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Abstract: Compared with the traditional multi-agent models, the hierarchical leader–follower
network (HLFN) can describe some real-world multi-agent systems more precisely due to its layered
properties. The distributed event-based consensus control problem of HLFNs with layer-to-layer
delays, namely, communication delays among agents of different layers, is presented in this
essay. In order to solve the aforementioned problem, several innovative hierarchical event-based
control (HEC) algorithms are proposed. The sufficient conditions on the control parameters and
event-triggered mechanism were derived to undertake the reliability of the closed-loop dynamics.
Moreover, it is shown that the zeno-behaviors of the presented HEC algorithms can be excluded.
Finally, there are some numerical examples that verify the availability of the results.

Keywords: event-based consensus; hierarchical leader–follower network; hierarchical event-based
control; layer-to-layer delays

1. Introduction

In recent years, coordination problems of multi-agent systems (MAS) have attracted research
interests, which cover a wide area such as flocking [1,2], formation control [3–5], consensus tracking
of a robot [6], and rendezvous in distributed robotics [7–9]. On these issues, many remarkable and
significant results have emerged one after another.

In recent years, the research on the consensus of the leader-following multi-agent system has
been increasing, and a large number of achievements have emerged. Wang et al. [10] investigated
the leader-following consensus by a self-triggered algorithm. At the same time, considering the
existence of a disturbance in reality, the input delay was considered. Shen et al. [11] investigated the
leader-following consensus problem of multi-agent systems with two distributed adaptive control
schemes. Ning [12] investigated the problem of leader-following consensus for multiple wheeled
mobile robots. Based on the above research,the multi-layer hierarchical structure on the basis of the
two-layer structure was investigated. The hierarchical structure exists widely in nature. In reality,
birds show a hierarchical structure in the process of migration, and each layer is both a leader layer
and follow layer, in addition to the leader of the first layer and the last follow layer, this model is
called a hierarchical leader–follower network (HLFN). Nagy [13] showed the hierarchical piloting
behavior of a group of pigeons during a long flight for the first time. Through the way of recording the
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experimental data, it can be found that the pigeons have established a hierarchical leadership structure
to interact with each other during the flight, so as to complete the whole long-distance flight mission
effectively. He and Xu [14] solved the coordination problem of MAS with two-layer leaders. Based on
the previous work, we investigated the consensus of HLFNs.

In the actual communication network, due to the limitations of distance, bandwidth, and sensors,
time delays between nodes are inevitable. Based on the passivity theory, the state estimation of
recurrent neural networks (MRNNs) with time-varying delays is studied in [15]. Li [16] investigated
the leader-following consensus of MASs with time delays and switching topology. Zhao [17] studied
the consensus problem for MASs with communication delays. Jiang [18] solved the consensus problem
of networked multiple robotic manipulators with and without time-varying delays. However, in
large hierarchical networks, the communication delays between layers (layer-to-layer delays) are often
different, and the different types of delays between different layers have not been solved.

In practical applications, continuous communication will lead to high communication costs
and high requirements for equipment. Therefore, the event-based control has received widespread
attentions as a method which can effectively reduce the cost of communication. In event-based control,
the controller update only depends on the designed trigger conditions, and the trigger conditions
are often related to the state of the system. The bipartite consensus problem of multi-agent system
with connected structure balanced symbol graph based on event trigger was studied in paper [19].
Yi [20] has investigated the global consensus problem for first-order continuous-time multi-agent
systems with input saturation, in which the triggering law does not require any a priori knowledge
of global network parameters. The paper [21] investigates the bipartite leader-following consensus
of second-order multi-agent systems with signed digraph topology. The paper [22] showed that
event trigger control has lower communication times and controller update times and better control
effect than periodic sampling control on the premise of completing control tasks. The event-based
control technology attracted much attention because of the characteristics of resource saving, and
related research also achieved more results [23–30]. However, the consensus problem of HLFNs
remains unsolved.

