
energies

Article

Thermal Effects of Natural Gas and Syngas Co-Firing
System on Heat Treatment Process in the
Preheating Furnace
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Abstract: Preheating furnaces, which are commonly used in many production sectors (e.g., iron and
steel), are simultaneously one of the most energy-intensive devices used in the industry. Partial
replacement of natural gas with biomass-derived synthesis gas as a fuel used for heating would be an
important step towards limiting industrial CO2 emissions. The time dependent computational fluid
dynamics (CFD) model of an exemplary furnace was created to evaluate whether it is possible to
obtain 40% of energy from syngas combustion without deterioration of thermal parameters of the
treated load. As an outcome, a promising method to organize co-firing in the furnace was indicated.
The obtained results show that the co-firing method (up to 40% thermal natural gas replacement with
syngas), assuming low air-to-fuel equivalence ratio (λNG = 2.0) and even distribution of power among
the furnace corners, lead to satisfactory efficiency of the heat treatment process—the heat transferred
to the load exceeds 95% of the heat delivered to the load in the reference case), while carbon dioxide
emission is reduced from 285.5 to 171.3 kg CO2/h. This study showed that it is feasible (from the heat
transfer point of view) to decrease the environmental impact of the process industries by the use of
renewable fuels.

Keywords: CFD modelling; heat treatment process; industrial furnaces; natural gas substitution;
syngas co-firing

1. Introduction

Preheating furnaces use substantial amounts of energy in industrialized countries. A great number
of furnaces and substantial energy consumption accompanying the heat treatment processes lead to the
significant carbon footprint in Europe and beyond. In Germany, industrial processes are responsible
for nearly 40% of natural gas consumption [1]. In Poland, over 45% of natural gas is used by industry
and construction sectors [2]. High energy consumption of furnaces results from the need of heating the
processed load to a specific temperature over a certain period of time. On an industrial scale, where
the volume of the treated material is large, it means high demand for thermal power, associated with
proportional operating cost and environmental impact.

On the other hand, it is deemed necessary to reduce the anthropogenic pressure on climate
change [3] and the diversity of the biosphere, correlated with the CO2 emissions from combusting
fossil fuels. This is followed by concrete actions at the level of the European Union: 2020 climate
and energy package, 2030 climate and energy framework, 2050 long-term strategy, and the resulting
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initiatives for public-private partnerships like Sustainable Process Industry through Resource and
Energy Efficiency aiming to make the European process industry more efficient and sustainable, and
less resource consuming [4].

Natural gas is a commonly used energy source in the industry due to its wide applicability and
availability at a low price. Although its CO2 emission factor is the lowest of all hydrocarbons and it is
considered as a much cleaner alternative to oil or coal, combustion of natural gas is still associated with
polluting the atmosphere with greenhouse gases and the climatic consequences of that. Thus, measures
limiting both fossil fuel consumption and gaseous emissions from the industry are sought. In the steel
industry, the process by-products such as coke oven gas (COG), blast furnace gas (BFG) [5], and basic
oxygen furnace gas (BOFG) can be used as a feedstock for reheating furnaces [6]. Usage of those gases
in reheating furnaces and annealing lines with radiant tube burners was briefly analyzed [7]. It was
found that there are no significant constraints for application of those gases, although cleaning the
gas has to be done prior usage to avoid damaging the equipment. Researchers [8] investigated the
influence of the syngas impurities on scale formation on steel slabs in the reheating furnaces, and
found that they can cause corrosion and slagging.

Usage of other alternative gases (such as biogenic syngas fuels) has not been extensively explored,
especially in the preheating furnaces where the temperatures are significantly lower and the conditions
for complete combustion are not favorable. Moreover, the biogenic syngas may contain a significant
amount of tars, which can either require gas cleaning (inherently connected with exergy losses) or cause
difficulties in process equipment selection and operation in temperatures above the tars dew point.

Other contaminants which could be present in the biogenic syngas are halogen species (Cl, Br) [9]
and, to a smaller extent, the alkali metals (Na, K) [10] which can cause operational problems [11].
Taking into account the above mentioned, there are no studies of the application of the syngas coming
from the biomass gasification in the preheating furnaces.

