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Abstract: A new strategy for fast, approximate analyses of fluid flow and heat transfer is presented.
It is based on Finite Element Analysis (FEA) and is intended for large yet structurally fairly simple
heat transfer equipment commonly used in process and power industries (e.g., cross-flow tube bundle
heat exchangers), which can be described using sets of interconnected 1-D meshes. The underlying
steady-state model couples an FEA-based (linear) predictor step with a nonlinear corrector step,
which results in the ability to handle both laminar and turbulent flows. There are no limitations in
terms of the allowed temperature range other than those potentially stemming from the usage of fluid
physical property computer libraries. Since the fluid flow submodel has already been discussed in
the referenced conference paper, the present article focuses on the prediction of the tube side and the
shell side temperature fields. A simple cross-flow tube bundle heat exchanger from the literature and
a heat recovery hot water boiler in an existing combined heat and power plant, for which stream data
are available from its operator, are evaluated to assess the performance of the model. To gain further
insight, the results obtained using the model for the heat recovery hot water boiler are also compared
to the values yielded by an industry-standard heat transfer equipment design software package.
Although the presented strategy is still a “work in progress” and requires thorough validation, the
results obtained thus far suggest it may be a promising research direction.
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1. Introduction

During design, operation, and troubleshooting of various process and power equipment-containing
tube bundles, it often is important to know the velocity and temperature fields in both the tube and the
shell sides. These are obtained predominantly using Computational Fluid Dynamics (CFD) models and,
therefore, articles covering a wide range of such applications are available. For example, Wei et al. [1]
discussed a coupled CFD-Lagrange multipliers optimization method for flow distribution adjustments
to prevent freezing of power generation natural draft cooling systems during winter operation. Chien
et al. [2], on the other hand, presented a coupled CFD-surrogate-based optimization of flow distribution
in a heat exchanger inlet header. Zhou et al. [3] focused on CFD investigation and optimization of a
compact heat exchanger comprising a single row of tubes, and Łopata et al. [4] published an article
covering the experimental investigation of flow distribution in a similar cross-flow heat exchanger, but
with a tube bank consisting of elliptical tubes. CFD evaluation and optimization of solar collectors,
commonly also using a single row of risers, were discussed, for instance, by García-Guendulain et
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al. [5], who aimed to improve the collector performance by changes of riser-to-header cross-sectional
area and diameter ratios. Karvounis et al. [6] carried out a numerical and experimental study of the
flow field in a forced circulation Z-type flat plate solar collector. Articles focusing on two-phase flow
are also common. Li et al. [7] studied flow reversal in vertically inverted U-tube steam generators used
in marine nuclear power plants, whereas Klenov and Noskov [8] investigated the effect of two-phase
flow pattern in an inlet duct on flow distribution in the upper part of a trickle bed reactor. As for
dispersion headers, which are often used in flue gas cleaning equipment, a CFD investigation of the
impacts of inlet flow rate, hole diameter, and downstream distance on the flow distribution in an
annular multi-hole header was presented by He et al. [9]. Other frequent research areas where the
knowledge of flow distribution is critical are fuel cells and micro-channel heat exchangers. One might
mention, e.g., the CFD and laser Doppler velocimetry investigation of flow distribution in a polymer
electrolyte membrane fuel cell stack by Bürkle et al. [10], the CFD evaluation of pressure and flow
distribution effects on the performance of polymer electrolyte membrane fuel cells by Heck et al. [11],
or the CFD optimization of a liquid cooling system of a power inverter in an electric vehicle presented
by Hur et al. [12]. Various studies involving liquid-cooled micro-channel heat sinks for electronics
are quite common as well. See, e.g., the article by Li et al. [13] discussing the optimization of the
micro-channel topology.

Studies not utilizing CFD are much less common and, typically, focus on evaluations of the
respective equipment via physical experiments. To name just a few, one could mention the experimental
investigation of flow distribution and its effect on the performance of a plate-fin heat exchanger by
Zhu et al. [14], the study of two-phase refrigerant distribution in a finned-tube evaporator by Tang
et al. [15], or the article by Quintanar et al. [16] covering natural circulation flow distribution in a
multi-branch manifold. Micro-channel equipment was discussed, e.g., by Yih and Wang [17], who
carried out an experimental investigation of the thermal-hydraulic performance of a micro-channel
heat exchanger for waste heat recovery, or by Lugarini et al. [18], who focused on the evaluation of flow
distribution uniformity in a comb-like micro-channel network. On the other end of the size spectrum
are heat exchanger networks, in which Ishiyama and Pugh [19] studied thermo-hydraulic channeling
in the individual parallel branches. In their paper, they also presented a model for prediction of
flow distribution in the branches for the case when no flow control was implemented. Similarly,
Novitsky et al. [20] discussed multilevel modeling and optimization of large-scale pipeline systems
using specialized software tools. In these two studies, however, modelling of pressure drop was only
done in a simplified manner. Korelstein [21], on the other hand, discussed mathematical properties of
classical hydraulic network flow distribution problems which included pressure-dependent closure
relations. An essentially identical problem can also be encountered when it comes to the design of
water distribution networks. Still, proper inclusion of pressure drop in the respective models is rare
because they generally focus on layout optimization while meeting the local water demands (see, for
instance, the article by Cassiolato et al. [22], who proposed a Mixed-Integer Nonlinear Programming
(MINLP) model for this purpose), identification of sources of contamination (as done, e.g., using a
convolutional neural network by Sun et al. [23]), detection of leakage points (see, for example, the
article by Fang et al. [24]), evaluation of the network performance and reliability (as discussed, e.g., in
the Hanoi case study by Jeong and Kang [25]), etc.

To the best of the authors’ knowledge, there currently is no semi-accurate but fast Finite Element
Analysis-based model of fluid flow other than [26] that would properly include the pressure drop.
This model, however, does not consider heat transfer and, thus, is of limited practical value to the
designers of process and power equipment. Consequently, CFD models, because of their significant
computational cost, are being employed for evaluations of fluid flow distribution and heat transfer
only if absolutely necessary. As a result, the corresponding temperature fields, which, to a large degree,
depend on mass flow rates through individual tubes, are also unknown. This may not pose significant
problems if thermal stress is relatively even throughout the tube bundle in question. Nonetheless,
mechanical failures of bundles, stemming from improper design procedures which a priori assume
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uniform flow distribution, are not uncommon when it comes to heat exchangers featuring large changes
in stream temperatures. The present paper, therefore, introduces a significantly extended version of
the flow-only, adiabatic model discussed in [26]. This includes heat transfer between the fluids in
the tube and the shell sides of a cross-flow tube bank heat exchanger (e.g., an economizer) as well as
various other improvements. Shell-side flow was modelled as unidirectional. As test cases, a simple
cross-flow tube bundle heat exchanger from the literature and an existing heat recovery hot water
boiler, for which the necessary data had been provided by its operator, were considered. These were
compared to the results obtained using the present model and, to gain further insight, also to the data
from an industry-standard heat exchanger design software package. A good agreement among the
data sets was observed.