Inspired by the preceding discussions, it is desirable to design economical and efficient hierarchical
event-based control (HEC) algorithms for consensus problems of HLFNs with layer-to-layer delays.
The main contributions of our paper are twofold: (1) Compared with the existing research
achievements [30–34], this essay deals with the consensus problem of HLFNs with layer-to-layer
delays. The existing literature considers the time-delays between different agents at the same layer.
In order to better study the hierarchical structure, we considered layer-to-layer delays between different
layers. (2) Based on the particularity of hierarchical structure, a new HEC algorithm was proposed to
solve the previous problem. The algorithm is different from the general event-based method, as the
trigger conditions of each layer were different.

In the rest of this paper is structured as follows: Section 2 introduces several fundamental theories
of graph and matrix, and the three-layer MAS is described. In Section 3, the convergence of the
designed control law is analyzed in detail. A numerical example is given to present the effectiveness
of designed event-triggered mechanism in Section 4. Section 5 concludes this paper.

2. Preliminaries

2.1. Basic Theory on Graphs and Matrices

A directed graph G = {V , E ,A} consists of a node set V= {ν1, ν2, · · · , νN}, an edge set E ∈
(V × V), and a weighted adjacency matrix A =

(
aij
)
. If there is a edge between nodes i and j , then

(i, j) ∈ E ⇔ aij > 0. There are no self-loops, i.e., aii = 0. The neighbor set of agent i is defined
as Ni = {j ∈ V |(j, i) ∈ E , j 6= i}. Besides, the Laplacian matrix L is defined as L =

[
lij
]
, where

lii = ∑j 6=i aij and lij = −aij, i 6= j. Further, Dk = diag(d1, d2, ..., drk ), k = 2, 3, ..., l, rk is the number of
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nodes of kth layer. 1 + r2 + ... + rl = N. If the node of kth layer can receive information from the rk−1,
then drk > 0, otherwise drk = 0.

2.2. System Description

Without loss of generality, the HLFNs contain three-layer network in this paper. The first layer
contains only one leader (as node 0), the second layer contains r2 minor leader, the third layer contains
m groups, r3 followers, and each group can receive information from the minor leader layer. Let the
topological relationship between the minor leaders be G2, its corresponding Laplacian matrix is L2.
Followers are divided into m subgroups, and Gp consists of rp number of nodes and satisfies N =

1 + r2 + r3, p = 1, 2, . . . , m. The Laplacian matrix of the graph Gp is recorded as Lp. Including a major
leader and minor leaders, an augmented topology diagram Ḡ2 which consists of diagram G2, node 0,
and the directed edges of some nodes to node 0 is considered. An augmented topology diagram Ḡp is
composed of diagram Gp, nodes from minor leader layer, and the directed edges of some node-to-node
from the minor leader layer. Define set v1 = {1, 2, . . . , r2}, v2 = {r2 + 1, r2 + 2, . . . , r2 + r3}.

The linear dynamics of major leader without input can be described as

ẋ0(t) = Ax0(t), (1)

the dynamics of minor leaders and followers are given as

ẋi(t) = Axi(t) + Bui(t), i ∈ v1∪ v2, (2)

where x0(t) ∈ Rn, xi(t) ∈ Rn are the states of major leader, minor leaders and followers, respectively,
A ∈ Rn×n and B ∈ Rn×m are constant matrices, and u(t) ∈ Rm is the control input.

Firstly, some basic assumptions and lemmas are given as follows:

Assumption 1. Node 0 is globally accessible in a graph Ḡ2 that contains a major leader and r2 minor leaders.
The node from the minor leader layer is globally accessible in a graph Ḡp that contains a minor leader and
some followers.

Assumption 2. The matrix pair (A, B) is stabilizable.

Assumption 3. Each row sum of lij in Ll is zero; each row sum of lij in Lp is zero.

Lemma 1. The Laplacian matrix has a simple zero eigenvalue and all the other eigenvalues have positive real
parts if and only if graph G contains a directed spanning tree.

