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Abstract: As a promising alternative renewable liquid fuel, biodiesel production has increased
and eventually led to an increase in the production of its by-product, crude glycerol. The vast
generation of glycerol has surpassed the market demand. Hence, the crude glycerol produced should
be utilized effectively to increase the viability of biodiesel production. One of them is through
crude glycerol upgrading, which is not economical. A good deal of attention has been dedicated to
research for alternative material and chemicals derived from sustainable biomass resources. It will
be more valuable if the crude glycerol is converted into glycerol derivatives, and so, increase the
economic possibility of the biodiesel production. Studies showed that glycerol carbonate plays an
important role, as a building block, in synthesizing the glycerol oligomers at milder conditions under
microwave irradiation. This review presents a brief outline of the physio-chemical, thermodynamic,
toxicological, production methods, reactivity, and application of organic carbonates derived from
glycerol with a major focus on glycerol carbonate and dimethyl carbonate (DMC), as a green chemical,
for application in the chemical and biotechnical field. Research gaps and further improvements have
also been discussed.

Keywords: crude glycerol; glycerol carbonate; dimethyl carbonate; microwave irradiation;
reaction kinetics

1. Introduction

Throughout history, the survival of human beings has been fully dependent on the resources
found on the Earth. In recent times, the world has been threatened with increasing environmental
problems, particularly global warming. Statistics show that the carbon dioxide (CO2) levels in
the atmosphere have been increasing every year and touched a record of 411.93 ppm in February
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2020 [1]. Moreover, it is projected that conventional petroleum in Malaysia will run out by 2050
with the current consumption rate [2]. Hence, sustainable development by replacing conventional
fossil fuels with alternative renewable and sustainable resources is a must to overcome the fossil fuel
depletion issue and protect the global environment. Governments have also shown their initiatives by
adopting new laws and regulations to ensure that the emission standards are being constricted for
off-road, marine and stationary engines. Hence, alternative fuels have been explored and fostered,
especially for transportation, construction, cultivation and electricity generation. Among the available
renewable energy resources, biomass plays a significant role as feedstock in most biofuel production [3].
In the chemical industry, raw material origins are usually not the main issue. In contrast, cost and
process effectiveness are the major driven of innovation. Nevertheless, the growth of sustainable
consciousness, reinforced by both general society attitude and government initiatives, has pushed
the researcher/chemist to take the naturally available raw material into consideration. As a result,
the interest of researchers in exploring the alternative material and chemicals derived from sustainable
biomass resources has been increased. The main aim of this article is to review the recent publications on
the process of glycerol upgrading into glycerol carbonate. The catalytic activities, such as hydrotalcites,
zeolites, heteropoly acids, and oxides, are emphasized. Further, the effect of different reaction
conditions on the catalytic activities and selectivity of glycerol carbonate are also discussed in this
article. Furthermore, issues that require further investigation have also been highlighted.

2. Biodiesel and Renewable Diesel

Petroleum diesel, i.e., conventional fossil fuel, is produced from petroleum-based crude oil.
Crude oil is the combination of hydrocarbons, organic compounds, and small amounts of metal, which
formation takes millions of hundreds of years. Crude oil is removed from the ground and transferred
into a refinery. The crude oil is then passed through a heat-and-pressure based process within the
refinery. To replace the conventional non-renewable petroleum diesel, biodiesel and renewable diesel
are introduced (Figure 1). The major difference between biodiesel and renewable fuel will be explained
shortly. As biodiesel and renewable diesel are in the form of liquid, unlike other renewable energy
(i.e., hydro energy and solar energy), they can be directly used to operate current engines, especially
transportation vehicles and industrial machines that are mostly operated by liquid fuel, without
modification to their design.

Unlike petroleum diesel, biodiesel does not depend on fossil fuel. Biodiesel is usually produced
from vegetable oils and/or animal fats through the transesterification process. In 2019, petrol stations
in Malaysia switched from B7 to B10, to increase the sustainability of energy sources [4]. The next
renewable alternative fuel is called renewable diesel. Renewable diesel, almost similar to biodiesel,
is formed from waste agricultural products [5], mainly waste vegetable oils and animal fats. The main
difference between renewable diesel and biodiesel is the production method. The production process
of renewable diesel and petroleum diesel is the same, and hence, it is chemically similar to each
other. However, the greenhouse gas emissions of renewable diesel (also known as hydro-treated
vegetable oil or HVO) and traditional biodiesel are both smaller than those from fossil diesel. From an
environmental perspective, the usage of biodiesel and renewable diesel fuel can significantly reduce
the emissions of hydrocarbon, carbon monoxide, and particulate matter [6]. However, it is well-known
that the combustion of biodiesel in diesel engine emits 10% more of NOx in comparison to petroleum
diesel. On the other hand, this increase in the NOx emission issue can be solved by using renewable
fuel combustion as it was reported that the use of renewable fuel leads to lower NOx emission when
compared to petroleum diesel [7,8]. Furthermore, as the chemical properties of renewable diesel and
petroleum diesel are similar, that would mean a few things:

• The hydrogenation process makes the renewable diesel devoid of oxygen. Hence, the problem
related to freezing temperature and storage, which are faced by biodiesel, will be avoided.