2. Materials and Methods

The original model discussed in [26] assumed adiabatic flow, that is, no heat transfer was allowed
on the walls of the parallel flow channels in the distribution system. The model was shown in the
same article to provide data with relative errors of at most 4% compared to detailed transient CFD
simulations even in the case of highly turbulent flows. Such accuracy was achievable due to the relative
simplicity of the flow systems for which the respective model has been intended (e.g., tube bundles in
heat recovery steam generators). The overall conclusion, therefore, was that, in terms of application in
preliminary analyses of selected heat transfer equipment or for shape optimization of the mentioned
equipment, the model was suitable for engineering practice.

Because of the nature of the model, its performance in case of laminar flow was a priori expected
to be acceptable. Although several tests were carried out earlier even with low total mass flow rates to
make sure this really was the case, no example was given in [26]. To remedy this, let us mention, for
instance, one of the test flow distribution systems (see Figure 1) used in the original article and the
respective laminar flow distribution data and relative errors. For convenience’s sake, parameters of
the flow system are listed in Table 1. The obtained mass flow rates are compared in Figure 2a, while
Figure 2b shows the corresponding relative errors. It can be seen that the error values generally were
in a ±1% band with only two of them being at around 1.2%. Relative errors obtained using other test
flow systems were of similar magnitudes. Thus, one could conclude that, in the case of laminar flow,
the accuracy was even better than when the flow was highly turbulent.
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Table 1. Parameters of the flow distribution system used to obtain the laminar flow-related data shown
in Figure 1.

Parameter Value

headers (W × H × L) 55 × 55 × 280 mm
tube bundle 5 rows with 10 tubes each, tube layout: 60◦

tubes straight, inner diameter: 10 mm, length: 2000 mm
fluid water, 0.5 kg s−1, 300 K

flow regime laminar, average tube Re ≈ 1500
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Figure 2. (a) Tube mass flow rates obtained for the flow system from Table 1 using the model based
on Finite Element Analysis (FEA) discussed in [26] and a transient Computational Fluid Dynamics
(CFD) simulation. Average tube Reynolds number was ca. 1500. (b) The corresponding relative tube
mass flow rate errors (FEA vs. CFD simulation). Tube numbers correspond to Figure 1. For the details
regarding the CFD model, the reader is kindly referred to [27].

2.1. Inclusion of Heat Transfer into the Model

The main shortcoming of the original, flow-only version of the Finite Element Analysis (FEA)-based
model was its inability to properly evaluate tube bundles in which heat transfer could not be neglected.
Given the intended purpose of the model (that is, usage in engineering practice), this functionality had
to be implemented.

Please note that heat transfer was not, strictly speaking, evaluated using FEA. However, the
temperature fields in the tube side and the shell side were still obtained using a system of linear
equations generated as shown in the following text, and this system was then solved in the usual
manner. It was assumed that the temperature profile between two end nodes of an edge was continuous
and was given by the mean temperatures on control volume cross-sections, which were perpendicular
to the corresponding edge. The iterative solver then worked similarly to any other segregated solver.
First, the fluid flow (FEA-based) submodel was solved under the assumption of a constant temperature
field. Next, the heat transfer submodel was solved under the assumption of a constant velocity field.
This was followed by the update of the fluid physical properties and other necessary post-iteration
tasks, and then the fluid flow submodel was solved again. This iterative procedure was repeated until
convergence was reached.

Even though the heat transfer submodel was not using FEA, the corresponding mesh on which
the temperature field was calculated can be constructed in a similar manner. In the fluid flow mesh,
the field to be calculated was described by total pressures in the nodes. The temperature field can be
described analogously with the difference being that every edge had its own temperature in the node.
Figure 3 shows the two meshes and the differences between meshes.
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Figure 3. Comparison of the fluid flow mesh (left) and the temperature mesh (right). The fluid flow
mesh consists of 8 edges with 8 nodes total, and there are 8 unknown pressures (in the green nodes,
some of which are shared between edges); in the temperature mesh, there are 2 × 8 = 16 nodes and,
therefore, 16 unknown temperatures.

As mentioned before, the temperatures were calculated using a set of linear equations. From
Figure 3 it is clear that a flow system consisting of n edges will feature 2n node temperatures and,
therefore, 2n linear equations were required. There were three classes of temperature-related equations
that were used in the model:

• Flow mixing and splitting,
• Heat transfer through channel walls, and
• Boundary conditions.

2.1.1. Flow Mixing and Splitting

When, in an arbitrary mesh node, streams q1, q2, . . . , qm are mixed into a single stream j, we
can write ∑

q∈{q1,q2,...,qm}

.
mqcp,q

(
T j − Tq

)
= 0. (1)

Here,
.

mq denotes the mass flow rate of the qth stream, cp,q the specific heat capacity, and Tj and Tq

the corresponding stream temperatures. Each specific heat capacity should be taken as the mean value
obtained for the corresponding temperature range [Tj, Tq].

If, on the other hand, a single stream j is split into streams r1, r2, . . . , rn, the outflow temperature
is the same for all these streams, and the respective n equations are

Tr = T j, r ∈ {r1, r2, . . . , rn}. (2)

In some systems, there may be blind edges with zero mass flow rate. The temperatures in the
nodes of these edges are calculated as if the edges were of the regular type featuring outflow (see also
the schematic in Figure 4).
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flow mixing/splitting equations must be present in the final linear system.

In a general case with streams q1, q2, . . . , qm being mixed and then split into streams r1, r2, . . . , rn,
one will get one Equation (1) governing the resulting outflow temperature Tj and (n − 1) Equation (2),
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that is, (n − 1) identities for the remaining outflow temperatures. The total number of equations
governing the mixing/splitting in the node will, therefore, be equal to number of outflow streams.

