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Abstract: This study presents the analysis and estimation of the hydrogen production from coffee
mucilage mixed with organic wastes by dark anaerobic fermentation in a co-digestion system using an
artificial neural network and fuzzy logic model. Different ratios of organic wastes (vegetal and fruit
garbage) were added and combined with coffee mucilage, which led to an increase of the total hydrogen
yield by providing proper sources of carbon, nitrogen, mineral, and other nutrients. A two-level
factorial experiment was designed and conducted with independent variables of mucilage/organic
wastes ratio, chemical oxygen demand (COD), acidification time, pH, and temperature in a 20-L
bioreactor in order to demonstrate the predictive capability of two analytical modeling approaches.
An artificial neural network configuration of three layers with 5-10-1 neurons was developed. The
trapezoidal fuzzy functions and an inference system in the IF-THEN format were applied for the fuzzy
logic model. The quality fit between experimental hydrogen productions and analytical predictions
exhibited a predictive performance on the accumulative hydrogen yield with the correlation coefficient
(R2) for the artificial neural network (> 0.7866) and fuzzy logic model (> 0.8485), respectively. Further
tests of anaerobic dark fermentation with predefined factors at given experimental conditions showed
that fuzzy logic model predictions had a higher quality of fit (R2 > 0.9508) than those from the artificial
neural network model (R2 > 0.8369). The findings of this study confirm that coffee mucilage is a
potential resource as the renewable energy carrier, and the fuzzy-logic-based model is able to predict
hydrogen production with a satisfactory correlation coefficient, which is more sensitive than the
predictive capacity of the artificial neural network model.
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1. Introduction

Fossil resources, including petroleum, coal, and natural gas, have been utilized as crucial
energy sources for the development of worldwide industry, technology, and investment; they satisfy
approximately 80% of the global energy demand and supply [1–5]. Rapid depletion of limited fossil fuels,
environmental contamination, greenhouse gas emissions, and climate change issues are questionable
in the availability of the fossil fuel-dependent energy system in the long term [2,6,7]. There are diverse
alternatives to sustainable energy, such as wind, solar, nuclear, hydroelectric, and second-generation
fuels from lignocellulosic biomass. Hydrogen gas has received scientific attention and thought
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as a promising future energy source because of its ability to be widely used for chemical reactant,
petro-chemical reforming, diesel refinery, and to synthesize valuable chemicals [8–10]. It is well known
that hydrogen is unrestricted in controversial issues of greenhouse gas and environmental population,
and it provides a higher energy (> 2.5 times) than other combustion energies, such as hydrocarbon [11,12].
However, practical hydrogen production is not generalized, and the physico-chemical approaches
for hydrogen achievements still depend on fossil resources (methane, crude oil, and coal) due to the
problems associated with the cost efficiency and technical capability [1,13]. Biological technology
or biochemical conversion is a bio-friendly attractive approach to decompose/convert water wastes
and undesirable organic molecules into renewable energy and value-added molecules, i.e., hydrogen,
acetic acid, butyric acid, and using microorganisms. Among the different types of biological processes,
the bio-photolysis and photo-fermentation processes are able to produce relatively more hydrogen
molecules than those from other methods without light [13]. In spite of the lower yield, anaerobic dark
fermentation is more attentive to hydrogen production because a wide range of organic wastes and
inexpensive renewable feedstock can be utilized for energy carriers with a higher production rate,
lower energy supply, and appropriate yield [14–17]. For example, previous studies highlighted that the
decomposition of domestic wastewater and wastepaper could produce hydrogen in anaerobic batch
fermentation that results in 0.01 L H2/L substrate and 0.29 mol H2/mol hexose yield, respectively [18].

