vortices exist after
the flow separation points in the wake region, behind the cylinders. The low pressurized wake area
considerably contributes to the pressure drag and increases the total pressure loss. However, as shown
in Figure 10b, the added tail in the optimal fin profile has properly filled the wake area. In the optimal
design, flow experiences a very smooth path and back flow pressure is fully recovered. Flow separation
has been successfully eliminated, which leads to a less energy dissipative flow regime. For smaller
solid volume fractions, pitch distance and gap space are relatively large, therefore, the mainstream
flow is roughly straight. In this case, the optimal fin shape resembles an airfoil with larger aspect ratio
and longer tail to better guide the flow and and recover back pressure. On the other hand, for larger
solid volume fractions, the flow path is wavy with high curvature. The maximum velocity, due to the
smaller gap space, is also larger, and flow magnitude in the front and back of the fins is considerable.
The added tip and tail elements conform to the wavy flow stream, nevertheless, they are relatively
smaller. At highest volume fraction (VF = 0.3), the tip element almost vanishes but a tail is again
added to better guide the flow in the wake and recover the pressure. We note that the optimizer has
satisfyingly modified the circular fin arrays for all volume fractions and as promised, successfully
minimized drag forces, nevertheless the frontal area was kept fixed.
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Figure 9. Geometry and flow field for the unconstrained topology optimization. White zones are
base designs and are fixed during the optimization whereas the black zones are augmented after
topology optimization.
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Figure 10. Vortical field for topology optimization of passive cylinder (VF = 0.25).
5. Conclusions

We presented a novel topology optimization tool for hydrodynamic drag (power loss)
minimization of fin arrays. We developed our numerical topology optimization approach based
on the accurate and powerful pseudo-spectral scheme equipped with the Brinkman penalization
method. We provided a detailed sensitivity analysis, derived directly from a pseudo-spectral scheme
and chain rule of differentiation, and verified it by a finite differencing method. We also applied
few techniques, such as a convenient algebraic factorization, to substantially increase computational
efficiency and reduce total cost of optimization. Using several test examples, we investigated the
accuracy, flexibility and robustness of our tool. We successfully reduced the drag force (pressure
loss) of a circular fin array by up to ~53.6%, and conveniently obtained optimal fin geometries at
different Reynolds numbers (from 2 to 50), for both in-line and staggered arrays. We lastly performed
several unconstrained topology optimization test cases to investigate the numerical flexibility in terms
minimizing the drag for passive fin designs. Interestingly, the optimal topologies eliminated flow
separation as well as low pressure wake by adding tip and tail, and reduced drag forces up to 9%,
nevertheless, the frontal projected area was fixed.
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