Definition 1. The consensus of the HLFN is considered achieved if

lim
t→∞
‖xi(t)− x0(t)‖ = 0, i ∈ v1∪ v2. (3)

Remark 1. These assumptions are necessary for MAS with three-layer networks. If there is no Assumption 1,
some minor leaders may be isolated from the major leader and unable to receive information from the major leader,
thus detaching from the entire MAS, and several isolated smaller groups or individual isolated followers may
be formed in the same follower subgroup, so that some followers cannot receive control information from the
corresponding minor leaders. This obviously fails to achieve the desired control objectives.

3. Main Results

3.1. Event-Based Control for Consensus of HLFNs

In this section, the consensus of uncoupled followers under the influence of dynamic major leader
is analyzed.
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For the minor leaders, the control goal is to enable the states of the minor leaders follow the major
leader states. In order to achieve the consensus, the event-triggered control law for agent i(i ∈ v1)
is designed:

ui1(t) = K[ ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x0(t)− x̂i(t))], i ∈ v1, (4)

where K ∈ Rm×n is a feedback matrix, which is described in a later section. For the follower i(i ∈ v2)
in the follower group, the corresponding control protocol is designed as

ui2(t) = K[ ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x̂p(t)− x̂i(t))], i ∈ v2. (5)

where xp(t) is the state of the minor leader to node i. Here, x̂i(t) is defined as xi(ti
k), t ∈

[
ti
k, ti

k+1

)
.

In order to analyze the consensus problem, we define:

δi(t) = xi(t)− x0(t), i ∈ v1∪ v2, (6)

εi(t) = x̂i(t)− xi(t), i ∈ v1∪ v2. (7)

Then the system of Equation (2) can be expressed as:

δ̇i1(t) = ẋi(t)− ẋ0(t)

= Aδi(t) + BK[ ∑
j∈Ni

aij(ε j(t) + δj(t)− εi(t)− δi(t))

− di(εi(t) + δi(t))], i ∈ v1,

(8)

δ̇i2(t) = ẋi(t)− ẋ0(t)

= Aδi(t) + BK[ ∑
j∈Ni

aij(δj(t) + ε j(t)− δi(t)− εi(t))

+ di(εp(t) + δp(t)− δi(t)− εi(t))], i ∈ v2.

(9)

where δ̇i1(t) is the error of minor leaders, and δ̇i2(t) is the error of followers. Let δ(t) =

(δT
1 (t), δT

2 (t), · · · , δT
r (t))T , ε(t) = (εT

1 (t), εT
2 (t), · · · , εT

r (t))T , the system of Equations (8) and (9) becomes

δ̇1(t) = [(Ir2 ⊗ A)− (L2 +D2)⊗ BK]δ1(t)

− [(L2 +D2)⊗ BK]ε(t), i ∈ v1,
(10)

δ̇2(t) = [(Irp ⊗ A)− (Lp +Dp)⊗ BK]δ(t)− [(Lp

+Dp)⊗ BK]ε(t) + (Dp ⊗ BK)(δp(t) + εp(t)), i ∈ v2.
(11)

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Consider the HLFN Equations (1) and (2) with the
control in Equations (4) and (5). The consensus problem can be solved if:

fi1(t) = ‖εi(t)‖ − ‖BKqi(t)‖ − βe−γ(t−t0), i ∈ v1. (12)

fi2(t) = ‖εi(t)‖ − βe−γ(t−t0)

−
‖BKqi(t)‖ − 2

∥∥∥∥∥BK ∑
j∈Ni

di(x̂p(t)− x0(t))

∥∥∥∥∥
2 ‖(LP + D)⊗ BK‖ , i ∈ v2.

(13)
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and
qi(t) = ∑

j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x0(t)− x̂i(t)), i ∈ v1,

qi(t) = ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x̂p(t)− x̂i(t)), i ∈ v2.

For any β > 0, and K = BT P, P is a positive-definitive matrix.

Proof of Theorem 1. Using the variation of parameter formula, Equation (10) becomes

δ(t) = e[(Ir⊗A)−(L2+D2)⊗BK](t−t0)δ(t0)

+
∫ t

t0

e[(Ir⊗A)−(L2+D2)⊗BK](t−θ)

× (−((L2 +D2)⊗ BK))ε(θ)dθ.