One of the possible methods for low-emission combustion is partial substitution of natural gas
with gaseous biofuels, whose CO2 emission factor, according to the European Commission regulations,
is equal to 0 [12]. An example of such gas is syngas obtained from the solid biomass gasification process.

There is a noticeable interest in the issue of replacing natural gas as a source of heat in the
industry with renewable gas fuels. The possibility of reducing CO2 emissions by co-firing syngas in
gas turbines [13] and coal-fired boilers [14] has been studied. Research has been done on emission
levels of nitrogen oxides (NOx), carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAH), and
volatile organic compounds (VOC) accompanying the combustion of syngas [15]. Partial replacement
of natural gas by biogas has been proven to be a sensible approach for implementation in the glass
processing industry as no negative effects in product quality have been observed [16]. There have
been no studies investigating the impact of hot biogenic syngas co-firing on heat treatment process
parameters in steel preheating furnaces. The preliminary study preceding this work has shown that the
use of low-calorific alternative fuels (specifically: basic oxygen furnace gas and biogenic synthesis gas)
does not excessively change the course of the heating process, and that the introduction of dedicated
syngas burners is a preferred option of organizing co-firing in the considered furnace [17].

The goal of this study is to analyze the effects of partial substitution of natural gas with
biomass-derived synthesis gas on temperature of a typical load treated in an exemplary steel sector
preheating furnace. The potential of introducing carbon-neutral low-calorific syngas to the process
sector has not yet been studied. The results are to be compared with the ones gathered from the furnace
fired in standard operation mode (leaning on natural gas only) in order to assess the possibility of
applying this method of carbon dioxide emission reduction to other industrial units without worsening
thermal parameters of the process.
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2. Materials and Methods

2.1. Model Setup

2.1.1. Furnace

The numerical model is based on the existing preheating furnace BOSIO 1 located in Store,
Slovenia. For this study a medium-size preheating furnace was selected. This particular furnace was
chosen because it is a representative example of thousands of similar, simple operation units installed
around the world. The characteristic batch loading (using bogie hearth) enables high flexibility for
thermal treatment of loads of different sizes and shapes. The obtained results should be extrapolated
with ease to furnaces of similar type.

This gas-fired unit is equipped with four burners combusting natural gas (NG) able to operate with
power up to 400 kW each, four independent recuperators preheating the air from room temperature to
60 ◦C (333 K), and a doubled chimney with the natural draft. During the heat treatment a vortex-like
flow structure inside the furnace is created, and direct contact between streams of flue gas and the load
is avoided (Figure A1). For co-firing purposes, an addition of two burners dedicated to combust syngas
(SG) was proposed—their operating power is 360 kW each, and they are located in the vicinity of NG
burners to ensure complete combustion of syngas. The geometry of the furnace model is presented
in Figure 1. The load is a 4.1 m long steel cylindrical mold with an outer diameter of 1.8 m. It was
assumed that its material density is 7700 kg/m3, specific heat is 502.5 J/(kg·K), and thermal conductivity
is 50 W/(m·K).
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Figure 1. Geometry of the furnace model (NG—natural gas, SG—synthesis gas).

Numerical domain of the furnace was discretized with a hybrid mesh—structured elements form
the load, chimneys, and part of the syngas burners interior, and the rest of the geometry was filled
with polygonal elements (total number of cells: 875,119).

Figure 2 shows the NG and SG burners’ primary (17% of comburent air, marked blue) and
secondary (83% of burner air, marked red) preheated air inlets separated by the inlet of the respective
fuel (green for syngas, yellow for natural gas). The secondary air swirl angle is 30◦. The air consists
of 77.45% nitrogen, 20.59% oxygen, and 1.96% water vapor by volume, what is an exemplary value
corresponding to air at 85% relative humidity at 20 ◦C. The heat leaves the furnace to ambient at 20 ◦C
(293 K) through convection: heat transfer coefficient at the outer walls of the furnace was specified
as 25 W/m2

·K, and with exhaust gas through the chimney outlets. Thermal insulance of the walls
was estimated as 0.1 m2

·K/W (0.2 m2
·K/W for the walls surrounding NG burner no. 1 (the closest to

the viewer in Figure 1) due to their reduced thickness of 0.1 m). Emissivity was 0.9, regardless of the
temperature level and the material type.
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Figure 2. Discretization of surfaces near syngas (left) and natural gas (right) burners—colors mark
respective air and fuel inlets (blue—core air, yellow—NG, green—SG, red—secondary air).