• Due to hydrogenation, the combustion of renewable diesel is cleaner than biodiesel.
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• The engines that are designed for conventional diesel fuel are also compatible with renewable
diesel, with no blending necessary since they are chemically the same.

• Along with the above, since the process is not a transesterification reaction, there will be no
production of waste glycerol. Hence, the crude glycerol issue, which is the major concern of
biodiesel production, will be eliminated.
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Figure 1. Processing for renewable diesel and biodiesel production.

The demand for biodiesel, as a renewable liquid biofuel, has been increasing. Global biodiesel
production is expected to reach 23.57 billion litres by 2025 [9]. Biodiesel is produced from vegetable
oils or animal fats along with methanol via transesterification reaction [10,11]. The transesterification
process is usually catalysed by sodium methoxide (CH3NaO) for a single-feedstock biodiesel plant,
and potassium hydroxide (KOH) or sodium hydroxide (NaOH) for a multiple-feedstock biodiesel
plant. As an important source of sustainable energy fuel, the annual biodiesel production increased
year by year. Worldwide, biodiesel production uses primarily vegetable oil as its raw feedstock. In the
European Union, rapeseed oil is used as main feedstock, while in the United States it is soybean oil,
and in Asia it is mainly palm oil. Moreover, algae has also been identified as a potential feedstock for
biodiesel production [12]. Crude glycerol is the major by-product formed from biodiesel production via
the transesterification reaction. The simplified biodiesel production process is shown in the flowchart
(Figure 2).
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3. Crude Glycerol – By-product of Biodiesel Production

Although the growth of the biodiesel industry has increased dramatically, especially between 2005
and 2015 (from 10% of total biofuel output to 25% in 2015), the biodiesel production still highly depend
on the government policy and economic subsidies due to the high production costs of biodiesel [13].
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Moreover, another major issue of biodiesel production is the generation of a by-product, crude glycerol.
It is reported that 10 g of glycerol is generated for every 100 g of biodiesel produced [14–16]. Hence,
the development of sustainable methods for exploiting this low cost organic raw material is imperative.
Nevertheless, as there are impurities present in the crude glycerol, making the direct applications
of crude glycerol restricted. The world markets for biodiesel are going into a period of precipitous,
transitional growth, creating both uncertainty and opportunity [17]. Hence, an urgent solution is
required to mitigate the problem of oversupply of this crude glycerol. Over the long term, biodiesel
producers that are best able to evolve and adapt to advancement in technology, markets, feedstock,
and government policies are most likely to succeed. One of the obvious ways to significantly improve
the economic aspect of overall biodiesel production is the utilization and conversion of the glycerol
by-product into value-added products [18]. With the estimate of the world market for biodiesel
reaching 150 billion litres per year by 2016, this potentially means a stockpile of over 15 billion litres of
crude glycerol available for refining and converting into value-added products per year [19]. The crude
glycerol stream from the biodiesel process typically is about 50% glycerol or less and also contains an
unused catalyst, alcohol, soap, water and salts. As mentioned previously, the presence of impurities
lowers the value of the crude glycerol. Its value varies according to the level of impurities, which in turn
is directly dependent on the type of feedstock used and the biodiesel synthesis method. The untreated
crude glycerol can be used as animal feed, and for the co-digestion/co-gasification process but this can
only be done on a short-term basis. The by-product crude glycerol will require a stringent purification
process before it can be utilised in food, pharmaceutical or cosmetics fields. There are three main
procedures in purifying crude glycerol. The first stage is the removal of free fatty acids, soap, and
carried over catalyst via neutralization. The second step involves the evaporation of the excess
methanol present in the crude. The third procedure, however, includes selective purification with the
purpose to achieve the final product purity, through several methods, such as distillation (vacuum
or azeotropic type), cation exchangers, which remove positively charged ions, or anion exchangers,
which remove negatively charged ions, membrane separation with vaporization (pervaporation), and
absorption [20]. In a recent review, a more detailed description of the purification of crude glycerol
was reported [21]. The typical steps are summarised in Table 1 [22].

Table 1. Typical steps in crude glycerol purification [22].

Steps Methods Description

1 Neutralization

• Remove catalyst and soap by using acids.
• If using sulphuric or hydrochloric acid, the final product of this stage will be in

two phases.
• If phosphorous acid is used, three phases of the final product will be obtained.
√

Upper fraction: free fatty acids; middle fraction: glycerol and methanol;
lower fraction: catalyst.

√
Advantage: less harmful to the environment and tri-potassium phosphate,
that is broadly used as fertilizer, is obtained as a by-product.