One primary difficulty in the practical coffee industry is the generation of unnecessary residues,
such as outer skin, silver-skin, pulp, parchment, and mucilage, which are usually removed during the
wet/dry coffee process. While a part of the coffee bean (endo-sperm) in the whole coffee fruit is used
solely for the brewed beverage, other components are not employed but are discarded, accounting for
over 50% of the initial coffee weight [19,20]. Braham, J.E. [21] reported that 61.1% (w/w) of the coffee
components (skin, pulp, parchment, mucilage, and soluble) were disused during the wet separation
and thrown out after coffee processing. A large quantity of coffee wastes is generated, an estimated
approximately 15 million dry tons per year worldwide, which causes environmental issues, pollution
hazards, and toxic chemical problems [13,20,22]. Some studies have introduced waste residues re-used
in animal feed [23,24], α-amylase [25], ethanol [19,20], and bio-sorbents for the treatment of aqueous
solutions [26,27]. Nevertheless, the economical points, technical methods, and the high amount of
undesirable components (phenols, lignin, and caffeine) in the materials hinder the practical use of
coffee waste residues for further utilization [28,29].

Among different types of coffee wastes, coffee mucilage has been regarded as an alternative
source for bioenergy, food, and the biochemical flat-form process due to its abundance in sugars
and carbohydrates, a small portion of protein, and pectin as well as some inorganic or minerals.
Orrego et al. [19,20] concluded that the pentose/hexose sugars (mainly glucose and galactose) in coffee
mucilage wastes are directly fermented into ethanol without pretreatment and additional supplements.
More recently, our research study elucidated that anaerobic dark fermentation of coffee mucilage
combined with organic wastes (whole market garbage) was capable of producing hydrogen (0.248 mol
H2/mole hexose) [13].

Mathematical modeling is one of the crucial steps in food processing, biochemical reaction,
bioprocess engineering, biological conversion, and scale-up processes to enhance the capability to
design and manage a total process, and to predict the final product yield at low cost. In the case of
anaerobic fermentative digestion, it is influenced by several critical factors, including pH, pressure,
temperature, chemical oxygen demand, reaction time, nutrition component, culture type, reactor type,
and mixing conditions, which affect the microbial interaction, growth, and metabolic activity, and
determine the final yield of desirable molecules, i.e., hydrogen, methanol, and butanol. Artificial
neural networks (ANNs) are similar to humans’ neurons in the brain, which are interconnected
with an input, hidden, and outer layer in the network system [30]. It is a significant modeling
approach in order to design non-linear multivariable bioprocesses and to forecast output in either not
established appropriately or excessively complex processes [31]. ANN modeling provides not only the
reciprocal interaction of various parameters but also the intricate associations between input and output
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factors [10,32,33]. The neurological function, the most advantageous tool in the ANN, is able to train
with input/output variables, calculate the weight and coefficient factors, and determine the optimal
conditions with the lowest differences between the practical data and model-designed output [8,30].
The fuzzy-logic-based approach has also received attention from many researchers and has been
applied in various fields of ecosystem, environmental science, and energy evaluation and prediction of
anaerobic digestive processes [34–37]. Unlike the ANN, the fuzzy-logic-based model is applied for
the predictive capacity without accurate knowledge of the process system and the interactions of the
parameters [38]. Since a general fuzzy system converts numerical variables of the input and output into
specified-level terms (high and low), the modeling of the anaerobic fermentative process is achievable
for the prediction/development of the cumulative hydrogen yield under various types of substrate
and interactions of the bacterial population [13,39–41]. It is obvious that there is little to no literature
for anaerobic fermentative hydrogen production from coffee mucilage combined with organic waste
and its analytical modeling method. The current manuscript addresses the prediction of hydrogen
production and yield in the batch system, varying the parameters of mucilage/organic waste ratio, pH,
acidification time, chemical oxygen demand, and temperature. Two-level factorial experiments were
tested, and their hydrogen profiles were modeled with the ANN and fuzzy-logic-based approaches.
Furthermore, the prediction of the two models was tested with more anaerobic digestive fermentations
under similar conditions, and those actual data were compared to the modeled data.