Total power of the considered furnace is limited to 1440 kW. The same power was fed in fuel in
the numerical model. The influence of the recuperators extracting a fraction of the exhaust gases from
the inside of the furnace on the gas flow was represented by assigning fixed velocity (1.33 m/s) to the
recuperator outlets. In cases where no syngas is fed into the system, inlets of the SG burners were
treated as adiabatic walls.

2.1.2. Fuels

The chemical composition of both considered fuels was specified by the furnace operator. Natural
gas available in the facility contains the following combustible species: 97.97% methane, 0.76% ethane,
and 0.38% other hydrocarbons (by volume)—the rest consists of carbon dioxide, nitrogen, and oxygen
(<0.1%). NG is fed to the furnace at 20 ◦C (293 K).

The alternative fuel is generated by the located on-site fluidized bed gasifier, in which air is used
as a gasification agent. The gasifier produces up to 1 MW power in gaseous fuel (ca. 0.7 MW on
average). The lower heating value of a typical syngas produced by this type of gasifiers fluctuates
in the range of 3–7 MJ/m3

N [18]. As one of the adopted objectives to achieve higher efficiency of the
co-firing system is to preserve the initial high temperature of syngas, it was assumed that the SG
produced by the gasifier is not cooled down on the way to the furnace, and it enters the dedicated
burners at 600 ◦C (873 K). Hot syngas is not cleaned from tars—SG temperature should not drop below
350 ◦C (633 K) to avoid tar condensation and contamination of the installation. The amount of energy
contained in tars (below 0.04 MJ/m3

N of SG, as tars concentration in the considered syngas is lower
than 1 g/m3

N) is insignificant for the course of the heat treatment.
Presence of species with concentrations lower than 0.5% vol. was neglected. The composition

of the gasification product is variable over time and estimated average values were chosen for the
calculations (Table 1). Lower heating values for natural gas and synthesis gas are 50.05 and 4.52 MJ/kg,
respectively. The fuels were considered in a dry state.
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Table 1. Chemical composition of natural gas (NG) and syngas (SG) adopted for simulations.

Component Natural Gas
(% vol.)

Syngas
(% vol.)

O2 0 1
CO2 0 12
CO 0 21
CH4 98 3
C2H6 2 0

H2 0 14
N2 0 49

H2O 0 0

Despite the content of CH4, CO, and CO2, syngas is regarded as carbon-neutral because of its
biomass origin. This means carbon dioxide emission factor for SG is 0 kg CO2/GJ, instead of 135 kg
CO2/GJ as its gas composition would indicate. NG emission factor is 55 kg CO2/GJ.

2.2. Operation Modes

To evaluate the influence of NG-SG co-firing on the quality of the heat treatment, nine different
furnace powering scenarios were developed and implemented in the furnace model—the test matrix
showing the case numeration and respective substitution rates, NG burner power, and air supply
levels is shown in Figure 3. For each case the furnace power is equal to the initial one, i.e., 1440 kW.
Three main factors that can affect the process course were identified and tested:

• Mode of work (NG only or co-firing)—to value the impact of SG presence, e.g., two additional
flames, on the heat treatment;

• Air–fuel equivalence ratio at natural gas burners λNG (2.0, 3.0, or resulting from feeding 1980
m3

N/h (at normal conditions ca. 0.71 kg/s) of air to the natural gas burners, i.e., the amount
supplied in the original BOSIO 1 furnace—to check the correlation between the amount of air fed
to the furnace, the resulting change in gas motion, and the heat transfer;

• Power distribution among the corners of the furnace (even or uneven)—to determine the effect of
balancing the power outcome of the NG-SG burner pair and the two NG burners without adjacent
SG burner, accomplished by adjusting the power of NG burners so at every corner of the furnace
360 kW of heat is released.
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The air–fuel equivalence ratio for SG burners λSG is fixed to 1.15, because syngas as a low calorific
fuel is considered more prone to incomplete combustion or flame blowout [19], and as such needs
conducive conditions to avoid it.