2 Methanol removal

• It is a must to remove methanol from glycerol fraction as it is toxic.
• There is a huge amount of methanol in crude glycerol as a result of the excess

addition of methanol during transesterification.
• To remove the methanol, the evaporation process is conducted at 50–90 ◦C for at

least 2 hours under vacuum.

3
Vacuum distillation

• Basically, glycerol can be polymerized into polyglycerol at a temperature above
200 ◦C. Hence, vacuum distillation is essential so that the purification process can
be conducted without the polymerization of polyglycerol.

• This method is optimal for small and medium-sized companies due to its high
energy consumption as glycerol has high heat capacity.

Ion exchange resins • Removal of inorganic salts, free fatty acids, and free ions from crude glycerol.
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One of the major drawbacks of the methods mentioned above is the high energy consumption.
Therefore, it has triggered the researchers to find different ways for crude glycerol purification, such as
membranes separation. The membrane separation process is driven by the concentration or electric
potential difference between the two mediums [23,24]. As membrane separation is an eco-friendly
technology, it has become more well-known recently in terms of biodiesel’s waste glycerol purification.
Despite all the processes mentioned, they are economically not viable for the smaller biodiesel producers.
It is vital to develop a more eco-friendly, more efficient and economical process for crude glycerol
purification, which could improve the cost-effectiveness of the overall biodiesel production [25,26].

Innovative methods for transforming glycerol into high value-added platform chemicals are being
developed. Glycerol is one of the most versatile known chemicals with a wide variety of uses and
applications such as in food, pharmaceutical, cosmetic, coating, and other industries. In the literature,
several protocols for the synthesis of value-added products from glycerol have been reported and a
significant number of platform molecules have been synthesized. Some of them have high potential
in replacing petroleum-based products. As stated by Behr et al., all chemical products derived from
glycerol are a result of one of many processes [27], as shown in Figure 3. These processes include
the synthesis of glycerol esters, ethers, acetals and ketals, propanediols, epoxides, the oxidation and
dehydration products of glycerol, and the production of synthesis gas. Several important chemicals
can be obtained, among the more common ones are propane-diols, glycerol carbonate, epichlorohydrin,
acrolein, esters of glycerol, fuel additives and glyceric acid [18,28–30]. Among these products, glycerol
carbonate is one of the most attractive derivatives of glycerol reported in the last couple of years because
of its high reactivity with amines, alcohols, carboxylic acids, ketones, and isocyanates. According to
the market source, the cost for glycerol carbonate in 2017 ranged from US$2.4 to US$3 per kilogram,
which means US$2400 to US$3000 per metric tonne [31].Energies 2020, 13, x FOR PEER REVIEW 6 of 25 
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4. Glycerol Carbonate

Among the valuable raw chemicals derived from glycerol is glycerol carbonate (Gly-C)
(i.e., 4-(hydroxymethyl)-1,3-dioxolan-2-one). Glycerol carbonate is a cyclic carbonate and its molecular
structure presents a structural duality. It bears a hydroxyl group and 2-oxo-1,3-dioxolane group that
gives Gly-C wide reactivity [33]. The Gly-C has excellent properties, such as good water-solubility,
high boiling point, low toxicity, low flammability, good biodegradability, and a high flash point [34].
The glycerol carbonate is advocated as a useful and green building block in the field of organic
chemistry as it is bio-based and has wide reactivity. Gly-C has a molar mass of 118.09 g/mol, and is
widely used as a polar high boiling solvent, a surfactant component, a membrane component for gas
separation and a component for industrial of coating, detergent, polymers, ink, paint, lubricant and
electrolyte [28,35,36]. Furthermore, glycerol carbonate can also be used as chemical intermediates for
the synthesis of other chemical compounds such as glycidol, which is employed in textile, plastics,
pharmaceutical, and cosmetics industries [28,37].

Figure 4 shows the structural formula of glycerol carbonate. The hydroxyl group of glycerol
carbonate consists of H-bonding and hence, glycerol carbonate has higher density properties. Besides,
it has the potential to substitute petrochemically derived propylene carbonate. The general properties
of glycerol carbonate and pure glycerol are shown in Table 2.Energies 2020, 13, x FOR PEER REVIEW 7 of 25 
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Table 2. The comparison of properties between glycerol carbonate and pure glycerol.

Properties Unit Glycerol Carbonate Pure Glycerol

Molecular weight g/mol 118.09 92.094
Density at 25 ◦C g/ml 1.4 1.261

Boiling point ◦C 354 290
Melting point ◦C −69 17.8

Vapour pressure at 177 ◦C bar 0.008 0.003
Flash point ◦C 190 177

Dielectric constant at 20 ◦C ESU 111.5 42.5
Hansen solubility parameter delta D at 25 ◦C MPa1/2 17.9 17.4
Hansen solubility parameter delta P at 25 ◦C MPa1/2 25.5 12.1
Hansen solubility parameter delta H at 25 ◦C MPa1/2 17.4 29.3

Hildebrand solubility parameter at 25 ◦C MPa1/2 34.1 36.1
Viscosity at 25 ◦C cP 85.4 1500

Glycerol carbonate (Gly-C) has several distinctive reactive locations: (a) the dioxolane ring with
three carbon atoms, and (b) the suspended hydroxyl moiety. Hence, Gly-C has the ability to react
not only as a nucleophile via its hydroxyl group, but also as an electrophile through its ring carbon
atoms. These reactive sites provide potentials for utilizing glycerol carbonate as a precursor molecule
for conversion to other intermediate chemicals, which ultimately are used in numerous direct and
indirect applications. It has vast industrial applications and some of the potential industrial uses of
Gly-C are presented in Table 3.

