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Abstract: An increase in demand for renewable energy resources, energy storage technologies,
and electric vehicles requires high-power level DC-DC converters. The DC-DC converter that is
suitable for high-power conversion applications (i.e., resonant, full-bridge or the dual-active bridge)
requires magnetic transformer coupling between input and output stage. However, transformer
design in these converters remains a challenging problem, with several non-linear scaling issues
that need to be simultaneously optimized to reduce losses and maintain acceptable performance.
In this paper, a new transformer-less high step-up boost converter with a charge pump capacitorand
capacitor-inductor-diode CLD cell is proposed using dynamic modeling. The experimental and
simulation results of the proposed converter are carried out in a laboratory and through Matlab
Simulink, where 10 V is given as an input voltage, and at the output, 100 V achieved in the proposed
converter. A comparative analysis of the proposed converter has also been done with a conventional
quadratic converter that has similar parameters. The results suggest that the proposed converter can
obtain high voltage gain without operating at the maximum duty cycle and is more efficient than the
conventional converter.

Keywords: dynamic modeling; DC-DC converter; electric vehicle (EV); charge pump capacitor

1. Introduction

In recent years, due to the shortage of fossil fuels, research on renewable energy sources such as
photovoltaic PV, wind, and fuel cells (FC), has gained immense popularity [1,2]. The intermittency
associated with PV systems and low voltages at load end and electric vehicle (EV) or hybrid electric
vehicle (HEV) charging needs a boost converter as depicted in Figures 1 and 2 [3–5]. Generally, EVs are
powered by fuel cell stacks, supercapacitors, and battery systems. Thus, there is a need to step up the
voltages [6–8].

A review of related literature depicts that various boost converters have been presented to overcome
high voltage gain at the output. The traditional boost converters are preferred for their simple structure
and low cost; however, they usually produce high input current ripples. For high voltage gain,
this converter needs to work at a high duty ratio cycle, which causes switching problems [9–13].
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The traditional solution to implement a DC-DC converter, with a high voltage transformation ratio,
typically involves a magnetic transformer with a high turn’s ratio, Due to the high cost of magnetic
transformer components, several transformer-less topologies have been proposed that can achieve
a high step-up ratio e at lower cost and size. The most common transformer-coupled topologies
are derived from isolated versions of the basic converter types, i.e., buck, boost, buck-boost, cúk,
single-ended primary-inductor converter (SEPIC) [14,15]. The forward converter is based on the buck
topology; the flyback converter is based on the buck-boost topology; Full-bridge as well as Half-bridge
converters can be both buck and boost derived. Moreover, converter types can be classified based
on transformer core utilization [16]. Forward and flyback topologies have a net DC current in the
transformer winding, which means the flux in the core must be reset at the end of each switching cycle.
Full bridge, half-bridge and push-pull topologies provide bidirectional excitation to the transformer
core; the net current in the winding is AC. This means that the flux in the core is reset automatically at
the end of each switching cycle. The concept of using switching capacitor (SC) is obtained from [17]
in which switching converters with wide DC conversion range are discussed by including a hybrid
cell that multiplies current or voltage, as described in [18–20]. The high-frequency rectifier stage
can be passive (half-wave, center-tapped half wave, full wave) or active, with switching devices.
Some designs eliminate the high-frequency transformer and replace it with a parallel capacitor [21].
The shortcomings of wide frequency operation are EMI issues [22,23], higher switching loss at low
power levels, difficulty in the design of magnetic components and the circulating currents independent
of power level. Furthermore, phase-controlled converters operate at fixed frequencies and adjust power
flow by varying phase shifts between the switching legs of a full-bridge inverter [24–26]. Similarly,
modular DC–DC converters with input- and output-side series/parallel configurations are typically
used for conditions where power processing exceeds the capacity of any single converter. However,
these converters have control-related issues that do not provide balanced power-share between
the constituent converter modules for different load conditions. Quadratic converters are DC–DC
converters with a voltage conversion ratio that has a quadratic dependence on-duty ratio [27,28].
They are synthesized by cascading two converters in series and then eliminating redundant switches
and controllers [29,30].
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One of the main advantages of these converters is their higher voltage transformation ratio with
a reduced number of components. However, the limitations of these converters arise from their
cascaded nature. In addition, their combined efficiency is lower than the individual converter stages;
and the voltage stresses on the boost diode and switch of the final stage are equal to the output voltage.
Such problems can be solved by adding a switch to form a three-level boost converter [31]. Many other
structures can also be integrated with quadratic converters like a capacitor-diode combination of the
voltage multiplier or single/three-phase transformer windings [32]. There are different variations of
boost converters, for instance, the quadratic boost zeta converter, quadratic tapped-boost converter
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ZVS/ZCS quadratic converters, and quadratic converters based on non-cascading structures [33,34].
(SC) converters are a class of DC–DC converters, where the power stage consists of a network of only
capacitors and switches. The capacitors are charged and discharged in sequence via input voltage
to achieve the required voltage conversion ratio at the output [35]. The most significant advantage
of SC converter is the absence of inductive storage devices. This makes the topology appropriate
for monolithic integration and high-power density as both switches and capacitors can be fabricated
on the same substrate using standard semiconductor manufacturing processes. One of its major
shortcomings, which has been observed, is that the process of charge transfer results in impulse currents
due to capacitors acting as charge pumps, which can lead to an increase in device stress and EMI
issues. Another drawback is that at a fixed voltage transformation ratio, the efficiency of the converter
drops quickly as the conversion ratio moves away from the designed operating mode. Furthermore,
an additional limitation is that the voltage stress across all active switches is not equal [36].
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2. Related Work