The first 2 h of the process were simulated—during that time the burners are turned on continuously,
and the tracked indicators, i.e., average temperature and maximum temperature difference of the load
are expected to increase. At the beginning of the heat treatment (t = 0 s), the load and the air inside the
furnace are 20 ◦C (293 K). Case 1 (no syngas, 1980 m3

N/h of air) serves as the reference case.

2.3. Calculation Method

CFD tools are widely used to simulate and optimize the processes of heat transfer [20] and energy
release from various fuels [21]. A transient 3D model was prepared and used to determine the changing
conditions inside the furnace over time. The model based on URANS approach covers turbulent gas
flow by solving three-dimensional Reynolds-Averaged Navier-Stokes equations with realizable k-ε
turbulence model applied to solve the Reynolds stresses. Gravitational forces were included. The
solver is pressure-based and because adaptive time step sizes (0.1 s for the first 1 s of the process, 1 s
for the period between 1 s and 15 s of the process, and 15 s for the rest of the process) were used in the
simulations, the coupled algorithm for calculating pressure was chosen.

The gas is a multicomponent single-phase mixture composed of CO2, CO, CH4, C2H6, H2, O2,
H2O, and N2, whose local mass fractions are predicted through solving the conservation equations
for each species (except for nitrogen, which is the balancing species), and both density (following the
incompressible ideal gas law) and specific heat of each compound are temperature dependent. Species
can participate in the volumetric chemical reactions Equations (1)–(4), which are the source of thermal
energy in the system.

C2H6 + 2.5 O2→ 2 CO + 3 H2O, (1)

CH4 + 1.5 O2→ CO + 2 H2O, (2)

CO + 0.5 O2→ CO2, (3)

H2 + 0.5 O2→ H2O (4)

The rate of these chemical reactions is controlled by turbulent mixing, that is an acknowledged
approach used for modelling non-premixed combustion (eddy-dissipation model) [22].

The numerical model allows the heat to be transferred by convection, conduction (within the load’s
volume), and radiation mechanisms. Radiative heat transfer is calculated using discrete ordinates
method with the weighted-sum-of-grey-gases model included. Temperature is obtained through
solving the energy equation. The CFD simulations were performed in Ansys Fluent 19.0.

2.4. Discretization Error

In order to evaluate the accuracy of the numerical model, the influence of the meshing method
on the results was evaluated. Ten different discretization grids were analyzed—all of them consist of
structured and polygonal elements. Two examples of the tested meshes are presented in Figure 4.
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Figure 4. Examples of discretization mesh located 0.5 m above the furnace bogie level consisting of (a)
875,119 and (b) 533,386 elements.

The volume average temperature of the load (ALT) was chosen for an indicator of the discretization
error. Case 1 was simulated using the same model settings and the same time step sizes, and the
obtained results of ALT after 2 h of the process were compared (Figure 5). The black point on the chart
marks the mesh used for performing the calculations for cases 1–9.
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for different discretization meshes.

One can see that enhancing the grid resolution keeps the values of ALT within the 2 K range, what
appears to be an acceptable value of error, i.e., less than 2% when compared to the value change of
average load temperature (∆ALT).

3. Results

The results of the numerical calculations contain information about, among others, temperature
field in the gas and solid domains. Exemplary visualization of the obtained temperature results for
case 7 is shown in Figures 6 and 7.
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The applicability and efficiency of each powering mode was assessed on the basis of load
temperature difference (LTD) and volume average load temperature (ALT), respectively. Value of LTD
is defined as the temperature difference between the hottest (Tmax) and the coldest (Tmin) point of the
load—lower LTD means better thermal uniformity. ALT is an indicator of thermal efficiency, i.e., the
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ratio of the energy fed in fuel to the energy received by the load—higher values of this measure denote
improved usage of heat.

Substituting 40% of NG by low-calorific SG with a constant amount of air supplied to the NG
burners has a negative or no effect on thermal uniformity of the load, depending on whether the power
among the furnace corners has not or has been equated, respectively (cases 8, 9; Figure 9a). Introducing
syngas, while maintaining λNG at 2.0, increases the maximum load temperature difference up to the
level noted in the reference case (cases 5, 7; Figure 9a), for which λNG is 1.42. Adjusting the natural
gas burners’ power in cases where λNG is equal to 2.37 or 3.0 is noticeably beneficial from the LTD
perspective (cases 4, 6, 8, and 9).Energies 2020, 13, x FOR PEER REVIEW 9 of 15 
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Figure 9. Load temperature difference (a) and average load temperature (b) values for different ways
of supplying power (number of kW represents the power of NG burners).