A sustainable route is to react urea with glycerol to produce glycerol carbonate, which has a vast
perspective to be used as a replacement for fossil-fuel derived compounds. More studies were carried
out to find environmentally friendly alternative paths in upgrading the waste glycerol into glycerol
carbonate. Among the other promising routes for glycerol carbonate production, include reactions
based on easily available raw materials, which are inexpensive and bio-based. Using enzymes as
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catalytic systems could generate more environmentally friendly alternatives. Based on an in-depth
analysis of the recent publications on the subject, the present review will focus on glycerol carbonate
syntheses routes, it’s broad reactivity, and current applications.

Table 3. The potential application of glycerol carbonate in various industries.

Chemical Industry Application References

Glycerol
Carbonate

• Polymers and plastics
• Polyesters
• Polycarbonates
• Polyamides
• Polyurethane plastic coatings
• Hyperbranched polyethers
• Solvent for plastics and resins

[38]

• Cosmetics and personal care
• Emollient and solvent in nail polish remover, lipsticks, anti-perspirant sticks
• Wetting agent for cosmetic clays

[33]

• Chemicals
• Chemical intermediate
• Glycidol
• Biolubricants
• Biobased polar solvents
• Liquid membrane in gas separation
• Surfactants and detergents
• Blowing agent

[39]

• Pharmaceutical
• Solvent for medicinally active species
• Carrier in pharmaceutical preparations

[36]

• Semiconductor
• Electrolytes in lithium and lithium-ion batteries [40]

• Agricultural
• Plant-activating agent [41]

• Building and Construction
• Curing agent in cement and concrete [42]

5. Existing Production Routes for Synthesis of Glycerol Carbonate

As mentioned previously, the conventional glycerol market is limited and any large increase in
biodiesel production will cause a sharp decrease in its market price. In the last few years, there have been
numerous reports in the literature concerning the synthesis of glycerol carbonate from glycerol. While
some production methods are being applied at an industrial scale, several new promising synthesis
methods were reported recently which are more sustainable. The greener pathway for synthesis of
glycerol carbonate involves chemicals such as CO/H2, organic carbonate (e.g., ethylene carbonate,
dimethyl carbonate, and diethyl carbonate), and also carbon dioxide [36,37,43]. These pathways, overall,
results in the chemical fixation of CO2. Among these pathways, the transesterification between glycerol
and dimethyl carbonate is one convenient method that could be performed under mild conditions
(at 50–100 ◦C; under atmospheric pressure) in the presence of a catalyst, as shown in Figure 5 [37,43,44].
The catalysts used to convert glycerol to glycerol carbonate can be homogeneous catalysts such as
K2CO3, NaOH, and H2SO4 [44,45], enzymatic catalysts [44], or heterogeneous catalysts such as CaO,
NaOH/γ-Al2O3, and Mg/Al/Zr mixed oxide [28,35,45]. Table 4 summarizes the reaction conditions for
various types of synthesis pathway for glycerol carbonate production. Meanwhile, Table 5 presents the
advantages and limitations of the different routes for the synthesis of glycerol carbonate.
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Table 4. Different routes for the synthesis of glycerol carbonate (Gly-C) and their experimental conditions.

Reference Reactants Mole Ratio Solvent Temperature
(◦C)

Pressure
(MPa)

Reaction
Time (h)

GC Yield
(%) Catalyst

Glycerol + CO
[46] 5 : 1 : 5 (K2CO3 toSe to glycerol) Dimethylformamide 20 0.1 6 83 None

[46] 5 : 1.5 : 3 : 1 (Et3N to CuBr to S to glycerol)

Dimethylformamide
or

Dimethyl
sulfoxide

80 1 21 92 None

[41] Excess CO and O2 Dimethylformamide 140 3 2 85 0.25 mol% PdCl2(phen)
+ 2.5 mol% KI

Glycerol + CO2
[47] 1.5 : 1 : 1 (N(CH2CH3)3 to HCl to glycerol) Free 100 2.5 1 90 -
[48] 1 : 3 : 3 (K2CO3 to HCl to glycerol) Free 80 0.1 30 80 KOH then HCl
[49] Excess CO2 Methanol 140 5.0 59 0.24 RhCl3 + PPh3 + KI