The Cockroft–Walton (CW) circuit or voltage multiplier-based hybrid DC–DC Converters were
introduced in 1932. This circuit operates as a voltage multiplier, which is fed by a pulsating low
voltage waveform to generate a high voltage DC on its output terminal. Its main application is to
generate high voltage DC required for insulation testing generators and particle accelerators. As the
multiplication ratio increases, the CW circuit suffers from poor load regulation resulting in a significant
voltage drop at its output terminal. For this reason, the CW circuit needs another converter to
provide output voltage regulation. In [18,19], an isolated hybrid DC–DC converter composed of
series-resonant and a CW circuit is proposed for a medical-use high-voltage X-ray power generator.
In [37], a classical transformer-less multilevel boost converter with a hybrid connection of CW is
introduced. Both converters in [37,38] can provide a considerable DC voltage step-up ratio at high
efficiency. However, these circuits cannot be used for high-power applications as they share a similar
high current-spike problem, which results from charging and discharging capacitors connected in
parallel. This boost circuit is necessary to provide a pulsating input voltage waveform for the CW
circuit and to produce output voltage regulation through use of Pulse Width Modulation (PWM).
The presence of this boost circuit is inappropriate for high-power applications. Moreover, voltage
multiplier hybrid DC–DC converters cannot achieve DC voltage step-down operation.

In this article, a new modified boost converter with a charge–pump capacitor and CLD cell is
proposed (see Figure 3). The proposed converter can achieve very high voltage gain at the output
without intensive duty ratio, and with lower switching stress across the switch. As the proposed
converter consists of a charge pump capacitor which can control input current ripples, CLD cell
can support high voltage gain at the output. Figure 3 represents the block diagram of proposed
converter where Vs. is an input voltage, the four capacitors are Vc1, Vc2, Vc3, and Vc0, S indicates
metal–oxide–semiconductor field-effect transistor (MOSFET) switch three inductors are L1, L2, L3
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with same duty ratio. For proposed converter, the following assumptions have been made: (1) The
proposed converter works with continuous conduction mode (CCM), (2) All components including
input power are taken as ideal (no voltage drop and resistance),and (3) All the capacitors are large
enough with constant voltages.

Energies 2020, 13, x FOR PEER REVIEW 4 of 16 

 

power are taken as ideal (no voltage drop and resistance),and (3) All the capacitors are large enough 
with constant voltages. 

 

Figure 3. Diagram of the proposed converter. 

3. Working Method of the Proposed Converter 

The switching frequency of the proposed converter is fixed and has two switching states with 
one PWM signal. For one state (t0 − t1), MOSFET is switched ON; for other state (t1 − t2), MOSFET is 
switched OFF as illustrated in Figures 4 and 5. Furthermore, the characteristics of steady-state 
waveform, voltages, and currents of the proposed converter are shown in Figure 6. 