2. Materials and Methods

2.1. Raw Materials

Coffee mucilage wastes (Castillo variety coffee with a coffee demucilager machine) were provided
from the Casa de Sabaneta farm (Sabaneta, Colombia), situated 1551 m above sea level with an
average temperature of 23 ◦C. The fruit-vegetable organic wastes (crisp lettuce, Tommy Atkins mango,
Valencia orange, guava and papaya) were taken from the Central Mayorista de Antioquia (Antioquia’s
Wholesale Market, Medellín, Colombia). The raw materials were not sterilized and stored at 4 ◦C
prior to use. All other reagent and chemicals in the current study were purchased from Sigma Aldrich
(St. Louis, MO, USA).

2.2. Experimental Design and Data Collection

In order to analyze the anaerobic fermentative performance, two-level half-factorial experiments
were designed through the Minitab 16 software program (Minitab 16, Minitab Inc., State College, PA,
USA), following our previous study [13]. The resulting 26 sets were performed in a 20-L bioreactor
with an actual working volume of 13 L. Raw coffee mucilage samples do not require any supplements,
such as carbon/nitrogen nutrients and initial microbial culture, for transforming fermentable sugars in
the substrate to hydrogen since there are appropriate nutrient sources, minerals, and microorganisms
in the samples [13,19,20]. Our earlier work found that 7 species were isolated after anaerobic dark
fermentation, and 4 species (Micrococcus luteus, Kocuria kristinae, Streptococcus uberis, and Brevibacillus
laterosporus) were relatively highly involved and participated in hydrogen production. Furthermore,
increased hydrogen yield was observed when co-cultivation (bacterial consortium) was applied with
K. kristinae and S. uberis, suggesting that the bacterial population could change the metabolic pathways
and/or biochemical/molecular interactions that lead to efficient dark fermentation [13]. Briefly, a
two-level factorial experimental test was designed with three different ratios (w/w) of coffee mucilage
and organic wastes mixture (8:2, 5:5, and 2:8) were prepared, and additional control runs with only
coffee mucilage or organic wastes were added [13]. Each anaerobic digestion was carried out with the
independent variables of the substrate ratios (%), temperature (30-40 ◦C), chemical oxygen demand
(COD) (20-60 g oxygen/L), acidification time (24-72 h), and pH (5.0-6.5). The initial pH was regulated by
adding agricultural lime (95% calcium carbonate (CaCO3), 2% humidity, and 54% soluble calcium oxide
(CaO)). Determination of COD [42,43], operation of the bioreactor, and biogas collection followed our



Energies 2020, 13, 1663 4 of 13

previous work [13]. The detailed experimental design and its hydrogen profiles of maximum hydrogen
(%), daily hydrogen production (L H2/day), and cumulative hydrogen (L H2) are summarized in
Table 1.

Table 1. Experimental data used for the ANN and fuzzy logic model. Each anaerobic fermentation was
performed in duplicate under given experimental conditions. The hydrogen production was collected.
Each data was statistically analyzed with 95% significant differences.

Run Ratio 1 COD
(g O2/L)

Acidi.
2

(days)
pH Temp.

(◦C)
Daily

H2(LH2/day)
% content

(% H2)
Accumul. 3

(LH2)
Yield

(L H2/L)

Yield
(mol H2/mol

Hexose)

1 10:0 40 2 6.0 35 0.00 0.00 0.00 0.00 0.00
2 8:2 60 3 5.5 30 0.00 0.00 0.00 0.00 0.00
3 8:2 20 3 5.0 40 0.00 0.00 0.00 0.00 0.00
4 8:2 60 1 5.0 40 0.00 0.00 0.00 0.00 0.00
5 8:2 20 1 5.5 30 0.00 0.00 0.00 0.00 0.00
6 8:2 60 3 6.0 40 0.00 0.00 0.00 0.00 0.00
7 2:8 60 1 6.5 40 2.97 30.33 2.97 0.34 0.09
8 2:8 20 1 5.5 40 0.00 0.00 0.00 0.00 0.00
9 2:8 20 3 5.5 30 0.00 0.00 0.00 0.00 0.00