In reality, if (A, B) is stabilizable and the communication topology of these agents in the
leader–follower structure has a directed spanning tree, it can be obtained from Lemma 1 that all
the eigenvalues of Ir ⊗ A − (L2 +D2)⊗ BK have non-positive real parts. Therefore, positive constants
a and ρ for t ≥ t0 are existed, such that (refer to [35])∥∥∥e[Ir2⊗A −(L2+D2)⊗BK](t−t0)

∥∥∥ ≤ ae−ρ(t−t0).

Furthermore, we can get

‖δ(t)‖ ≤ α1e−γ1(t−t0) ‖δ(t0)‖

+ α1

∫ t

t0

e−γ1(t−θ) ‖(L2 +D2)⊗ BK‖ ‖x̃(θ)‖ dθ,
(14)

Forced by Equation (12), we can get

‖ε(t)‖ ≤ α̃ ‖δ(t)‖+ β̃e−γ(t−t0), (15)

Combine Equation (14) with Equation (15), it holds

‖δ(t)‖ ≤ α1 ‖δ(t0)‖ e−ρ(t−t0) + α1

∫ t

t0

e−ρ(t−θ)

× ‖(L2 +D2)⊗ BK‖ (α̃ ‖δ(θ)‖+ β̃e−γ(θ−t0))dθ.
(16)

Then, we prove that
‖δ(t)‖ < ηα1 ‖δ(t0)‖ e−γ(t−t0). (17)

If Equation (17) does not hold, then t∗ > t0 for ‖δ(t∗)‖ = v(t∗) and ‖δ(t)‖ < v(t) for t < t∗. Then by
Equation (16), one has
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v(t∗) = ‖δ(t∗)‖

< ηα1e−ρ(t∗−t0) ‖δ(t0)‖+ ηα1

∫ t∗

t0

e−ρ(t∗−θ)

× (α̃ ‖δ(θ)‖+ β̃e−γ(θ−t0))dθ

< ηα1e−ρ(t∗−t0) ‖δ(t0)‖+ ηα1(α̃α1 ‖δ(t0)‖+ β̃)

× (e−γ(t∗−t0) − e−ρ(t∗−t0))

< ηα1 ‖δ(t0)‖ e−γ(t∗−t0)

= v(t∗).

(18)

The conflict of Equation (18) demonstrates that Equation (17) is well-founded, which implies that the
consensus of the system in Equation (1), Equation (2) can be achieved exponentially.

Then using the variation of parameter formula, Equation (11) can be rewritten as

ε(t) = e[(Irp⊗A)−(Lp+Dp)⊗BK](t−t0)ε(t0)

+
∫ t

t0

e[(Irp⊗A)−(Lp+Dp)⊗BK](t−θ)

× [(−((Lp +Dp)⊗ BK))e(θ)

+ (Dp ⊗ BK)(x̃(θ) + δ(θ))]dθ.

(19)

It follows from Equation (19)

‖ε(t)‖ ≤ α2e−ρ(t−t0) ‖ε(t0)‖

+ α2

∫ t

t0

e−ρ(t−θ)[
∥∥(Lp +Dp)⊗ BK

∥∥ ‖ε(θ)‖
+
∥∥Dp ⊗ BK

∥∥ ‖ε(θ) + δ(θ)‖]dθ.

(20)

Replacing Equation (15) in Equation (20),

‖ε(t)‖ ≤ α2e−ρ(t−t0) ‖ε(t0)‖

+ α2

∫ t

t0

e−ρ(t−θ)[
∥∥(Lp +Dp)⊗ BK

∥∥ ‖ε(θ)‖
+ rβe−γ(θ−t0)]dθ.