3.1. MOSFET Switch ON State (t0 − t1) 

In this state, when switch “S” is ON, diode D2 will be forward biased while other diodes (D1, D3, 

and D4) will work in reverse biased mode. This configuration of DC–DC converter is presented in 
Figure 4 with arrows indicating the direction of the current flow. The input voltage VS/L1 developed 
across inductor L1, linearly increases the iL1 inductor current and rise in (VS + VC1)/L2 across inductor 
L2, increases the inductor current (). In this state, capacitors C2 and C3 are in series, and the voltage 
output of these two capacitors is given as VC2 + VC3 = 2VC2. And the inductor L3 increases by (2VC2 − 
V0)/L3. The equation of this state is derived in equation (1–5). 

 

Figure 4. State-I. 

= +  (1) 

u = +  (2) 

= + 2 −
 (3) 

= + +  (4) 

 L

L1

3L2

D1

D 4

S

C2

Co Ro
+

_
Vs

+ _

+

_

Vo

D2
C1

C3

+_

D 3

+

_VC1
VC2

VC3

 

VC2

L1

L3L2

S

C 2

Co Ro
+

_
Vs

+ _

+

_

Vo

D 2
C 1

C 3

+_

+

_VC1

VC3

iQ

Figure 3. Diagram of the proposed converter.

3. Working Method of the Proposed Converter

The switching frequency of the proposed converter is fixed and has two switching states with
one PWM signal. For one state (t0 − t1), MOSFET is switched ON; for other state (t1 − t2), MOSFET
is switched OFF as illustrated in Figures 4 and 5. Furthermore, the characteristics of steady-state
waveform, voltages, and currents of the proposed converter are shown in Figure 6.
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3.1. MOSFET Switch ON State (t0 − t1)

In this state, when switch “S” is ON, diode D2 will be forward biased while other diodes (D1, D3,

and D4) will work in reverse biased mode. This configuration of DC–DC converter is presented in
Figure 4 with arrows indicating the direction of the current flow. The input voltage VS/L1 developed
across inductor L1, linearly increases the (iL1) inductor current and rise in (VS + VC1)/L2 across inductor
L2, increases the inductor current (iL2). In this state, capacitors C2 and C3 are in series, and the
voltage output of these two capacitors is given as VC2 + VC3 = 2VC2. And the inductor L3 increases
by (2VC2 − V0)/L3. The equation of this state is derived in Equations (1)–(5).

iL1 = iL1−t0 +
Vs

L1
t (1)

uiL2 = iL2−t0 +
Vs + Vc1

L2
t (2)

iL3 = iL3−t0 +
2Vc2 −V0

L3
t (3)

iQ = iL1 + iL2 + iL3 (4)
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iin = iL1 + iL2 (5)

3.2. MOSFET Switch OFF State (t1–t2)

In this state, when semiconductor switch S is turned OFF, diode D2 will be in reverse biased
mode, as shown in Figure 5. As the voltage across the inductor L1 becomes negative of VC1/L1, current
changes its path from switch to diode D1 and decreases linearly. At the same time, the voltage across
inductor L2 is (VS+VC1 − VC2)/L2, and inductor L3 is (VC2 − V0)/L3, respectively. All the inductors
current decreases linearly during this state. Equations for this state are (6)–(10) derived using Figure 5,
as given below.

iL1 = iL1−t1 −
Vc1

L1
t (6)

iL2 = iL2−t1 −
Vs + Vc1 −Vc2

L2
t (7)

iL3 = iL3−t1 −
Vc2 −V0

L3
t (8)

iQ = 0 (9)

iin = iL2 (10)
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4. Steady-State Analysis of the Proposed Converter

The steady-state analysis of the proposed converter is discussed below.

4.1. DC Conversion Ratio

The relationship between input and output voltage can be obtained through Equations (11)–(17)
after applying inductor volt second balance (VSB) at inductor L1, L2, and L3 for each state.
Equations (11)–(13) describe state-I while Equations (14)–(16) refer to state-II.

VL1 = Vs (11)

VL2 = Vs + Vc1 (12)

VL3 = 2Vc2 −V0 (13)

VL1 = −Vc1 (14)

VL2 = Vs + Vc1 −Vc2 (15)

VL3 = Vc2 −V0 (16)

G =
V0

Vs
=

1 + D

(1−D)2 (17)

The voltage and current stress across semiconductor components are determined through
Equations (18)–(25)

VS = Vc2 (18)

VD1 = VS + Vc1 (19)

VD2 = Vc2 −VS −Vc1 (20)