Glycerol + EC
[50] 2 : 1 (EC to glycerol) Free 80 0.1 1.5 92 RNX-MCM41
[51] 2 : 1 (EC to glycerol) Free 50 0.1 5 82 7 wt% Al/MgO hydrotalcite
[51] 2 : 1 (EC to glycerol) Free 50 0.1 5 78 7 wt% MgO
[51] 2 : 1 (EC to glycerol) Free 50 0.1 5 68 7 wt% Al/Mg hydrotalcite

Glycerol + DMC
[52] 39 : 1 (DMC to corn oil) Supercritical DMC 380 15-25 0.5 By-product None

[53,54] 42 : 1 (DMC to rapeseed Oil) Supercritical DMC 350 20 0.2 By-product None

[55] 6 : 1 (DMC to soybean oil) tert-Butanol 60 0.1 48 92 10 wt% lipase
(Novozyme 435)

[56] 10 : 1 (DMC to corn oil) Free 60 0.1 15 62 10 wt% lipase
(Novozyme 435)

[34] 10 :1 (DMC to glycerol) Free 60 0.1 4 59 12 wt% lipase
(Aspergillus niger)

[57] 10 : 1 (DMC to glycerol) Free 70 0.1 48 90 Lipase (Novozyme 435)

[58] 5 : 1 (DMC to glycerol) Dimethylformamide 100 0.1 0.5 79 Calcined
hydrotalcite-hydromagnesite

[28] 5 : 1 (DMC to glycerol) Free 75 0.1 1.5 95 Mg/Al/Zr
[59] 2 : 1 (DMC to glycerol) Free 78 0.1 1 99 3 wt% KF/hydroxyapatite

[60] 5 : 1 (DMC to glycerol) Dimethylformamide 100 0.1 1 75 Uncalcined Mg–Al
hydrotalcite

[61] 2.5 : 1 (DMC to glycerol) Benzene 60 0.1 2 95 4 mol% CaO
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Table 4. Cont.

Reference Reactants Mole Ratio Solvent Temperature
(◦C)

Pressure
(MPa)

Reaction
Time (h)

GC Yield
(%) Catalyst

Glycerol + DEC

[62] 3 : 1 (DEC to camellia oil) Free 50 0.1 24 95 Lipases (Lipozyme TL IM
and Novozym 435)

[63] 21 : 1 (DEC to glycerol) Dimethyl
sulfoxide - 0.1 8 84 Hydrotalcites

supported on Al2O3
[64] 17 : 1 (DEC to glycerol) Free 130 0.1 60 97 Mg/Al hydrotalcite-like

Glycerol + Urea

[65] 1 : 1 (urea to glycerol) Free 140 1.4 × 10−2 6 46
Ionic liquids immobilized

onto a structurally modified
Merrifield peptide resin

[66] 1 : 3 (urea to glycerol) Free 140 3.0 × 10−3 1 91 0.5 wt% calcined La2O3

[67] 1.5 : 1 (urea to glycerol) Free 150 0.1 4 55
Gold, gallium, and zinc

supported on oxides and
zeolite ZSM-5

[68] 1 : 1 (urea to glycerol) Free 145 0.1 4 69 Co3O4/ZnO nanodispersion
[51] 1 : 1 (urea to glycerol) Free 145 3.9 × 10−3 5 72 Calcined Zn hydrotalcite

Table 5. Advantages and disadvantages of different routes of glycerol carbonate production.

Synthesis Methods Merit Demerit References

Direct Carbonation

• Carbon monoxide+ Crude glycerol
• High selectivity enhancing the chances

of commercialisation.

• Large amount of by-products produced.
• Carbon monoxide is toxic so it needs to be handled

extra safely in the laboratory and industrial stages.
Hence, this has restricted its usage.

• Catalyst poisoning due to the use of carbon monoxide.

[46,69,70]

• Carbon dioxide+ crude glycerol • Direct sequestration of CO2.

• This reaction is thermodynamically restricted.
• Carbon dioxide is too stable and leads to a very low

conversion rate. So, this method is currently
not feasible.

• Require highly reactive catalysts and high energy
consumption for the conversion of CO2.

[69,71,72]
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Table 5. Cont.

Synthesis Methods Merit Demerit References

Transcarbonation

• Phosgene + crude glycerol

• Simple and effective oldest method for the
production of organic carbonates.

• Glycerol carbonate can be obtained by this
method with a good yield.

• Require highly toxic and corrosive gas and hence,
need extra precaution during handling it. Therefore,
it makes this route very restricted.

• Process is characterized by a low atom economy and is
recognized as unsafe and highly polluting.

[33,51]

• Urea + crude glycerol • Urea is a cheap and readily available raw
material and no azeotrope formation is required.

• High quantity of ammonia produced as a by-product,
which leads to poor selectivity, so limiting its
industrial implementation.

• The relatively high reaction temperatures and the
utilization of homogenous and/or uneasily recoverable
catalysts- have negative economical impacts on
this method.

[29,67,73,74]

• Ethylene carbonate + crude glycerol
• Production of desired higher valued carbonates.
• Reaction temperature used for this method is

relatively low.