2.1.2. Heat Transfer through Channel Walls

Let us have two meshes representing the tube and the shell sides of a heat exchanger and focus
on an arbitrary pair of adjacent control volumes representing a portion of the tube side (i.e., a tube
segment) and the enclosing portion of the shell side (see Figure 5). Let

.
mt, cp,t, Tt,1, and Tt,2 denote

the tube side mass flow rate, mean specific heat capacity at constant pressure, and inlet and outlet
temperatures and

.
ms, cp,s, Ts,1, and Ts,2 the corresponding shell-side quantities.
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Should, e.g., the hot fluid be placed in the shell side, then the overall heat balance could be
written as

.
mtcp,t(Tt,2 − Tt,1) =

.
mscp,s(Ts,1 − Ts,2). (3)

Let us for a moment assume that the temperature of the fluid in the shell-side control volume is
constant and is equal to the shell-side inlet temperature, Ts,1. Let us also assume that the tube-side
inlet temperature, Tt,1, is known. Additionally, let L denote the length of the tube-side mesh edge and
U the cumulative overall heat transfer coefficient. The heat flux for a small portion of this edge having
the length dx can then be expressed as

d
.

Q =
.

mtcp,t(Tt(x + dx) − Tt(x)) = U
dx
L
(Ts,1 − Tt(x)). (4)

This can be modified, rearranged, and written in integral form,

∫ Tt(x)

Tt,1

1
Ts,1 − Tt(x)

dTt(x) =

x∫
0

U
.

mtcp,tL
dx, (5)

which yields

Tt(x) = Ts,1 + (Tt,1 − Ts,1) exp

− U
.

mtcp,t

x
L

, x ∈ [0, L]. (6)

From Equation (6), we immediately see that the temperature at the end of the edge can be
obtained using

Tt,2 = Ts,1 + (Tt,1 − Ts,1) exp

− U
.

mtcp,t

. (7)
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Equation (7) must be linearized for it to be used in a matrix solver. This is done in a straightforward
manner by taking

CU = exp

− U
.

mtcp,t

 = const., (8)

where the necessary cumulative overall heat transfer coefficient, U, is computed from the tube-side
and shell-side heat transfer coefficients. These, in turn, are calculated using equations from literature
(e.g., [28] in the case of plain tubes or [29] if the tubes are finned) depending on the actual bundle
geometry and flow conditions. Additional information regarding validation of the commonly used
empirical equations for estimation of heat transfer coefficient in the case of plain and serrated fins can
be found, for instance, in [30]. One could also use the correlations from [31], which have been obtained
via the machine learning technique. If U-shaped or helical fins of various types are employed, then
the two-part article by Hofmann and Heimo [32,33] can be recommended to the reader. The final,
linearized equation for a single edge, therefore, is

CUTt,1 − Tt,2 = (CU − 1) Ts,1. (9)

Considering the shell-side outlet temperature, for cross-flow with Ts,1 = const. on the entire inlet
face of the control volume, we have

d
.

Q = U
dx
L
(Ts,1 − Tt(x)) =

.
mscp,s

dx
L
(Ts,1 − Ts,2(x)). (10)

Just as before, this can be modified and rearranged to yield

Ts,2(x) = Ts,1 +
U

.
mscp,s

(Ts,1 − Tt,1) exp

− U
.

mtcp,t

x
L

, x ∈ [0, L]. (11)

The mean shell-side outlet temperature then is

Ts,2 =
1
L

∫ L

0
Ts,2(x)dx = Ts,1 +

.
mtcp,t
.

mscp,s

exp

− U
.

mtcp,t

− 1

(Ts,1 − Tt,1), (12)

which corresponds to the shell-side outlet temperature obtained using the respective set of linear
equations.

One could also simplify the model even further by using a one-dimensional shell-side mesh (i.e.,
a mesh such that each cross-section of the shell along the general flow direction is spanned by just one
cell). With a row of n tubes being present in a specific shell-side cell, Equation (3) would simply become

n∑
i=1

.
mt,icp,t,i(Tt,i,2 − Tt,i,1) =

.
mscp,s(Ts,1 − Ts,2), (13)

while Equation (7), still necessary for each of the n tubes, would remain almost identical:

Tt,i,2 = Ts,1 + (Tt,i,1 − Ts,1) exp

− Ui
.

mt,icp,t,i

, i = 1, 2, . . . , n. (14)

There also is a special case of no heat transfer, which can be treated similarly. The necessary
equation can easily be obtained by setting the heat transfer coefficient in Equation (14) to zero, which
results in the equation being reduced to the equality between the temperatures in the end nodes of
an edge. This is important because the number of linear equations describing heat transfer is always
constant no matter if heat transfer occurs or not.
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2.1.3. Boundary Conditions and the Complete System of Linear Equations

Up to this point, every equation was simply describing some relationship between the node
temperatures. For a steady state problem to be completely specified, some temperatures must be
known. However, let us first analyze the number of equations available thus far. For a fluid flow
system with n edges and m inflow streams, there are 2n unknown temperatures. We can get n equations
from the heat transfer. The following n − m equations can be obtained from stream mixing in the nodes.
The remaining m equations must be provided via boundary conditions, i.e., inlet temperatures must be
specified for each of the inflow stream (other arrangements may be possible in selected cases). When
there are multiple fluid flow systems connected by heat transfer equations, the number of available
equations remains the same.

2.1.4. Coupling of the Flow Distribution and Heat Transfer Submodels

Each major iteration of the FEA-based solver consists of two steps. The first step is a fixed
temperature field analogy of the adiabatic model (as described in [26]; robustness of the model can be
improved by carrying out this first step repeatedly until the respective residual falls below a predefined
threshold). New estimates of the temperature fields for both the tube and the shell sides are then
obtained in the second step. Here, the necessary values of CU are updated using edge mass flow rates
from the first step and the corresponding new estimates of cumulative overall heat transfer coefficients.
To solve the respective combined linear system for the tube-side and the shell-side temperatures, one
boundary temperature must be provided for each stream (for instance, at the inlet of each tube in the
bundle and for each inlet cell in the discretized shell side). The resulting temperature matrix could
look, for example, like the one in Figure 6. Even though linear systems represented by such matrices
can be solved quite easily, it is obvious from the figure that implementation of a reordering algorithm
would be necessary should one want to improve performance via preconditioning in case of much
larger linear systems.
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Figure 6. Non-zero values in the sparse temperature field matrix used in the second step of the FEA
solver. Please note that, for the sake of clarity, only a small matrix with the rank slightly below 800 is
shown here, which originates from a flow distribution system with two bundles consisting of just four
tubes each.