Use of different NG burners power outputs has no impact on average load temperature, regardless
of λNG applied (cases 4, 6 and 5, 7 and 8, 9; Figure 9b). Reducing the air–fuel equivalence ratio
is correlated with elevation of the heating efficiency, especially in case of no syngas addition.
Implementation of co-firing significantly raises the amount of heat absorbed by the load—for λNG

equal 3.0 by 28.1% ± 0.7%, and for λNG equal 2.0 by 17.3% ± 0.1%, reaching 98.5% ± 0.2% (cases 5 and 7)
of the reference case heating efficiency.

Within 1 h the furnace powered conventionally (cases 1–3) consumes ca. 103.6 kg of natural gas
and emits 285.5 kg of CO2 (under the assumption of complete fuel combustion). When 40% of NG is
replaced by SG (cases 4–9), the amount of fossil carbon dioxide added to the atmosphere drops by 40%
as well—in that case the emission is 171.3 kg CO2/h.

4. Discussion

The results of numerical simulations for the considered cases (Figure 3, Section 2.2) are compared
in Figure 10. The value of change of average load temperature (∆ALT), calculated as the difference
between ALT after 2 h of the process and the initial temperature of the system (i.e., 20 ◦C), is proportional
to the amount of energy transferred to the load. ∆ALT for case 1 serves as the reference value.
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Figure 10. Load temperature difference (LTD) and change of average load temperature from initial
temperature (∆ALT) after 2 h of the heat treatment (CPO—furnace corner power output).

Conducted CFD calculations show that equalization of the power output in each of the corners has
a positive effect on the load temperature difference, especially in case of increased air–fuel equivalence
ratio for natural gas burners and the resulting reduction of exhaust gas temperature. Replacing natural
gas with biogenic syngas in the tested co-firing setup proved to achieve satisfactory efficiency of the
heat treatment process—in four out of six analyzed co-firing scenarios the amount of heat transferred
to the load exceeds 95% of the heat delivered to the load in the reference case (case 1). This effect is
correlated with the lower SG flame temperature (Figure 6), and the fact that the streams of hot flue
gases do not directly hit the load.

Analysis of the simulations results revealed a promising way of substituting 40% of natural gas in
the preheating furnace with the considered biomass-derived renewable fuel, which leads to significant
reduction of CO2 emissions, thus, smaller environmental impact. This is especially prominent in case 7,
in which natural gas burners operate at λNG = 2.0 on two power levels: 72 kW (the ones near the
syngas burners) and 360 kW (the other two burners), so in each of the furnace corners 360 kW of heat
is generated. An important advantage of case 7 over cases 9 and 6 (especially the latter one) is that
lower air-to-fuel ratio at the NG burners prevents the creation of strong stream of flue gas flowing out
of natural gas burners operating at 360 kW (Figure A6), that could potentially disturb the combustion
in the SG burners, which are inclined to less stable operation. Aggravation of this effect, caused by
enhancing the stream of flue gas leaving the NG burners can also be noticed by comparing the gas
flow patterns available in the Appendix A for the following sequences of cases: 1-3-2, 7-9-6, and 5-8-4
(Figures A1–A9).

Simultaneously, the temperature results show that the co-firing method assuming low air-to-fuel
equivalence ratio and uneven distribution of power among the furnace corners (corner without SG
burner: 216 kW, corner with SG burner: 504 kW) can still lead to satisfactory results (case 5). Analysis
of the streamlines and temperature profiles for cases 5 and 7 shows that power equalizing on the one
hand reduces the risk of local load overheating (Figure A5), but on the other hand promotes creation of
strong jet-like flows, which hit and locally heat up inner walls of the furnace (Figure A7). It is likely
that the optimal power balance between the furnace corners, where the scale of both phenomena is
reduced and the efficiency achieves its maximum, lies between the analyzed values.