10 2:8 60 3 5.5 40 0.00 0.00 0.00 0.00 0.00
11 2:8 60 1 5.5 30 0.00 0.00 0.00 0.00 0.00
12 2:8 20 1 6.0 30 1.88 20.87 1.88 0.35 0.12
13 2:8 20 3 6.5 40 0.00 0.00 0.00 0.00 0.00
14 0:10 40 2 6.0 35 0.43 14.40 0.43 0.08 0.02
15 5:5 40 2 6.0 35 3.42 34.23 6.75 0.35 0.32
16 5:5 40 2 6.0 35 1.34 30.94 2.57 0.14 0.13
17 5:5 40 2 6.0 35 5.68 37.89 8.32 0.58 0.59
18 5:5 40 2 6.0 35 3.43 34.34 6.96 0.35 0.31
19 5:5 40 2 6.0 35 2.65 26.53 4.98 0.27 0.29
20 5:5 40 2 6.0 35 7.83 31.08 11.37 0,80 0.64
21 8:2 20 1 6.0 40 0.00 0.00 0.00 0.00 0.00
22 8:2 60 1 6.5 30 13.32 35.85 25.94 1.21 1.65
23 8:2 20 3 6.5 30 2.27 32.47 3.36 0.20 0.38
24 2:8 60 3 6.5 30 5.60 40.00 10.15 0.63 0.39
25 5:5 80 2 6.0 35 5.90 24.70 8.88 0.49 0.29
26 5:5 40 0 6.0 35 0.00 0.00 0.00 0.00 0.00

1 Substrate ratio of coffee mucilage wastes and organic wastes. 2 Acidification. 3 Accumulation of hydrogen.

Hydrogen gas in each test was collected in gas sampling Tedlar bags (Restek, LA, CA, USA) at
interval times and determined with gas chromatography (3000 MicroGC system, Agilent, San Jose,
CA, USA) as described in our previous study [13]. The gas chromatography was equipped with a
molecular sieve column 5A (10 mm x 0.32 mm) connected to a thermal conductivity detector (TCD).
Argon gas was used as the carrier gas at a 0.9 mL/min flow rate; the injector, column, and detector
temperatures were kept constant at 60, 80, and 300 ◦C, respectively. A gas meter (G 2.5 volumetric,
Metrex, Popayan, Cauca, Colombia) was used, which operated with a precision of 0.04 m3/h, and a 40
kPa maximum working pressure. Statistical analysis was performed with the t-test using the Minitab
16 program for daily hydrogen production, hydrogen content, and accumulation of hydrogen, with a
95% significant difference.

2.3. Analytical Modeling Approach—Artificial Neural Network (ANN)

In order to develop the hydrogen yield prediction model in anaerobic fermentative digestion, the
ANN approach employed a multilayer perceptron-type neural network [44,45]. The backpropagation
algorithm was employed for training and propagation of the error, which is the widely used training
algorithm in the ANN. The main advantage of this algorithm is the ability to calculate the difference/error
between the output from the neural network and the actual output and back propagate them through
the designed system. The algorithm is able to adjust the weights in each independent variable
(input and hidden layers); the successfully repeated procedure can minimize the errors between the
experimental data and model-calculated prediction [8,30,46]. The five input factors chosen in the
current work were: i) Substrate ratios (x1), ii) acidification time (x2), iii) chemical oxygen demand
(x3), iv) pH (x4), and v) temperature (x5). The interactions between the independent variables on
hydrogen production were considered in a hidden layer of the neural network; one dependent variable
(hydrogen production) was set up in the output layer (Y1). The training was supervised (with a
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pattern), which was the experimental data obtained from each input variable. The initial weights (w)
for the connections between the layers were assigned randomly with the nn-tool option in the Matlab
R2012a. The designed artificial network model is presented in Figure 1.

Figure 1. The neural network used in the modeling. Layer 1 includes the five input factors of i) substrate
ratios (x1), ii) acidification time (x2), iii) chemical oxygen demand (x3), iv) pH (x4), and v) temperature
(x5); layer 2 includes 10 neurons; and layer 3 includes the output data of hydrogen production.