As the convergence criterion, the fluid flow submodel used the scaled norm of the difference
between the solutions from the predictor step and the corrector step. The corresponding scaled residual
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limit was 10−5. In the case of the heat transfer submodel, if we denote the original linear system Ax = b,
then the scaled residual norm is computed from b −Ax just before the heat transfer submodel is solved.
(If it were done after the respective solution process, the norm would be equal to zero.) The same
residual limit, that is, 10−5, was used here.

All physical property data (mean specific heat capacity, dynamic viscosity, etc.) are always taken
for the current conditions from the IAPWS [34] or the CoolProp [35] physical property libraries, or,
in special cases (e.g., flue gas), are computed using various interpolation functions or tabulated data
depending on the actual compositions. Thermal properties of the tube and fin materials are always
obtained using tabulated data from literature (for example, from the technical standard [36]).

2.2. Shell-Side Pressure Drop

Similarly to heat transfer coefficients, pressure drop in the shell side cross-flow tube bundle is
calculated via well-known empirical equations from, e.g., [37]. The actual formula to be used depends
on the bundle geometry, possible presence of fins, etc.

2.3. The Developed Computer Code

The computer code was developed in Python [38] and utilized NumPy [39] to carry out the
necessary matrix computations. The Visualization Toolkit (VTK) [40] and meshio [41] libraries were
used to export solution data to Kitware ParaView [42] for visualization. Although no graphical user
interface (GUI) is available yet, the authors plan to add it in the future, for example, via the Django
web framework [43]. Please note that the code is not publicly available.

Apart from the inclusion of heat transfer, many additional improvements of the code have been
made since the publication of the initial article discussing the FEA-based model [26]. The most
important one probably is parallelization of the mass flow rate corrector step (please see [26] for details).
As the correction algorithm was carried out independently for each mesh edge, a set of asynchronous
workers was created using the standard Python multiprocessing library, and the correction tasks were
processed in batches on all available CPU cores. This then results in much shorter computational times.
Parallelization of the internal matrix computations, however, was not implemented because, given the
numbers of elements in the simplified meshes, the matrices were rather small. In other words, the
CPU time saved by parallel solution would be wasted on auxiliary operations needed to split the task
to multiple cores, thus rendering the net improvement either negligible or even negative.

3. Results

In this section, two test cases are discussed to demonstrate the capabilities of the present version
of the developed model. First, a simple cross-flow tube bundle heat exchanger from the literature is
evaluated in Section 3.1. Section 3.2 then focuses on a heat recovery hot water boiler in an existing
combined heat and power plant, for which stream data have been provided by its operator.

3.1. Simple Cross-Flow Tube Bundle Heat Exchanger from the Literature

The example discussed here was taken from [44] and involves an air-to-water heat exchanger
from Figure 7. Its parameters are listed in Table 2 together with the data obtained using the present
model and HTRI Xchanger Suite 8.0.1 [45]. The computational time needed by the present model to
automatically create the necessary meshes, reach in 46 major iterations the results mentioned below,
and export all the solution data into Kitware ParaView for visualization purposes was ca. 15 s on an
average desktop computer with the Intel Core i-5 2500K CPU. The ranks of the matrices used in the
model were ca. 800 and ca. 1600 in case of fluid flow and heat transfer, respectively.
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Figure 7. The evaluated air-to-water heat exchanger (please note that the tubes are shown as unfinned
for clarity even though the exchanger used rolled helical fins in the heated portion of the bundle). The
dimensions of the air duct were 0.56 × 0.5 × 1.0 m (width × height × length).

Table 2. Parameters of the air-to-water heat exchanger (for the remaining construction data, etc., please
see [44]) and the corresponding results obtained using the present model and HTRI Xchanger Suite
(“HTRI XS”).

Parameter Literature [44] Present Model HTRI XS

TS 1 inlet conditions 3.0 kg s−1, 25 ◦C, 500 kPa
TS outlet temperature 37.0 ◦C 37.5 ◦C 36.3 ◦C

TS pressure drop 2.24 kPa 3.01 kPa 1.9 kPa
SS 2 inlet conditions 2.7 kg s−1, 95 ◦C, 200 kPa

SS outlet temperature 40.0 ◦C 37.6 ◦C 42.8 ◦C
SS pressure drop 1.40 kPa 1.38 kPa 1.2 kPa

heat duty 150.3 kW 156.6 kW 143.0 kW
1 Tube side (water); 2 Shell side (air).

In order to minimize the number of sources of discrepancies, the necessary heat transfer coefficients
were calculated by the present model using the equations mentioned in the literature [44]. The results
should, therefore, have been identical, yet they were not. The reason for the difference became clear
once one noticed that, in [44], the iterative computation was stopped while the difference between the
hot and the cold heat duties was still relatively large. In fact, should one carry out the heat balance
for the data from the literature, one would get the actual water heat duty of 150.3 kW (as listed
among the results) while for air the duty would be 149.9 kW. There may also be another reason for
the discrepancies in the data, namely the fact that, in [44], the computation was done using average
temperatures, average fluid physical properties, etc. for the entire tube side and shell side.

Considering the differences between the values provided by the present model and the data
yielded by HTRI Xchanger Suite, these most likely stemmed from the software package using much
more accurate equations for obtaining the heat transfer coefficients. It, therefore, is entirely possible
that with different equations the results obtained using the present model would be much closer to the
data from HTRI Xchanger Suite. In any case, this supports the notion that any such tool or model can
only be as good as the equations internally utilized by it.

To demonstrate the level of detail of the solution data provided by the developed software, the
water and air temperatures were exported (together with the respective geometry, which used only
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plain tubes to improve clarity) into Kitware ParaView. The resulting combined plot is shown in
Figure 8.
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culled). These were colored by the tube-side (water) and the shell-side (air) temperatures obtained
using the FEA-based model.

3.2. Heat Recovery Hot Water Boiler in an Existing Plant

A heat recovery hot water boiler with nominal thermal power of 53.3 MW in an existing combined
heat and power (CHP) plant was selected as the second test case. The boiler contained two counter-flow
tube bundles which were mounted in the vertical portion of the flue gas duct (i.e., the tubes are
horizontal, see Figure 9). Both bundles consisted of several passes, and each pass was composed of
four staggered tube rows with 48 tubes per row. In the bottom bundle, the first pass was unfinned, the
second pass used plain round fins, and serrated fins were utilized in the third pass. The top bundle
contained solely tubes enhanced with serrated fins. The built-up area of the heated portion of each
bundle was ca. 7.6 × 4.0 m. All stream-related data presented in this article were obtained by the
operator of the boiler in the course of a guarantee test.