• Ethylene carbonate is expensive
• Facing difficulty during the purification process of

glycerol carbonate as ethylene carbonate used in this
process have a high boiling point (261◦C).

[33,75]

• Dimethyl carbonate (DMC) + crude
glycerol, or diethyl carbonate (DEC)
+ crude glycerol

• DMC/DEC is a versatile chemical and
eco-friendly. DMC/DEC has high chemical
reactivity and superior physical properties.
It can be used in a one-step-one-pot
reaction system.

• With DMC/DEC, rigorous separation and high
energy consumption are not required. Besides,
this method is less time-consuming in
comparison with the reaction involve phosgene
and alkylene carbonates.

• DMC has low boiling point (90◦C) and so, easier
the distillation separation process.

• Industrial grade DMC is approximately three times
more expensive than methanol (MeOH). [76–78]
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reagents in some organic processes. Two main classes of organic carbonates are cyclic and linear
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tons per year and mainly produced from phosgene [80]. Figure 6 shows some of the more commercially
important organic carbonates (dimethyl carbonate (DMC), diethyl carbonate (DEC), cyclic carbonates
(CC), diphenyl carbonate (DPC)) and their properties.
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Different methods have been deployed for the typical synthesis of glycerol carbonate from glycerol
as depicted in Table 4 (such as the reaction of glycerol with urea, direct carbonation of glycerol with
phosgene, or carbon monoxide and oxygen reaction). However, there are technical and environmental
drawbacks accompanying the reaction of glycerol with urea, such as high reaction temperature (150 ◦C)
required. The carbonation reaction is known as an environmentally hazardous process due to the
toxicity of phosgene and CO [70]. Given the toxicity of phosgene, alternative routes for the synthesis
from carbon dioxide are becoming more and more relevant. A greener method for the production of
glycerol carbonate is the carbonation of glycerol with carbon dioxide (catalysed by Sn). This method,
however, has low yield (below 35%) due to the thermodynamic limitation [81]. Most of the other
methods also have disadvantages such as low Gly-C yield, vacuum operation condition to separate
ammonia continuously, or difficulty in the separation of products [82,83]. Several new non-phosgene
methods including alcoholysis of urea, carbonylation of alcohols using CO2, oxy-carbonylation of
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alcohols, and transesterification of alcohols and carbonates have been developed for synthesizing
organic carbonates. If applied, some of these new routes would lower the emission of CO2 into the
atmosphere about seven times (0.92 tons per ton of product, compared to 6.62 tons at present) [28,35,36].
Carbon dioxide (the most significant and long-lived greenhouse gas) is produced by most significantly
by combustion of organic materials and fossil fuels. Instituting chemical processes and industries
based on carbon as a building block would be paramount to reduce CO2 levels in the atmosphere.
As stated earlier, a specific problem in this context is the issue of CO2 reactivity (the carbon atom
in CO2 is in its most oxidized state, - hence, makes the molecule highly stabile with low reactivity).
The suitable catalyst system can overcome the high reaction barrier, but in general, these reactions
still require rather harsh conditions. Researchers are discovering new, environmentally benign, green
processes for the synthesis of value-added chemicals and platform molecules.

Microwave irradiation has been used for the synthesis of many organic compounds. The uptake
of this technique was sluggish for about 12–14 years after the original publications on the benefits of
conducting organic reactions in a microwave in the mid-1980s. However, since the year 2000, there has
been an upsurge in publications describing the utilization of microwave synthesis. This trend is most
probably correlated to the availability of instruments designed specifically for organic synthesis, hence,
allowing microwave reactions to be conducted in a safe and reproducible manner. Among the obvious
advantages of microwave heating include more uniform and rapid heating resulting in reduced reaction
time for the synthesis of chemicals. Since glycerol is a very good absorber of microwave radiations,
microwaves could play a greater role in the synthesis of Gly-C. In microwave irradiation, efficient
internal heating is produced by the direct coupling of microwave energy with the solvent, reagents or
catalysts in the reaction mixture. The radiation passes through the walls of the vessel directly into the
whole reaction mixture, since the reaction vessels are made out of microwave-transparent materials.
In typical microwave reactors, the magnetrons (microwave generators) produce microwave radiation of
wavelength 12.25 cm, which corresponds to a frequency of 2.45 GHz. Two mechanisms are responsible
for the microwave heating, dipolar polarisation and ionic conduction. By using closed vessels, higher
pressures can be attained and the superheating effects are greatly magnified, hence, it is possible to
maintain solutions at temperatures above their conventional reflux temperature. The higher purity of
products often observed in microwave-assisted reactions is largely attributed to the homogeneous and
smooth in situ heating. The heating process is also easily controllable because the energy input stops
immediately when the power is turned off. It is important to point out that microwave energy cannot
break chemical bonds. Compared to classical heating, microwave irradiation provides the advantage
of allowing high-temperature reaction. Another advantage of microwave heating is the non-thermal
effects due to specific heating of polar intermediates produced during the reaction. These polar
intermediates will lead to modified selectivity, enabling polymerization which otherwise could not be
performed with thermal heating. For a more detailed account of microwave-assisted reactions, some
excellent reviews can be referred [84–87].