To obtain the global output (O3, Equation (1)), the hidden layer and output layer used a sigmoid
function and a linear function, respectively. The generalized form of the network output was
investigated using Matlab platform R2012 syntax (MathWorks, Inc., Natick, MA, USA) as below
(Equations (1) and (2)):

O3 =
m∑

k=1

w2
k,y ∗

1

1 + e−(
∑n

i=1 w1
i,k ∗ xi−t )

, (1)

yn(xn) = Pureline
(
LW(2,1)

∗ logsig
(
IW(1,1)

∗ xn
))

, (2)

where w1
i,k: The weight of the connection between the input variable i in layer 1 and the neuron k

in layer 2; w2
k,y: The weight between the output of neuron k and the output neuron in layer 3 (y); n:

The number of inputs in layer 1 (equal to 5); m: The number of neurons in the hidden layer (10); t:
The learning rate (taken as zero); LW(2,1): The weight vector of layer two (YxK, with Y number of
outputs and K number of neurons); and IW(1,1): The weight matrix of layer one (KxX, with K number
of neurons and X number of inputs).

The error in the network output (E, Equation (3)) was calculated as the difference between the
experimental values in the response for a combination of the inputs and the predicted network output
(O3). This error was distributed among the outputs of the previous layer, with which the error in
layer two was determined (E2

k , Equation (4)). Once the error was distributed, the connection weights
between elements were updated using Equation (5):

E = pattern−O3, (3)

E2
k = O2

k

(
1−O2

k

)
∗

(
w2

k,y ∗ E
)
, (4)

wp
st(current) = wp

st(previous) + α ∗ E(p+1)
t ∗ xst, (5)
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where O2
k : The output value for the k neuron in layer 2; w2

k,y: The weight between the output of

neuron k in layer 2 and the output neuron in layer 3; E2
k : The output error of the k neuron in layer 2;

wp
st(current): The updated or recalculated weight of the connection between the sth neuron of the pth

layer and the tth neuron of the (p + 1)th layer; wp
st(previous): The weight of the connection between the

previous neurons without updating; xst: The input of the sth neuron into the tth neuron; and α: The
learning constant (taken as 0.3) [44].

For the training and testing of the network, the 26 experimental data were randomly distributed
into two groups, one set of 18 data to training and the other 8 data to test the network. The training
consisted in passes through the network of the values of the input variables for each of the 18 trials
in a sequential way (values of substrate ratio, acidification time, chemical oxygen demand, pH, and
temperature), and their output was obtained from the network. In each case, the outputs of the hidden
layer neurons, network error, distribution of the error backwards, and the updated weights were
obtained. This procedure was developed in an iterative way until the error reached a value of less
than or equal to 0.002, defined as the maximum value accepted. The input variables were normalized
(values between 0 and 1) before the training and testing of the network, and then the outputs were
decoded into values in their original domain.

2.4. Models with Fuzzy Logic

In order to develop the fuzzy-logic-based model, five input variables (substrate ratio, acidification,
chemical oxygen demand, pH, and temperature) were used, and the following output data from the test
was corresponded to the dependent variables. Numerical input and output data were converted into a
form of linguistic levels (very low, low, medium, high, and very high), using trapezoidal membership
functions (Figure 2). The fuzzification process, including inference operators, minimization, and
products, is capable of providing an understanding of the variables and membership functions from
multiple-input data [47–49].

Figure 2. Representation of the variables through five fuzzy sets and their membership functions,
where µi, corresponds to the membership function for fuzzy sets very low, low, medium, high, and
very high; ai, bi, ci, di, ei, fi, gi, hi, ii, and ji are the vertices of the fuzzy sets; and x is the value of each
variable (substrate ratio, acidification, chemical oxygen demand, pH, and temperature), whose domain
was defined according to the database. In the response variables, the domain was defined according to
the results achieved during the tests.