The boiler was driven by flue gas exiting from a gas turbine. Because the temperature field (see
the measurement array shown in Figure 9) was almost uniform, the corresponding boundary condition
was specified in both the models discussed further as a constant. The outlet temperature of flue gas
was estimated by the operator because the respective quantity had not been measured during the
guarantee test. All the necessary data are summarized in Table 3.

Table 3. Data provided by the operator of the heat recovery hot water boiler.

Parameter Value

tube side fluid water
tube side inlet conditions 141.7 kg s−1, 48.0 ◦C, 1,071.7 kPa

tube side outlet temperature 139.3 ◦C
tube side pressure drop 32.15 kPa

shell side fluid flue gas
shell side inlet conditions 124.5 kg s−1, 453.9±3.6 ◦C 1, 101.31 kPa

shell side outlet temperature ca. 70 ◦C 2

shell side pressure drop 1.61 kPa
heat duty 53.3 MW

1 Calculated from time-dependent data obtained using the measurement array shown in Figure 9; 2 Estimated (not
measured during the guarantee test).
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Figure 9. Schematic of the investigated boiler. Top bundle collector was connected to the bottom bundle
distributor via an external duct as indicated using the dashed lines. The temperature field measurement
array, consisting of 12 (4 × 3) sensors, was only installed in the duct during the guarantee test.

The simulation carried out using the developed computer code mentioned in Section 2.3 included
both water distribution in the tube side and heat transfer between the flue gas and water. To assess
the accuracy of the predicted temperatures, the boiler was also analyzed using an industry-standard
tool, namely, HTRI Xchanger Suite. Please note that, with respect to the requests of the manufacturer
of the boiler and the operator of the CHP plant, no other data regarding the apparatus can be
explicitly specified in this article. For the same reason, neither the HTRI Xchanger Suite case files
nor the simplified 3-D CFD model of the flue gas duct discussed in the following sections can be
made available.

3.2.1. Simulation in HTRI Xchanger Suite

Compared to a full-scale CFD simulation of the boiler, which would rarely be done in the case of
equipment of such size, the actual computational time required by HTRI Xchanger Suite was negligible
(units of seconds). Unlike CFD, however, the software generally focuses on the thermal side of the
apparatus design, i.e., its primary goal is to provide as accurate stream temperatures as possible while
the flows in both the tube and shell sides are assumed to be uniformly distributed (unless the user
specifies the distribution explicitly). Moreover, one cannot directly set tube inner and outer surface
roughnesses, which may significantly influence the predicted pressure drops.

Results obtained using the discussed software package are listed in Table 4 together with the data
provided by the operator of the heat recovery hot water boiler. The table also mentions the absolute
and relative errors. From these, one can see that the predictions of both the outlet temperatures and
the tube-side pressure drop were quite accurate. The predicted shell-side pressure drop, however,
was markedly lower than the measured value. It also was a notable disadvantage that no detailed
information was given by HTRI Xchanger Suite regarding the actual flow distributions in the bundles
and the shell.
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Table 4. Results obtained using HTRI Xchanger Suite and the corresponding errors compared to the data
from the operator of the boiler. It is apparent that the temperatures and the tube-side pressure drop were
predicted quite accurately, but the shell-side pressure drop was markedly below the measured value.

Parameter Value Error

tube side outlet temperature 136.9 ◦C −2.4 ◦C (−1.7%)
tube side pressure drop 32.33 kPa +0.18 kPa (−0.6%)

shell side outlet temperature 59.3 ◦C ca. −10.7 ◦C (−15%)
shell side pressure drop 0.93 kPa −0.68 kPa (−42%)

heat duty 53.1 MW −0.2 MW (−0.4%)

3.2.2. Assessment of the Shell-Side Flow Behavior

In order to verify whether the assumption of uniform velocity distribution over the flue gas duct
cross-section was appropriate in the FEA-based computation discussed in the next section, a simplified
3-D CFD model of the duct was created in ANSYS Fluent [46]. Parameters of the model are listed in
Table 5. To keep computational demand at a reasonable level, the bundles were replaced by porous
zones. Additionally, the entire duct was split into several parts, and hexahedral cells were used
whenever possible to further lower the cell count while maintaining acceptable mesh quality. After the
necessary mesh adaptation, the final cell count was ca. 3.3 M (see the y+ histogram in Figure 10). As
for cell equiangle skewness, only 1231 cells (ca. 0.04% of the total number of cells) featured skewness
greater than 0.6, of which 1227 fell between 0.6 and 0.7. The obtained contour plot of velocity magnitude
just below the bottom bundle is then shown in Figure 11. This indicates that, although the velocity
distribution was not entirely uniform (see also the pathlines in Figure 12), the non-uniformity was still
at a reasonable level, which should not lead to significant inaccuracy in the calculated overall heat
transfer rate.

Table 5. Parameters of the simplified 3-D CFD model of the flue gas duct.

Parameter Value

solver pressure-based, transient
pressure–velocity coupling SIMPLE

transient formulation 2nd order implicit, time step: 0.01 s
active equations flow, turbulence

turbulence model Realizable k–ε, Scalable Wall Functions
discretization 2nd order (pressure), 2nd order upwind (other quantities)

inlet/outlet types mass flow inlet, pressure outlet
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Figure 11. Contour plot of velocity magnitude just below the bottom bundle, which was obtained
using the CFD model from Table 5. The velocity distribution was not uniform (due to the flue gas duct
being bent) and fluctuated in time.
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Figure 12. Pathlines in the flue gas duct, which were colored by velocity magnitude. One can see that
the flow behind the bend is pushed to one side as indicated in Figure 11 and that there are relatively
large recirculation zones present.

3.2.3. Present Model

The data yielded by the present, FEA-based model are listed in Table 6 together with the values
provided by the operator of the boiler. Here, the accuracy was slightly lower than that of HTRI
Xchanger Suite, but it still was acceptable. The computational time needed to automatically create
the meshes, reached in 39 major iterations the solution, and export the necessary solution data into
Kitware ParaView for visualization purposes was ca. 240 s on the same average desktop computer
used in the previous example. The ranks of the matrices were ca. 9000 and ca. 18,500 in case of fluid
flow and heat transfer, respectively.

As mentioned before, the present model uses a one-dimensional mesh to represent the shell side.
This means that the predicted temperature distribution was, too, only one-dimensional, while flow
distribution across the shell-side cannot be predicted at all. In the tube side, on the other hand, the
mass flow rate was known for each individual tube, and the predicted temperature distribution was
spatially as fine or as coarse as the utilized tube bundle mesh. Figure 13 shows the predicted shell-side
temperature distribution along the portion of the flue gas duct enclosing the two bundles, which was
obtained using the present model, and the corresponding temperatures provided by the operator of the
boiler and yielded by HTRI Xchanger Suite. The temperature curve yielded by the model matches the
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point values reasonably well with the discrepancies being most likely caused by the usage of different
equations for the calculation of the necessary heat transfer coefficients.