Despite all the studies on the synthesis of Gly-C, only a few studies mentioned the
microwave-assisted synthesis of Gly-C. In a microwave-assisted reaction, the rate of a reaction
involving glycerol as a reactant can be greatly improved due to the high dielectric properties of
glycerol [88]. Along with similar scope, polyglycerols has been evaluated over several years as a way of
utilizing excess crude glycerol. Polyglycerol have received a lot of attention as a hydrophilic component
for neutral surfactants and emulsifiers for food, cosmetic and pharmaceutical. They comprise mainly of
glycerol oligomers of low molecular mass. The conventional synthesis of polyglycerols is from glycerol.
It involves drastic conditions (high temperature and alkaline conditions), resulting in a complex mixture
of oligomers with no well-defined chemical composition [89]. Recently, the production of polyglycerols
derivatives and glycerol carbonate using microwave irradiations has been demonstrated [88]. By using
microwave irradiation, the synthesis of glycerol oligomers, can be performed under relatively mild
conditions using glycerol carbonate as a valuable starting material. In this case, the reaction did not
require any solvent or reactant and was completed in a relatively short time. Hence, microwave-assisted
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polymerization of glycerol carbonate presents the advantages of using less-hazardous conditions and
better energy efficiency. On top of that, the experimental conditions allow no usage of any solvent,
reactant, or purification steps [90].

In a recent report the transesterification of crude glycerol (GLY) at 70% and 86% purity with
dimethyl carbonate (DMC) using calcium oxide (CaO) as catalyst was performed with both the
conventional heating and microwave-assisted process [91]. In both the processes, it was found that
70% purity of crude GLY gave a higher yield of Gly-C, with the microwave technique showing better
energy efficiency. In their work the highest yield of Gly-C (93.4%) was obtained under the microwave
system (crude GLY purity of 70%, 1 wt% of CaO as catalyst, 2:1 M ratio of DMC: GLY at 65 ◦C,
5 minutes reaction). While the impurities and leftover catalyst residue in the crude GLY are generally
undesirable for the conventional transesterification process, it is interesting to note that some impurities
(methanol, soap, salt, and fatty acids) in the crude glycerol had demonstrated positive effect [92].
According to the authors, crude GLY performs better than pure GLY in microwave heating because of
greater energy efficiency. Thus, direct utilization of crude GLY from the biodiesel plant to produce
GLY-C via microwave irradiation transesterification is a viable and economical option [91].

More microwave efficiency in synthesis was demonstrated in a reaction for the production of
2,3-dihydroxypropyldecanoate using glycerol derivatives. In this process the microwave-assisted
synthesis (solvent-free) was performed by esterification of decanoic acid in the presence of two distinct
glycerol derivatives, glycidol, and glycerol carbonate. The process uses microwave irradiation with
an output power of 200–400 W, involving decanoic acid and glycerol derivatives (stoichiometric
proportions), with an organo-catalyst. The microwave-assisted synthesis notably enhances the
selectivity in 2,3-dihydroxypropyl decanoate (at 300 W, 91%), reinforcing the efficiency and selectivity
of the microwave-assisted method [93].