Based on these results, further work to evaluate the possibility of partial replacing natural gas
consumption with alternative fuels (e.g., biomass-derived gaseous fuels or off-gases) can be done,
especially for other types of furnaces (e.g., the ones continuously heating and melting stream of
material). It is possible that in some cases, depending on the limits on LTD values, it may be necessary
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to increase the air–fuel equivalence ratio for syngas burners in order to lower SG flame temperature
and improve thermal uniformity of the load.

Author Contributions: Conceptualization, P.J., A.K. and J.H.; methodology, P.J.; validation, P.J.; formal analysis,
P.J.; investigation, P.J.; writing—original draft preparation, P.J.; writing—review and editing, P.J., J.H., A.K., K.B.
and D.O.; visualization, P.J.; supervision, J.H.; project administration, J.H.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by European Union’s Horizon 2020 research and innovation programme,
grant number 723803. The APC was funded by the Institute of Power Engineering.

Acknowledgments: The authors would like to thank Jernej Mele (CPPE d.o.o.) and Matej Drobne (Valji d.o.o.) for
support and providing process data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix AEnergies 2020, 13, x FOR PEER REVIEW  11 of 15 

 
Figure A1. Gas path lines and load surface temperature after 2 h of the heat treatment—case 1. 

 
Figure A2. Gas path lines and load surface temperature after 2 h of the heat treatment—case 2. 

 

 

Figure A1. Gas path lines and load surface temperature after 2 h of the heat treatment—case 1.

Energies 2020, 13, x FOR PEER REVIEW  11 of 15 

 
Figure A1. Gas path lines and load surface temperature after 2 h of the heat treatment—case 1. 

 
Figure A2. Gas path lines and load surface temperature after 2 h of the heat treatment—case 2. 

 

 

Figure A2. Gas path lines and load surface temperature after 2 h of the heat treatment—case 2.



Energies 2020, 13, 1698 12 of 15

Energies 2020, 13, x FOR PEER REVIEW  11 of 15 

 
Figure A1. Gas path lines and load surface temperature after 2 h of the heat treatment—case 1. 

 
Figure A2. Gas path lines and load surface temperature after 2 h of the heat treatment—case 2. 

 

 

Figure A3. Gas path lines and load surface temperature after 2 h of the heat treatment—case 3.

Energies 2020, 13, x FOR PEER REVIEW  12 of 15 

Figure A3. Gas path lines and load surface temperature after 2 h of the heat treatment—case 3. 

 
Figure A4. Gas path lines and load surface temperature after 2 h of the heat treatment—case 4. 

 
Figure A5. Gas path lines and load surface temperature after 2 h of the heat treatment—case 5. 

 

Figure A4. Gas path lines and load surface temperature after 2 h of the heat treatment—case 4.

Energies 2020, 13, x FOR PEER REVIEW  12 of 15 

Figure A3. Gas path lines and load surface temperature after 2 h of the heat treatment—case 3. 

 
Figure A4. Gas path lines and load surface temperature after 2 h of the heat treatment—case 4. 

 
Figure A5. Gas path lines and load surface temperature after 2 h of the heat treatment—case 5. 

 

Figure A5. Gas path lines and load surface temperature after 2 h of the heat treatment—case 5.



Energies 2020, 13, 1698 13 of 15Energies 2020, 13, x FOR PEER REVIEW  13 of 15 

 
Figure A6. Gas path lines and load surface temperature after 2 h of the heat treatment—case 6. 

 
Figure A7. Gas path lines and load surface temperature after 2 h of the heat treatment—case 7. 

 

 

Figure A6. Gas path lines and load surface temperature after 2 h of the heat treatment—case 6.

Energies 2020, 13, x FOR PEER REVIEW  13 of 15 

 
Figure A6. Gas path lines and load surface temperature after 2 h of the heat treatment—case 6. 

 
Figure A7. Gas path lines and load surface temperature after 2 h of the heat treatment—case 7. 

 

 

Figure A7. Gas path lines and load surface temperature after 2 h of the heat treatment—case 7.

Energies 2020, 13, x FOR PEER REVIEW  13 of 15 

 
Figure A6. Gas path lines and load surface temperature after 2 h of the heat treatment—case 6. 

 
Figure A7. Gas path lines and load surface temperature after 2 h of the heat treatment—case 7. 

 

 

Figure A8. Gas path lines and load surface temperature after 2 h of the heat treatment—case 8.