(21)

Then, we prove that
‖ε(t)‖ < ηα2 ‖ε(t0)‖ e−γ(t−t0). (22)

This part of the proof is equivalent to the previous process, which is omitted here.
To avoid zeno-behavior, we need to get the lower boundary of the positive constant for the

interval between any two events ∆ti, suppose agent i triggered at the moment t∗i ≥ 0, then ei(t∗i ) = 0.
For between the time t∗i and the time ti which the next event is triggered, we have

ėi(t) = −ẋi(t) = −[Axi(t) + Bui(t)]. (23)

By integrating the two sides of the above equation, we can get

|ei(t)| =
∫ t

t∗
|Axi(s) + Bui(s)|ds. (24)
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we know
|Axi(t)+Bui(t)| ≤ ‖(Ir ⊗ A)‖ ‖x(t)‖

+
∥∥(Lp +Dp)⊗ BK

∥∥ (‖ε(t)‖+ ‖e(t)‖
+
∥∥Dp ⊗ BK

∥∥ ‖δ(t)‖
= c.

(25)

where c is a normal value.
By Equations (24) and (25), |ei(t)| ≤ c(t− t∗) can be obtained. Assume c(t− t∗) = c1, when the

error vector decreases from |ei(t)| = c1 to |ei(t)| = 0, the next event trigger will occur. Therefore,
there exists a strict positive lower bound ∆ti = ti − t∗i = c1/c between the triggering times of two
events. Since there exists such a lower bound for arbitrary agent and any event time, we believe that
zeno-behavior will not exist. The process of proof for Theorem 1 is thus completed.

3.2. Event-Based Control for Consensus of HLFNs with Layer-to-Layer Delays

In this part, we consider the result in case when the layer-to-layer delays exist. For the minor
leaders, the following protocol for agent i is designed:

ui(t) = K[ ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x0(t− τ1(t))− x̂i(t))],

i ∈ v1,
(26)

ui(t) = K[ ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x̂p(t− τ2(t))− x̂i(t))],

i ∈ v2.
(27)

In this part, we consider layer-to-layer delays in communication. Define that the communication
between major leader and minor leaders is subject to a time delay τ1(t), which satisfies 0 < τ1(t) < µ1,
the communication between minor leader and followers is subject to a time delay τ2(t), which satisfies
0 < τ2(t) < µ2.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Consider the HLFN Equations (1) and (2) with control,
(26) and (27), the consensus problem can be solved if:

fi(t) = ‖εi(t)‖ − βe−γ(t−t0)

−
‖BKqi(t)‖ − 2

∥∥∥∥∥BK ∑
q∈Np

di(x̂p(t)− x0(t− τ1(t)))

∥∥∥∥∥
2 ‖(L2 +D2)⊗ BK‖ ,

i ∈ v1,

(28)

fi(t) = ‖εi(t)‖ − βe−γ(t−t0)

−
‖BKqi(t)‖ − 2

∥∥∥∥∥BK ∑
j∈Ni

di(x̂p(t)− x0(t− τ2(t)))

∥∥∥∥∥
2
∥∥(Lp +Dp)⊗ BK

∥∥ ,

i ∈ v2.

(29)

For any β > 0, and K = BT P, P is a positive-definitive matrix.
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Proof of Theorem 2. In this part, we divide the proof process into two parts, for minor leader
i(i = 1, 2, . . . r2), we can get

‖δ(t)‖ ≤ α1e−ρ(t−t0) ‖δ(t0)‖

+ α1

∫ t

t0

e−ρ(t−θ) ‖(L2 +D2)⊗ BK‖ ‖εi(θ)‖

− ‖(D2 ⊗ BK)‖
∥∥∥(eAθ − eA(θ−τ1(θ)))

∥∥∥)dθ,

(30)

forced by Equation (28), one can get

‖δ(t)‖ < ηα1e−γ(t−t0) ‖δ(t0)‖ , (31)

For follower i(i ∈ v2), it holds

‖δ(t)‖ ≤ α2e−ρ(t−t0) ‖δ(t0)‖+ α2

∫ t

t0

e−ρ(t−θ)

× [
∥∥(Lp +Dp)⊗ BK

∥∥ ‖ε(θ)‖+ ‖D2 ⊗ BK‖

×
∥∥∥δ(θ − τ2(θ)) + εp(θ − τ2(θ))− (eAθ − eA(θ−τ2(θ)))

∥∥∥]dθ,

(32)

It can be concluded from Equation (29) that

‖δ(t)‖ < ηα2 ‖δ(t0)‖ e−γ(t−t0). (33)

The proof of zeno-behavior is equivalent to that of Theorem 1, which is omitted here. The proof of
Theorem 2 is thus completed.