Table 6. Results obtained using the present model and the corresponding errors compared to the data
from the operator of the boiler. The accuracy was not as good as in the case of HTRI Xchanger Suite,
but, in terms of fast, approximate analyses of process and power equipment, it was sufficient.

Parameter Value Error

tube side outlet temperature 136.1 ◦C −3.2 ◦C (−2.3%)
tube side pressure drop 30.33 kPa −1.82 kPa (−5.7%)

shell side outlet temperature 62.9 ◦C ca. −7.1 ◦C (−10%)
shell side pressure drop 1.14 kPa −0.47 kPa (−29%)

heat duty 52.6 MW −0.7 MW (−1.3%)
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Figure 13. Comparison of the temperature distribution in the portion of the flue gas duct enclosing
the two bundles, which was obtained using the present model, and the corresponding temperatures
provided by the operator of the boiler and yielded by HTRI Xchanger Suite (“HTRI XS”). Vertical
distance along the channel corresponds to the distance from the point denoted “y = 0 m” in Figure 9.

Similarly as before, a combined plot of water and flue gas temperatures was generated using
Kitware ParaView. This is shown in Figure 14.

The obtained tube mass flow rates were distributed quite uniformly in both bundles. The actual
relative standard deviations from uniform flow distribution computed using

δ =
100
.

mid

√√
1
n

n∑
i=1

( .
mi −

.
mid

)2
, (15)

where
.

mid denotes the ideal mass flow rate through one tube of the bundle, n the number of tubes
therein, and

.
mi the mass flow rate through the ith tube, were 0.3% and 0.4% in case of the top bundle

and the bottom bundle, respectively.
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Figure 14. Visualization generated in Kitware ParaView of the bundles and the surrounding portion of
the flue gas duct (front faces are culled). These were colored by the tube-side (water) and the shell-side
(flue gas) temperatures obtained using the FEA-based model.

4. Discussion

The results yielded by the present model and by HTRI Xchanger Suite for the air-to-water heat
exchanger from the literature have shown that even though an apparatus can be decomposed into
parts for which correlations or calculation procedures for heat transfer coefficients and pressure losses
may exist, successfully applying them may not be straightforward. The main reason is that such
procedures require local fluid and material properties, and these generally depend on the temperature
and pressure, that is, quantities which the designer is trying to calculate. This is where the present
model steps in. The data have also highlighted the facts that the accuracy of any model depends to a
large degree on the quality of equations utilized for the calculation of the various coefficients and that
further research in this area is, therefore, necessary. Additionally, one can draw the conclusion that
using averaged values for the entire tube side and shell side can lead to notable differences. In the case
of the outlet temperatures in this air-to-water heat exchanger, it was up to ca. ±7%.

As for the heat recovery hot water boiler, the most important stream parameters are listed in
Table 7. It can be seen that the tube-side outlet temperature and pressure drop were better predicted
by HTRI Xchanger Suite, while the accuracy of the shell-side outlet temperature and pressure drop
predictions was higher in the case of the present model. Overall, the accuracy of the model was deemed
acceptable concerning its intended purpose.

Table 7. Summary of the main results obtained using the two discussed approaches alongside the data
provided by the operator of the boiler.

Parameter Present Model HTRI Xchanger Suite Operator

TS 1 outlet temperature 136.1 ◦C 136.9 ◦C 139.3 ◦C
TS pressure drop 30.33 kPa 32.33 kPa 32.15 kPa

SS 2 outlet temperature 62.9 ◦C 59.3 ◦C ca. 70 ◦C 3

SS pressure drop 1.14 kPa 0.93 kPa 1.61 kPa
heat duty 52.6 MW 53.1 MW 53.3 MW

1 Tube side (water); 2 Shell side (flue gas); 3 Estimated (not measured during the guarantee test).

A significant advantage of the model over the industry-standard design package offered by HTRI
(or other commonly used heat transfer equipment design packages) lies in the fact that it provides
detailed data on the tube-side fluid flow and temperature distributions. This information can be of
great value when trying to prevent certain types of operating problems (e.g., excessive thermal loading
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of the tubes in the bundle and the subsequent mechanical failures). Another advantage is that in the
case of cross-flow tube bundles (the primary target application of the present model), HTRI Xchanger
Suite assumes that mixing of tube streams occurs after each pass, even if this may not actually be true.
Such a simplification may increase convergence, but it also may diminish local effects and, therefore,
introduce errors into the data.

5. Conclusions

The point of this research was not to develop a replacement to the universally applicable,
commercial heat transfer equipment design packages, such as HTRI Xchanger Suite. On the contrary,
the goal was to create a simplified model for heat exchangers representable using sets of interconnected
1-D meshes, which are typically used in high-temperature (i.e., heat recovery) industrial applications
and are prone to suffer from operating problems. The model, once finished, should be fast, yet
accurate enough, and should provide estimates of not only the flow distribution in the bundle and
the tube- and shell-side temperature fields but also the resulting mechanical stress field in the bundle
caused by uneven thermal loading. In other words, the aim was to have a supplementary tool which
would enable the designer to evaluate in advance, and without any significant effort or time spent,
the thermal-hydraulic behavior of the mentioned heat exchangers as well as the likelihood of them
suffering mechanical failures under the design operating conditions. In this regard, the FEA-based
modelling approach seems to be promising, but a lot of work, as well as a thorough validation, are still
needed before it is ready for production use.

The comparison with HTRI was mentioned in this paper solely to present the current capabilities
of the model in terms of heat transfer prediction. The discrepancy (or at least a part of it) was very
likely caused by the heat transfer coefficients and the hydraulic resistance coefficients being calculated
differently. However, the model was designed in such a way that it can easily incorporate any standard
method for calculating these coefficients for the simple 1-D mesh elements. More complex flow systems
can then be built from these simple elements and the solution strategy remains the same, which ensures
scalability of the model.