VD3,4 = Vc2 (21)

iD1,2 =
Vs

(1−D)5RL
(22)

iD3 =
Vs

(1−D)2RL
(23)

iD4 =
Vs

(1−D)4RL
(24)

iQ =
Vs

(D)RL
(25)

4.2. Dynamic Modeling of the Proposed Converter

In this section, we assume that inductor current AC ripples and capacitor voltage ripples are
monomers [39]. Figure 7 is derived from Figure 4 where,

Vs: input voltage,
iL1,2,3: current across the inductor
Vc1,2,3,4: voltage across the capacitor.
When the switch “S” is ON, current across the diode D1 = iL1 and current across the switch S = iL1

+ iL2 + iL3. During this stage, diode D1, 2, 3 are reversed biased, and the voltage across these diodes is
equal to (Vs+Vc1), (Vc2), (Vc3), as shown in Figure 2.
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Figure 7 shows the equivalent circuit of the proposed converter where diode D2 and switch are
replaced by a current source, and diode D1, D3, and D4 are replaced by the voltage source. In the
equivalent circuit, after applying circuit theory, the equation derived is (26),

.
iL1.
iL2.
iL3.
Vc1.
Vc2.
Vc3.
Vc4


=



0 0 0 −(1− u)/L1 0 0 0
0 0 L3/L2 1/L2 −1/L2 −1/L2 −1/L2

0 0 L2/L3 0 −1/L3 1/L3 1/L3

1− u/C1 −1/C1 1/C1 0 0 0 0
0 1/C2 −1/C2 0 0 0 0
0 1/C3 −1/C3 0 0 0 0
0 1/C4 −1/C4 0 0 0 −1/RLC4





iL1

iL2

iL3

Vc1

Vc2

Vc3

Vc4



+



u
L1
1

L2

−
1

L3

0
0
0
0


[e(t)]

(26)

Without considering losses, the above equation can be written as,

.
x(t) = A(u)x(t) + B(u)e(t) (27)

where e(t) is the input vector, x(t) = [iL1, iL2, iL3, Vc1, Vc2, Vc3, Vc4]
TR7 is the average value of state

vector, A(u) is a matrix in R7×7 and B(u) is a vector in R7; Vs ∈ R = input voltage; RL is the resistive
load and u is a function of switch S with e binary value [0, 1]. Subsequently, [0] demonstrates that
the switch is OFF, whereas [1] indicates that the switch is ON. Equation (27) is based on non-linear,
whereas matrix A(u), B(u) is dependent on the control signal of u(t) ∈ R. The behavior of the proposed
converter obtained after the linearization process results in small perturbations around an operating
point. Therefore, the nominal steady-state operating condition of the proposed converter can be written
by setting (27) as AX + BE = 0 and and is shown in Equations (28)–(34),

The voltage across the capacitors are given in Equations (28)–(31),

Vc1 =
D

1−D
Vs (28)

Vc2 =
1

(1−D)2 Vs (29)

Vc3 =
1

(1−D)2 Vs (30)
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Vc4 =
1 + D

(1−D)2 Vs (31)

Current across the inductor is given in Equations (32)–(34),

iL1 =
Vs

(1−D)5RL
(32)

iL2 =
Vs

(1−D)4RL
(33)

iL3 =
Vs

(1−D)2RL
(34)

where D is the duty cycle of the switch S,

e(t) = E + ẽ (35)

u(t) = U + ũ (36)

where ũ is the small-signal perturbations of the nominal dusty cycle D, and ẽ is the nominal input
voltage Vs. Thus, the relationship between voltage and duty cycle above is given as (35)–(36), Where,
ẽ << E and ũ << D, which can also be written as (37)–(38),

X(t) = X + x̃ (37)

V0(t) = V0 + ṽ0 (38)

After substituting Equations (28)–(34) and (35)–(36) into Equation (26), the linear mode can be
derived by assuming fewer perturbations, and avoiding non-linear terms as mentioned in Equation (39),



.̃
iL1

.̃
iL2

.̃
iL3

.̃
Vc1

.̃
Vc2

.̃
Vc3

.̃
Vc4



=



0 0 0 −
1−u
L1

0 0 0

0 0 L3
L2

1
L2

−
1

L2
−

1
L2

−
1

L2

0 0 L2
L3

0 −
1

L3
1

L3
1

L3

1− u
C1
−

1
C1

1
C1

0 0 0 0
0 1

C2
−

1
C2

0 0 0 0
0 1

C3
−

1
C3

0 0 0 0
0 1

C4
−

1
C4

0 0 0 −
1

RLC4





ĩL1

ĩL2

ĩL3

Ṽc1

Ṽc2

Ṽc3

Ṽc4


+



D
(1−D)L1

Vs
1

(1−D)2L2
Vs

1
(1−D)2L2

Vs
1+D

(1−D)2L3
Vs

Vs

(1−D)5RLc1
Vs

(1−D)4RLc2
Vs

(1−D)2RLc3

u
L1
1

L2

−
1

L3

0
0
0
0



[
ũ
ẽ

]
(39)