Remark 2. The conclusion of this paper is that, based on the three-layer hierarchical structure, agents from the
minor leader layer and the follower layer only interacts with the same layer agents and direct leaders, therefore,
the analysis of three-layer network can be extended to multi-layer hierarchical MAS.

4. Simulation Results

In this section, two numerical example are shown to demonstrate the corresponding analysis
of the results gained in the previous section. Consider the event-based consensus of HLFNs with
thirteen agents, a major leader, three minor leaders, and nine followers. The communication topology
is described as seen in Figure 1 and the connectivity weights are given as aij = 1, dij = 1, the other
weights are all equal to zero. From the topology graph and the matrix relationship given, it can be
seen that node 0 and nodes from the second layer are globally reachable in Ḡ2 and Ḡp, respectively.
Moreover, there is a directed spanning tree in the interconnection graph. Assume that

A =

 −6 3 3
3 −3 0
−3 0 0

 , B =

 0
0.2
0



P =

 0.3492 0.4488 0.2378
0.4488 0.9798 0.4697
0.2378 0.4697 0.4827


Thus (A,B) is stabilizable. Consider the hierarchical leader–follower networks with the

interconnection graph given in Figure 1, for any initial condition, Figures 2–4 show the change
of error of each agents. It can be seen from Figures 2–4 that the consensus can be achieved eventually
under the proposed event-triggered strategy. The enlarged part of the figure shows that the system
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reached consensus in about 11 s. Event time instants are shown in Figure 5, in which no Zeno triggering
behaviors or even dense events for any agent are observed. Figures 6–8 shows the the change of error
of agents with layer-to-layer delays, which shows the consensus can be achieved eventually under the
proposed event-triggered strategy with layer-to-layer delays in about 15 s. Due to the interference of
the layer-to-layer delays, the time to reach the consensus in Figures 6–8 is longer than that in Figures 2
and 3. Figure 9 shows the event time instants under the event-triggered law with layer-to-layer delays.
As can be seen from Figures 5 and 9, leader 1–3 triggers less than other followers, which greatly saves
the waste of system resources. From the simulation results, one can see that Theorem 2 does more
controller updates than that in Theorem 1.

Figure 1. Topology of the hierarchical multi-agent network with uncoupled follower groups.

Figure 2. Position State Component 1 of Agent without delay.
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Figure 3. Position State Component 2 of Agent without delay.

Figure 4. Position State Component 3 of Agent without delay.

0 5 10 15 20
time[Sec]

0

leader1

leader2

leader3

follower4

follower5

follower6

follower7

follower8

follower9

10

Figure 5. Event-trigger numbers under the event-based control law of Equation (4).
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Figure 6. Position State Component 1 of Agent with hierarchical delay.

Figure 7. Position State Component 2 of Agent with hierarchical delay.
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Figure 8. Position State Component 3 of Agent with hierarchical delay.
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time[Sec]

0

leader1

leader2

leader3

follower4

follower5

follower6

follower7

follower8

follower9
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Figure 9. Event-trigger numbers under the event-based control law of Equation (5) with
layer-to-layer delay.

Remark 3. The state of the agents in this paper is three-dimensional, and Figures 2–4 describe the state changes
of the three dimensions, respectively.

5. Conclusions

In this paper, a novel hierarchical event-based control for hierarchical leader-follower networks
is proposed. Based on matrix theory, algebraic graph theory, Lyapunov theory, and under the given
event-triggered condition, it is proven that the protocols can realize consensus. Moreover, we show that
the system can reach consensus with the layer-to-layer delays. Finally, simulation results are presented
to support the theorems. In the future, more effort will be made towards relaxing the connectivity
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condition on the topology of the multi-agent network. The restrictions on the time delays may be lifted.
How to extend consensus to multi-consensus is another topic in the future.
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