Considering the fact that shell-side flow velocity fields commonly are not uniform, one of the
possible future improvements of the FEA-based model could lie in strictly using a grid of cells in the
shell side (in the plane perpendicular to the general direction of flow) instead of only one cell. Another
enhancement, which the authors plan to implement, is to make it possible to interface the current
computer code with other simulation codes. This would enable the evaluation of flow systems in
which some parts are more complex and, therefore, not directly compatible with the simplified mesh
elements used by the FEA-based model.
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Nomenclature

Roman Symbols:
cp specific heat capacity, J kg−1 K−1

CU
constant in the linearized equation governing temperature change in a tube-side mesh
edge, –

k turbulent kinetic energy, m2 s−2

L mesh edge length, m
m number of inbound streams, –
.

m mass flow rate, kg s−1

n number of edges in a system, number of tubes, number of outbound streams, –
.

Q heat flux, W
Re Reynolds number, –
T temperature, ◦C
U cumulative overall heat transfer coefficient, W K−1

x length coordinate, m
y+ dimensionless wall distance, –
Greek Symbols:
δ relative standard deviation form uniform flow distribution, %
ε rate of dissipation of turbulent kinetic energy, m2 s−3

Subscripts:
1 at the inlet of the control volume
2 at the outlet of the control volume
i, j, q, r summation indices
id ideal value
s in the shell side
t in the tube side
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4. Łopata, S.; Ocłoń, P.; Stelmach, T. Investigation of flow non-uniformities in the cross-flow heat exchanger
with elliptical tubes. E3S Web Conf. 2019, 108, 01009. [CrossRef]

5. García-Guendulain, J.M.; Riesco-Ávila, J.M.; Picón-Núñez, M. Reducing thermal imbalances and flow
nonuniformity in solar collectors through the selection of free flow area ratio. Energy 2020, 194, 116897.
[CrossRef]

6. Karvounis, P.; Koubogiannis, D.; Hontzopoulos, E.; Hatziapostolou, A. Numerical and experimental study
of flow characteristics in solar collector manifolds. Energies 2019, 12, 1431. [CrossRef]

7. Li, M.; Hao, J.; Chen, W.; Li, W. Experimental and theoretical investigations on reverse flow characteristics in
vertically inverted U-tube steam generator under transient condition. Prog. Nucl. Energy 2020, 120, 103216.
[CrossRef]

8. Klenov, O.P.; Noskov, A.S. Influence of input conditions on the flow distribution in trickle bed reactors. Chem.
Eng. J. 2020, 382, 122806. [CrossRef]

9. He, Y.; Sun, Z.; Shen, B.; Guo, F.; Yang, Y.; Zhan, X.; Li, X. CFD study on the flow distribution of an annular
multi-hole nozzle. Can. J. Chem. Eng. 2020, 98, 590–606. [CrossRef]

10. Bürkle, F.; Moyon, F.; Feierabend, L.; Wartmann, J.; Heinzel, A.; Czarske, J.; Büttner, L. Investigation and
equalisation of the flow distribution in a fuel cell stack. J. Power Sources 2020, 448, 227546. [CrossRef]

11. Heck, J.D.; Vaz, W.S.; Koylu, U.O.; Leu, M.C. Decoupling pressure and distribution effects of flow fields on
polymer electrolyte fuel cell system performance. Sustain. Energy Technol. Assess. 2019, 36, 100551. [CrossRef]

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119194
http://dx.doi.org/10.1016/j.egypro.2019.01.597
http://dx.doi.org/10.1016/j.applthermaleng.2019.114636
http://dx.doi.org/10.1051/e3sconf/201910801009
http://dx.doi.org/10.1016/j.energy.2020.116897
http://dx.doi.org/10.3390/en12081431
http://dx.doi.org/10.1016/j.pnucene.2019.103216
http://dx.doi.org/10.1016/j.cej.2019.122806
http://dx.doi.org/10.1002/cjce.23602
http://dx.doi.org/10.1016/j.jpowsour.2019.227546
http://dx.doi.org/10.1016/j.seta.2019.100551


Energies 2020, 13, 1664 19 of 20

12. Hur, D.-J.; Jeong, S.-H.; Song, S.-I.; Noh, J.-H. Optimization based on product and desirability functions for
flow distribution in multi-channel cooling systems of power inverters in electric vehicles. Appl. Sci. 2019, 9,
4844. [CrossRef]

13. Li, H.; Ding, X.; Jing, D.; Xiong, M.; Meng, F. Experimental and numerical investigation of liquid-cooled heat
sinks designed by topology optimization. Int. J. Therm. Sci. 2019, 146, 106065. [CrossRef]

14. Zhu, J.; Zhang, W.; Li, Y.; Ji, P.; Wang, W. Experimental study of flow distribution in plate-fin heat exchanger
and its influence on natural gas liquefaction performance. Appl. Therm. Eng. 2019, 155, 398–417. [CrossRef]

15. Tang, H.; Zhang, T.; Liu, X.-H. Experimental study on refrigerant maldistribution in a fin-and-tube evaporator
for a direct expansion air-conditioning system. Energy Build. 2020, 208, 109638. [CrossRef]

16. Quintanar, N.R.; Nguyen, T.; Vaghetto, R.; Hassan, Y.A. Natural circulation flow distribution within a
multi-branch manifold. Int. J. Heat Mass Transf. 2019, 135, 1–15. [CrossRef]

17. Yih, J.; Wang, H. Experimental characterization of thermal-hydraulic performance of a microchannel heat
exchanger for waste heat recovery. Energy Convers. Manag. 2020, 204, 112309. [CrossRef]

18. Lugarini, A.; Franco, A.T.; Errera, M.R. Flow distribution uniformity in a comb-like microchannel network.
Microfluid. Nanofluid. 2019, 23, 44. [CrossRef]

19. Ishiyama, E.M.; Pugh, S.J. Effect of flow distribution in parallel heat exchanger networks: Use of
thermo-hydraulic channeling model in refinery operation. Heat Transf. Eng. 2020, 41, 189–198. [CrossRef]

20. Novitsky, N.N.; Alekseev, A.V.; Grebneva, O.A.; Lutsenko, A.V.; Tokarev, V.V.; Shalaginova, Z.I. Multilevel
modeling and optimization of large-scale pipeline systems operation. Energy 2019, 184, 151–164. [CrossRef]

21. Korelstein, L. Hydraulic networks with pressure-dependent closure relations, under restrictions on the value
of nodal pressures. Maxwell matrix properties and monotonicity of flow distribution problem solution. E3S
Web Conf. 2019, 102, 01005. [CrossRef]

22. Cassiolato, G.; Carvalho, E.P.; Caballero, J.A.; Ravagnani, M.A. Optimization of water distribution networks
using a deterministic approach. Eng. Optim. 2020. [CrossRef]

23. Sun, L.; Yan, H.; Xin, K.; Tao, T. Contamination source identification in water distribution networks using
convolutional neural network. Environ. Sci. Pollut. Res. 2019, 26, 36786–36797. [CrossRef] [PubMed]

24. Fang, Q.-S.; Zhang, J.-X.; Xie, C.-L.; Yang, Y.-L. Detection of multiple leakage points in water distribution
networks based on convolutional neural networks. Water Supply 2019, 19, 2231–2239. [CrossRef]

25. Jeong, G.; Kang, D. Hydraulic uniformity index for water distribution networks. J. Water Resour. Plan. Manag.
2020, 146, 04019078. [CrossRef]

26. Létal, T.; Turek, V.; Fialová, D. Nonlinear finite element analysis-based flow distribution model for engineering
practice. Chem. Eng. Trans. 2019, 76, 157–162. [CrossRef]

27. Fialová, D. Flow Distribution in Equipment with Dense Tube Bundles. Master’s Thesis, Brno University of
Technology, Brno, Czech Republic, 2017. (In Czech).