The fuzzy inference system was conducted through Mandani with fuzzy inference rules based
on the antecedent-consequent format given by linguistic expressions of the IF-THEN form. The
AND operator was utilized to evaluate the rules (minimum method or intersection of two fuzzy sets
(Equation (6)), while the aggregation was calculated by the OR operator (maximum method or union
of two fuzzy sets (Equation (7)). The transformed fuzzy outputs to values in the original domain of the
independent factors were completed with the centroid method described in the earlier study [38]:

µA∩B(x) = min[µA(x),µB(x)] = ∧ [µA(x), µB(x)], (6)
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µA∪B(x) = max[µA(x),µB(x)] = ∨[µA(x), µB(x)], (7)

where A and B are fuzzy sets in X with a group of pairs such that:
A =

{(
x, µA(x)

)
/x ∈ X

}
and B =

{(
x, µB(x)

)
/x ∈ X

}
; and µA(x) y µB(x) are membership functions

for the fuzzy sets A and B, respectively, with their domain for the x variable.

3. Results and Discussion

Implementation of the Artificial Neural Network and Fuzzy Logic Models

Although the main aim for the comprehensive concept in the study was the production of hydrogen
gas, this paper concentrated on modeling and comparing two model approaches, following on from
our previous work [13], to estimate its predictability. Briefly, the carbohydrates and sugars in coffee
mucilage were metabolized via the Emnden–Meyerhof (glycolytic pathway) process, which is able to
produce hydrogen molecules by accepting/donating protons between adenine dinucleotide (NAD+)
and nicotinamide adenine dinucleotide (NADH). The highest hydrogen yield (25.94 L equivalent to
1.21 L H2/L substrate) was obtained in the presence of the blended substrate (8 mucilage: 2 organic
wastes) at 30 ◦C, acidification time of one day, pH 6.5, and chemical oxygen demand of 60 g O2/L while
less to no hydrogen production was observed in the other tests with different substrate ratios [13].
This anaerobic digestion does not require any additional carbon/nitrogen sources, light, and initial
microorganism for fermentation performance because the raw materials already have the resources for
dark fermentation [13,19,20].

The artificial neural network model (ANN) architecture (5-10-1) was built for both acclimatization
of the model-calculated prediction and the experimental phase (Figure 1). We aimed to reach an
error less than or equal to 0.002 that was available at a hidden layer with 10 neurons. Since the
increase in neurons at the hidden layer could result in high values of the error and unacceptable
data [50], the training algorithm in the neuron system was fixed with 10 neurons. The data from the
cumulative hydrogen production variable were passed through the network to obtain the error; its
training continued until 175 iterations, resulting in a coefficient of determination of 0.7866 (Figure 3A).
The final weight matrix was determined between the inputs and the 10 neurons of the hidden layer
(IW(1,1)), and the weight vector between the 10 neurons of the hidden layer and the output (LW(2,1)).
The matrix connections (IW(1,1)) and those of the vector (LW(2,1)) were determined with the lowest
errors. The weights matrix and the weight vector (accumulative hydrogen production) are tabulated in
Table 2.

Figure 3. Comparisons between the experimental and predicted data used in (A) tthe ANN model and
(B) fuzzy model.
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Table 2. Artificial neural network model training parameters for the final weights’ matrix and vector of
the accumulative hydrogen production. The positive (+) and negative (-) sign represent an increase or
decrease in the connection between neurons, respectively.

The Cumulative Hydrogen Production

Neuron
Layer 1 Weight Matrix Layer 2

Weight
VectorSubstrate

Ratio COD Acidification pH Temperature

1 -1.022 -1.392 -0.428 -0.541 -1.648 -1.032
2 1.501 0.970 -0.502 -0.034 -0.898 -0.239
3 0.606 1.882 1.101 -0.964 -1.301 1.089
4 -0.954 1.287 -2.428 0.531 -0.511 1.294
5 -0.440 -1.106 -1.574 0.673 -0.956 0.106
6 -1.162 0.275 -0.963 -0.298 1.365 -0.378
7 0.549 -0.100 -0.631 -0.657 1.832 -0.642
8 -1.824 1.298 0.706 -1.265 -1.910 -1.477
9 -1.357 0.631 1.314 1.413 0.779 0.457