Energies 2020, 13, 1698 14 of 15

Energies 2020, 13, x FOR PEER REVIEW  14 of 15 

Figure A8. Gas path lines and load surface temperature after 2 h of the heat treatment—case 8. 

 
Figure A9. Gas path lines and load surface temperature after 2 h of the heat treatment—case 9. 

References 

1. AGEB. Energy Consumption in Germany in 2018; Ziesing, H.-J. Ed.; AGEB Arbeitsgemeinschaft 
Energiebilanzen e.V: Berlin, Germany, 2019. Available online: 
https://ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2018_20190503_engl.
pdf (accessed on 29 February 2020).  

2. Berent, G.; Peryt, S.; Kacprowska, J.; Gilecki, R.; Boczek, R.; Żarek, E.; Brasse, J.; Stosio, M. Consuption of 
Fuels and Energy Carriers in 2018; Walkowska, K., Ed.; Główny Urząd Statystyczny: Warsaw, Poland, 2019. 
Available online: 
https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-paliw-i-nosnikow-energii-w-
2018-roku,6,13.html (accessed on 29 February 2020).  

3. Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. 
Adv. Clim. Chang. Res. 2018, 9, 243–252, doi:10.1016/j.accre.2018.12.003. 

4. Tello, P.; Weerdmeester, R. SPIRE Roadmap 2030; A.SPIRE Asbl: Brussels, Belgium, 2013. 
5. Pinera, V.C.; Riesgo, D.C.; Battaglia, V.; Fantuzzi, M.; Rocca, A.D.; Ageno, M.; Rensgard, A.; Wang, C.; 

Niska, J.; Ekman, T.; et al. High Efficiency Low NOX BFG Based Combustion Systems in Steel Reheating Furnaces 
(HELNOx-BFG); Publications Office of the European Union: Luxembourg, 2017; doi:10.2777/165777. 

6. Battaglia, V.; Malfa, E.; Zanusso, U.; Arribas Ramirez, J.J.; Ekman, T.; Adler, W.; Dapper, M.; Filippini, E.;  
Magni, F.; Niska, J.; et al. CO2 Reduction in Reheating Furnaces (CO2RED); Publications Office of the 
European Union: Luxembourg, 2011; doi:10.2777/91701. 

7. Caillat, S. Burners in the steel industry: Utilization of by-product combustion gases in reheating furnaces 
and annealing lines. Energy Procedia  2017, 120, 20–27, doi:10.1016/j.egypro.2017.07.152. 

8. Liu, H.; Saffaripour, M.; Mellin, P.; Grip, C.-E.; Yang, W.; Blasiak, W. A thermodynamic study of hot 
syngas impurities in steel reheating furnaces–Corrosion and interaction with oxide scales. Energy 2014, 77, 
352–361, doi:10.1016/j.energy.2014.08.092. 

9. Simell, P.; Stahlberg, P.; Solantausta, Y.; Hepola, J.; Kurkela, E. Gasification gas cleaning with nickel 
monolith catalyst. In Developments in Thermochemical Biomass Conversion; Bridgwater, A.V., Boocock, 
D.G.B., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 1103–1116, 
doi:10.1007/978-94-009-1559-6_89. 

10. Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. The implications of chlorine-associated 
corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298, 
doi:10.1016/S0360-1285(00)00003-4. 

11. Niska, J.; Grip, C.E.; Mellin, P. Investigating potential problems and solutions of renewable fuel use in 
steel reheating furnaces. In Proceedings of the Finnish-Swedish Flame Days 2013, Jyväskylä, Finland, 

 

Figure A9. Gas path lines and load surface temperature after 2 h of the heat treatment—case 9.

References

1. AGEB. Energy Consumption in Germany in 2018; Ziesing, H.-J., Ed.; AGEB Arbeitsgemeinschaft Energiebilanzen
e.V: Berlin, Germany, 2019; Available online: https://ag-energiebilanzen.de/index.php?article_id=29&
fileName=ageb_jahresbericht2018_20190503_engl.pdf (accessed on 29 February 2020).

2. Berent, G.; Peryt, S.; Kacprowska, J.; Gilecki, R.; Boczek, R.; Żarek, E.; Brasse, J.; Stosio, M. Consuption
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