28. Gnielinski, V. Heat Transfer in cross-flow around single rows of tubes and through tube bundles. In VDI Heat
Atlas, 2nd ed.; Part, G., Stephan, P., Kabelac, S., Kind, M., Martin, H., Mewes, D., Schaber, K., Eds.; Springer:
Berlin, Germany, 2010; pp. 725–730. [CrossRef]

29. Webb, R.L.; Kim, N.-H. Externally finned tubes. In Principles of Enhanced Heat Transfer, 2nd ed.; Taylor &
Francis Group: New York, NY, USA, 2005.

30. Lindqvist, K.; Næss, E. A validated CFD model of plain and serrated fin-tube bundles. Appl. Therm. Eng.
2018, 143, 72–79. [CrossRef]

31. Lindqvist, K.; Wilson, Z.T.; Næss, E.; Sahinidis, N.V. A machine learning approach to correlation development
applied to fin-tube bundle heat exchangers. Energies 2018, 11, 3450. [CrossRef]

32. Hofmann, R.; Heimo, W. Experimental and numerical investigation of the gas side heat transfer and pressure
drop of finned tubes—Part I: Experimental analysis. J. Therm. Sci. Eng. Appl. 2012, 4, 041007. [CrossRef]

33. Hofmann, R.; Heimo, W. Experimental and numerical investigation of the gas side heat transfer and pressure
drop of finned tubes—Part II: Numerical analysis. J. Therm. Sci. Eng. Appl. 2012, 4, 041008. [CrossRef]

34. Python Implementation of the IAPWS Standard. Available online: https://github.com/jjgomera/iapws
(accessed on 21 January 2020).

35. Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation
and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508.
[CrossRef] [PubMed]

http://dx.doi.org/10.3390/app9224844
http://dx.doi.org/10.1016/j.ijthermalsci.2019.106065
http://dx.doi.org/10.1016/j.applthermaleng.2019.04.020
http://dx.doi.org/10.1016/j.enbuild.2019.109638
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.102
http://dx.doi.org/10.1016/j.enconman.2019.112309
http://dx.doi.org/10.1007/s10404-019-2214-1
http://dx.doi.org/10.1080/01457632.2018.1522098
http://dx.doi.org/10.1016/j.energy.2018.02.070
http://dx.doi.org/10.1051/e3sconf/201910201005
http://dx.doi.org/10.1080/0305215X.2019.1702980
http://dx.doi.org/10.1007/s11356-019-06755-x
http://www.ncbi.nlm.nih.gov/pubmed/31745764
http://dx.doi.org/10.2166/ws.2019.105
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001158
http://dx.doi.org/10.3303/CET1976027
http://dx.doi.org/10.1007/978-3-540-77877-6_40
http://dx.doi.org/10.1016/j.applthermaleng.2018.07.060
http://dx.doi.org/10.3390/en11123450
http://dx.doi.org/10.1115/1.4007124
http://dx.doi.org/10.1115/1.4007125
https://github.com/jjgomera/iapws
http://dx.doi.org/10.1021/ie4033999
http://www.ncbi.nlm.nih.gov/pubmed/24623957


Energies 2020, 13, 1664 20 of 20

36. European Committee for Standardization. EN 12952-2:2011. Water-Tube Boilers and Auxiliary Installations—Part
2: Materials for Pressure Parts of Boilers and Accessories; European Committee for Standardization: Brussels,
Belgium, 2011.

37. Ganapathy, V. Finned tubes. In Waste Heat Boiler Deskbook; The Fairmont Press, Inc.: Lilburn, GA, USA, 1991;
Appendix A; pp. 275–306.

38. Python Language Reference, Version 3.8.1. Available online: https://www.python.org (accessed on 21 January
2020).

39. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006.
40. Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit, 4th ed.; Kitware, Inc.: Clifton Park, NY, USA,

2006.
41. I/O for Mesh Files. Available online: https://github.com/nschloe/meshio (accessed on 21 January 2020).
42. Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware, Inc.: Clifton Park, NY, USA, 2015.
43. Django, Version 3.0.2. Available online: https://djangoproject.com (accessed on 21 January 2020).
44. Pismennyi, E.; Polupan, G.; Carvajal-Mariscal, I.; Sanchez-Silva, F.; Pioro, I. Examples of calculations.

In Handbook for Transversely Finned Tube Heat Exchanger Design; Academic Press: Cambridge, MA, USA, 2016;
Chapter 7; pp. 83–106. [CrossRef]

45. Heat Transfer Research, Inc. HTRI Xchanger Suite User’s Guide, Version 8.0.1; Heat Transfer Research, Inc.:
Navasota, TX, USA, 2019.

46. ANSYS, Inc. ANSYS Fluent User’s Guide, Version 2019 R3; ANSYS, Inc.: Canonsburgh, PA, USA, 2019.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.python.org
https://github.com/nschloe/meshio
https://djangoproject.com
http://dx.doi.org/10.1016/B978-0-12-804397-4.00007-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Inclusion of Heat Transfer into the Model 
	Flow Mixing and Splitting 
	Heat Transfer through Channel Walls 
	Boundary Conditions and the Complete System of Linear Equations 
	Coupling of the Flow Distribution and Heat Transfer Submodels 

	Shell-Side Pressure Drop 
	The Developed Computer Code 

	Results 
	Simple Cross-Flow Tube Bundle Heat Exchanger from the Literature 
	Heat Recovery Hot Water Boiler in an Existing Plant 
	Simulation in HTRI Xchanger Suite 
	Assessment of the Shell-Side Flow Behavior 
	Present Model 


	Discussion 
	Conclusions 
	References