10 -0.039 1.016 -1.547 -1.090 -0.765 -0.121

Similar to the neural network model, the fuzzy logic-based model was applied to forecast hydrogen
gas production from the two-level half-factorial design experiments. The membership functions with
five input variables developed five diffuse sets of five linguistic levels (very low, low, medium, high,
and very high). The membership functions and their ranks for each input and output variables are
summarized in Table 3. A total of 1595 linguistic rules in the IF-THEN format were used to develop the
fuzzy logic-based model with 26 experimental data by testing with different input parameters. There
are two reasoning fuzzy systems (Mamdani vs. Takagi-Sugeno type) for applying the variables from the
combination of input and membership functions to estimate output [47,51]. Since Mamdani’s approach
is more suitable to apply fuzzy inference by interpreting the fuzzy rules than the Takagi-Sugeno
method, Mamdani’s fuzzy inference method was used to forecast the hydrogen production. Each input
factor was defined between 0 and 100 for the substrate ratio, 0 and 83 g O2/L for COD, 0 and 3 days
for acidification, 30 and 40 ◦C for temperature, and 0 and 6.5 for pH, respectively. Figure 3B presents
the correlation (R2 = 0.8485) between the experimental cumulative hydrogen production and those
predicted generations through the fuzzy model for data pointing. Even though some experimental
tests showed little to no hydrogen production, the two modeling analyses assessed and predicted the
accumulative hydrogen yields. Comparing the hydrogen predictions using the two different models,
the fuzzy model was more fitted, with a > 84% coefficient correlation, than those from the ANN model,
with a > 77% correlation coefficient.

Table 3. Membership functions and their information for each input and output variable.

Membership
Functions

Input Variable Output

Substrate
Ratio

COD(g
O2/L)

Acidification
(Days) pH Temperature

(◦C) Hydrogen(LH2)

Very Low [0 0 19 25] [0 0 0 0] [0 0 0 0] [0 0 0 0] [30 30 31 32] [0 0 0.6 1.7]

Low [19 25 33.5
41] [0 0 15 25] [0 0 0.3 0.7] [5.3 5.3 5.5

5.65] [31 32 33 34] [0.6 1.7 5.5 7.5]

Medium [33.5 41 50
59] [15 25 37 47] [0.3 0.7 1.2

1.6]
[5.5. 5.65 5.9

6] [33 34 35 36] [5.5 7.5 12 15]

High [50 59 69 78] [37 47 62.8
70.5]

[1.2 1.6 2.1
2.5] [5.9 6 6.2 6.3] [35 36 38 39] [12 15 21 24]

Very High [69 77 100
100]

[62.8 70.5
83.3 83.3] [2.1 2.5 3 3] [6.2 6.3 6.5

6.5] [38 39 40 40] [21 24 30 30]

In order to acquire an accurate prediction response with a higher probability worth (coefficient
correlation) in both the ANN and fuzzy models, the poor bi-lateral parameters, including substrate*COD
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and acidification*pH, were excluded, and accurate architectures were simulated and created. The
experimental and predicted hydrogen production by the ANN and fuzzy models are compared in
Figure 4. Coefficient correlations (R2) of 0.8369 and 0.9508 were achieved for validation of the ANN
and fuzzy models, respectively, and these results indicated that the prediction of hydrogen in this
experimental design was 83.69% and 95.08%, respectively. It is definite that both models accurately
predicted the hydrogen production in given conditions, and the fuzzy model was better than the ANN
model, as reflected by R2 of 0.8369 and 0.9508.

Figure 4. Correlation between the experimental and predicted training hydrogen production data used
in (A) the ANN model and (B) fuzzy model.