Furthermore, the above equation can be written as (40),

.
x(t) = Ax(t) + Bv(t) (40)

where, x(t) ∈ R7 is the state vector, A ∈ R7×7 and B are the constant matrix in R7×2, R2 is vector of
input voltage and V(t) =

[
ũ ẽ

]
. When the perturbation input voltage is neglected ẽ = 0, matrix B is

removed and small signal state-space model can be written as (41).
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.̃
iL1

.̃
iL2

.̃
iL3

.̃
Vc1

.̃
Vc2

.̃
Vc3

.̃
Vc4



=



0 0 0 −(1− u)/L1 0 0 0
0 0 L3/L2 1/L2 −1/L2 −1/L2 −1/L2

0 0 L2/L3 0 −1/L3 1/L3 1/L3

1− u/C1 −1/C1 1/C1 0 0 0 0
0 1/C2 −1/C2 0 0 0 0
0 1/C3 −1/C3 0 0 0 0
0 1/C4 −1/C4 0 0 0 1/RLC4





ĩL1

ĩL2

ĩL3

Ṽc1

Ṽc2

Ṽc3

Ṽc4



+



D
(1−D)L1

Vs
1

(1−D)2L2
Vs

1
(1−D)2L2

Vs
1+D

(1−D)2L3
Vs

Vs

(1−D)5RLc1
Vs

(1−D)4RLc2
Vs

(1−D)2RLc3


[ũ]

(41)

5. Simulation Results & Discussion

The simulation results of the proposed converter, which are performed in the Matlab Simulink
environment, are shown in Figure 8. Figure 8a describes the switching signal of the MOSFET switch S;
Figure 8b represents 10 V as an input voltage; in Figure 8c 100 V output voltages are obtained at the
duty cycle of D = 0.6; and Figure 8d,e is the output voltage of capacitors C1 and C2, which are 62.50 V.
In Figure 8f voltage stress across the switch S is 62.50 V. Thus, the output voltage of the proposed
converter is higher than voltage stress. Furthermore, a comparison of results demonstrates that voltage
gain of the conventional quadratic converter is significantly less than the proposed converter, whereas
voltage stress across the switch is equal to output voltages [11]. Figure 8g–i shows the current across
the inductor L1, L2, and L3.
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6. Experimental Results & Discussion

To validate results and effectiveness of the proposed converter, an experimental setup is prepared
in the research laboratory with circuit parameters as given in Table 1. Experimental waveforms of the
proposed converter are depicted in Figure 9 and a prototype of this converter is presented in Figure 10.
The duty cycle of the proposed converter is assumed as D = 0.6. Figure 9a shows the switching signals
of the proposed converter, and Figure 9b illustrates waveforms of input voltage, which is 10 V. Figure 9c
shows that the output voltage of the proposed converter is 98 V, which is in accordance with voltage
gain determined through Equation (17). The output voltage indicates that the proposed converter can
achieve high gain without operating at a maximum duty cycle. The voltage conversion ratio of the
proposed converter is ten times higher than the input voltage, which is quite high when compared to
the traditional quadratic converter.

Table 1. Parameters for prototype.

Components Symbol Parameters

Output power P0 50 (W)
Input voltage Vin 10 (V)

Output voltage V0 100 (V)
Load resistance R 200 (Ω)

Frequency FS 100 (KHz)
Filter inductor L1-3 220 (µH)

Capacitor C1-4 440 (µF)
Diodes D MUR860

MOSFET Switch S IRFZ46N

  

Energies 2020, 13, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

Table 1. Parameters for prototype. 

Components Symbol Parameters 
Output power P0 50 (W) 
Input voltage Vin 10 (V) 

Output voltage V0 100 (V) 
Load resistance R 200 (Ω) 

Frequency FS 100 (KHz) 
Filter inductor L1-3 220 (μH) 

Capacitor C1-4 440 (μF) 
Diodes D MUR860 

MOSFET Switch S IRFZ46N 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cont.