In both models, an adequate fit was observed in the linear trends between the predicted and
experimental hydrogen production. Prediction model training with connection weights in the input
and hidden neurons improved the correlation efficient. The R2 values for hydrogen production
confirmed that the model was able to predict the hydrogen generation in a dark fermentation phase
closer to the experimental results. The correlation efficient in this study is comparable with earlier
research studies with the modeling on hydrogen production from other substrates that is summarized
in Table 4. A similar or higher R2 value was obtained for both the ANN and fuzzy models compared
with a comparative study of modeling on hydrogen production. The hydrogen production of simple
sugars, such as glucose and lactose, seems to have a proper fit since mixed waste substrates have
complex compositions that may dominantly contribute to cell growth, consumption of substrates,
metabolic pathways, and biochemical conversion associated with hydrogen production in anaerobic
fermentative conditions [13].
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Table 4. Comparative research studies of neural network/fuzzy modeling of hydrogen production from
different substrates.

Model Substrate Reactor Input Output R2 Reference

ANN/Fuzzy logic
Coffee

mucilage +
organic

Batch Substrate ratio, COD,
acidification, temperature, pH

Hydrogen
production 0.8369/0.9508 Current

work

Neural network Glucose Batch
Initial glucose concentration,
initial biomass concentration,

pH, temperature, time

Hydrogen
production 0.987 [8]

Neural network Lactose Batch ORP 1, pH, dissolved CO2
Hydrogen
production 0.955 [52]

Neural network Glucose HUASB 2 Time, COD 3, pH, VFA 4
Hydrogen
production

rate
0.823 [50]

Fuzzy logic Molasses UASB 5 OLR 6, TCOD removal rate
(Rv) 7, influent alkalinity, pH

Biogas 0.9847 [38]

Fuzzy logic Molasses UASB OLR, VCOD removal rate (Rv),
influent alkalinity, pH Methane 0.9848 [38]

1 ORP: Oxidation-reduction potential. 2 HUASB: Hybrid up-flow anaerobic sludge blanket reactor. 3 COD: Chemical
oxygen demand. 4 VFA: Volatile fatty acids. 5 UASB: Up-flow anaerobic sludge blanket reactor. 6 OLR: Organic
loading rate. 7 TCOD: Total chemical oxygen demand removal rate.

It is worthwhile to address that the prediction and estimation of hydrogen production from pure
substrates via anaerobic fermentative performances is more accurate for a modeling study than those
from mixed substrates due to potential factors that affect the hydrogen production [53,54]. However,
the supplementation of essential sources (phosphorous, ferrous, nitrogen, mineral, and metals) from
waste materials could positively impact the anaerobic cell growth and support hydrogen-producing
metabolisms to improve the final hydrogen production. Margarida et al. [55] highlighted that the
carbon/nitrogen ratio is a primary factor for anaerobic fermentative digestion, and they found that the
additional nitrogen provided by organic wastes improved the hydrogen yield by increasing the C/N
ratios. Furthermore, phosphorous (P) plays a role in adenosine triphosphate synthesis; the additional
phosphorus could support the enzyme linkage and metabolic pathway for hydrogen production during
anaerobic fermentation [54].

4. Conclusions

The hydrogen production from unutilized coffee mucilage combined with organic waste was
predicted by two different approaches of ANN and fuzzy models. Anaerobic digestion was carried out
with five input factors, including the substrate ratio, COD, acidification time, pH, and temperature,
using a two-level factorial design test, and the consequent hydrogen yields were analyzed and fitted for
the final hydrogen yields. This study confirmed that the use of the experimental results for bio-digestion
of the waste substrate in a batch reactor with the ANN and fuzzy model was predictive, achieving an
R2 value of 0.8369 and 0.9508, respectively. The fuzzy model had a greater predictive capacity than the
ANN model with the response to the interaction of independent factors: Hydrogen yield (L) = -137,74 –
0.93*substrate ratio – 0.00124*COD + 7.65*acidification + 23.79*pH + 5.88*temperature – 0.09*substrate
ratio*acidification + 0.22*substrate ratio*pH – 0.0000988*COD*acidification + 0.000258*COD*pH
+ 0.2*acidification*temperature – 1.14*pH*temperature – 0.00182*substrate ratio*substrate ratio –
1.7*acidification*acidification. The use of coffee waste as an alternative source for energy production
can be considered, suggesting a practical and efficient application for industrial strategy.
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