Energies 2020, 13, 1791 11 of 14

Energies 2020, 13, x FOR PEER REVIEW 2 of 16 

 

 
(d) 

 
(e) 

 
(f) 

Figure 9. Experimental results of the proposed converter. Figure 9. Experimental results of the proposed converter.

  

Energies 2020, 13, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

Controler
Proposed converter Load

 
Figure 10. The prototype of the proposed converter. 

In Figure 9d,e waveform of capacitor voltages VC1, VC2, and VC3 are shown, where the output 
voltage of capacitor VC1 is 15 V and of capacitor VC2 and VC3 is 61 V, that are in close proximity to 
capacitor equations (28–31). Furthermore, Figure 9f shows the waveforms of switching stress across 
the MOSFETs switch S, where voltage stress across the switch is 62 V, which is less than the output 
voltage. The conventional quadratic converter has stress across the switch Vs-stress = V0. From 
experimental and theoretical analysis, it is proved that the proposed converter has many advantages 
over conventional quadratic converter. 

In Figure 11, an efficiency graph of the proposed and conventional quadratic converter is given. 
The efficiency of both converters is calculated for different loads. It is observed that the maximum 
efficiency of the proposed converter is 95.91% and is achieved at an output power of 195 W. This is 
due to the fact that higher input voltages allow the converter to operate at higher output power. As 
maximum power is limited by thermal limit of the switches and lower current, it results in lower 
losses in switches, and attainment of minimum efficiency (86.74%) at an output power of 33 W. As 
compared to the conventional quadratic converter at the same load, maximum efficiency achieved by 
the proposed converter is 93.97%, and the minimum is 83.29%, which indicate that it has excellent 
efficiency at high voltage gain. 

 
Figure 11. Efficiency graph. 

86.74
90

94
95.91

83.29
87.3

91.73
93.97

75

80

85

90

95

100

33 49 98 195

Ef
fic

ie
nc

y(
%

)

Output Power (W) 

Proposed Converter Conventional Converter

Figure 10. The prototype of the proposed converter.

In Figure 9d,e waveform of capacitor voltages VC1, VC2, and VC3 are shown, where the output
voltage of capacitor VC1 is 15 V and of capacitor VC2 and VC3 is 61 V, that are in close proximity
to capacitor Equations (28)–(31). Furthermore, Figure 9f shows the waveforms of switching stress
across the MOSFETs switch S, where voltage stress across the switch is 62 V, which is less than the
output voltage. The conventional quadratic converter has stress across the switch Vs-stress = V0. From
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experimental and theoretical analysis, it is proved that the proposed converter has many advantages
over conventional quadratic converter.

In Figure 11, an efficiency graph of the proposed and conventional quadratic converter is given.
The efficiency of both converters is calculated for different loads. It is observed that the maximum
efficiency of the proposed converter is 95.91% and is achieved at an output power of 195 W. This is due to
the fact that higher input voltages allow the converter to operate at higher output power. As maximum
power is limited by thermal limit of the switches and lower current, it results in lower losses in switches,
and attainment of minimum efficiency (86.74%) at an output power of 33 W. As compared to the
conventional quadratic converter at the same load, maximum efficiency achieved by the proposed
converter is 93.97%, and the minimum is 83.29%, which indicate that it has excellent efficiency at high
voltage gain.
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7. Conclusions

In this paper, a DC–DC boost converter with charge pump–capacitor and CLD cell is introduced
with its static and dynamic working principle. To investigate operational principles of the proposed
converter, the simulation was performed in MATLAB/SIMULINK, and to validate the results,
an experimental setup was developed in the laboratory. It is evident from results (Simulation and
experimental) that the proposed converter holds certain advantages over traditional converters, such as
efficient high voltage gain and low losses across the switch than the output voltage. The presented
converter is suitable for converting low voltage to high voltage in various applications such as
photovoltaic systems, where the wires from the PV modules are isolated from the earth, and there
would not be a problem. If the input and output are (galvanically) separated and at different potentials.
However, it may have some shortcomings for high voltage floating ground applications, for instance,
where input source and output load share a common ground (some cases in automotive). In the floating
ground system, it may have some safety concerns, because there is no low impedance path to ground.
However, this type of grounding can facilitate in isolating a system from interference problems caused
by ground loops.
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