7. Dimethyl Carbonate

Dimethyl carbonate (DMC) is a valuable and green platform chemical and /or solvent which
continues to attract a lot of attention. Dimethyl carbonate (DMC) is an environmentally benign chemical
and is widely used as a carbonylation agent. DMC has been classified as one of the greenest solvents in
terms of safety, health and environmental criteria [94,95]. It is a nonpolar aprotic solvent having good
miscibility with water. It is non-toxic and biodegrades readily in the atmosphere. In terms of its usage,
DMC can be a potential replacement for methyl ethyl ketone, ethyl acetate, methyl isobutyl ketone, and
most other ketones. Moreover, DMC is a green substitute for highly toxic and hazardous compounds
such as (i) dimethyl sulfate and halohydrocarbons in methylation reactions and (ii) phosgene (COCl2)
in carboxymethylation (methoxycarbonylation) reactions [96]. Among the reaction routes for the
production of DMC, the transesterification route and direct synthesis from methanol and CO2 is the
most attractive one due to the inexpensive raw material and the avoidance of corrosive reagents, such
as phosgene and dimethyl sulphate [97]. Various catalysts have been studied extensively. Different
dehydrating agents and additives have been used to minimize the effect of water produced during
the reaction and improving the catalytic performance of the catalyst. Currently, the most established
commercial pathway for the production of DMC is through oxidative carbonylation of methanol
using O2. In addition, new alternative processes for DMC from CO2 are being developed. Direct
synthesis of dimethyl carbonate (DMC) from CO2 and methanol is a very attractive reaction. This is
because CO2 as a greenhouse compound can be consumed in this process [96]. Patents have already
been registered for use of DMC and DEC as a fuel additive in gasoline due to their excellent blending
properties, high octane number, and oxygen content. Diesel engines are much more efficient than
gasoline engines, however, they suffer from NOx and particulate emissions. Many studies have already
been reported on the reduction of hydrocarbons, CO, NOx, and particulate emission from diesel
engines because of the use of organic carbonates as oxygenate in the fuel [98–100].
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The conventional way for the direct synthesis of DMC requires the use of an autoclave along with
solid base K2CO3 and CH3I additive, high pressure and long reaction time of over 2 h. In this reaction,
the dimethyl ether (DME) appeared as a by-product and its proportion reached 7%–31% of the total
products [101]. More studies, including the mechanism of reaction are directed towards the conversion
of CO2 and methanol to DMC. The synthesis of dimethyl carbonate (DMC) from CO2 and methanol
under milder reaction conditions using reduced cerium oxide catalysts and reduced copper-promoted
Ce oxide catalysts were reported recently [102]. The report stated that the conversion of methanol
was low (0.005%–0.11%) when the milder condition was used. The mild reaction conditions for
DMC synthesized were as follows: the reaction time was 2 h, low temperature of 353 K, and low
total pressure of 1.3 MPa using reduced Cu–CeO2 as catalyst (0.5 wt% of Cu). New development
in organic synthesis is the increasing interest in applying microwave irradiation. With high heat
efficiency, microwave irradiation can accelerate the reaction and decrease the run time resulting in fewer
by-products than by conventional heating, but there was very few literatures on the synthesis of DMC
concerning microwave energy. Conventional heating methods are not an effective method to transfer
energy to the reactants of a reaction mixture because the thermal conductivity of the various materials
affects the energy transfer process. On the other hand, during microwave irradiation, molecules are
efficiently heated internally by the direct coupling of energy from microwaves. Furthermore, current
microwave instruments can precisely control the temperature, even allowing reaction mixtures to be
superheated in a closed vessel. A study reported that the synthesis of dimethyl carbonate (DMC)
from CO2 and methanol required about 2 min for maximum yield of DMC when a power of 800 W
was used. In the case of decreasing microwave power to 450 W, this reaction could be completed in
10 min and the yield of DMC was at least the same as in non-microwave reaction using conventional
heating (autoclave) [101]. The reaction temperature under microwave irradiation was obviously
lower than that with conventional heating, but the corresponding DMC yield was higher. It is very
likely that microwave energy could be efficiently absorbed by the reactants, especially by methanol
leading to a rate acceleration effect. The authors also claimed that in the reaction conditions used,
about 2.5% of DME formed as a by-product in the conventional heating (autoclave). In contrast,
only 0.4% of DME (by-product) was produced when the reaction was irradiated by microwave [101].
In the microwave irradiation, due to the interaction of the microwave energy with the molecules at a
very fast rate, the real reaction temperature is higher than the average temperature of the medium.
Hence, both energy consumption and reaction time are reduced by means of microwave irradiation.
On the down-side, the microwave-assisted reaction has some disadvantages such as difficulty in the
scale-up from laboratory to industrial scale due to the penetration depth of microwave radiation into
the material is only a few centimeters. There are safety issues concerning the industrial vessel that
need to be addressed, especially for uncontrolled heating.

Recently, there were reports on the usage of dimethyl carbonate instead of using alcohol as an
alternative method to produce biodiesel. In this reaction, the product of triglyceride and dimethyl
carbonate reaction is fatty acid methyl ester (FAME) and fatty acid glycerol carbonate (FAGC).
Subsequently, FAGC then reacts with another molecule of dimethyl carbonate to generate another
FAME molecule and glycerol dicarbonate. Accordingly, the overall reaction involves one molecule of
triglyceride and two molecules of dimethyl carbonate to generate three molecules of FAME and one
molecule of glycerol dicarbonate. This would enable biodiesel production without the production of
waste glycerol as a by-product. Ilham and Saka firstly investigated biodiesel production from rapeseed
oil in supercritical dimethyl carbonate using a batch-type reactor [103]. The reaction steps for biodiesel
production under supercritical dimethyl carbonate conditions are shown in Figure 7.

A study about biodiesel production under supercritical dimethyl carbonate conditions is still limited.
A complete conversion to biodiesel about 94% (w/w) was made at 350 ◦C, 20 MPa, oil-to-dimethyl
carbonate molar ratio of 1:42 after 12 min [103]. In addition, there is no previous report about reaction
kinetics of oil conversion to biodiesel in supercritical dimethyl carbonate. Optimization studies on
biodiesel production using supercritical dimethyl carbonate method have also been carried out in recent
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years. Recently, Kwon et al. performed non-catalytic biodiesel production from coconut oil using
dimethyl carbonate under ambient pressure [76]. They conducted an experiment via a continuous flow
mode using a tubular reactor. They reported that a complete conversion to biodiesel was achieved
in a short reaction time of 1–2 min at 365-450 ◦C under ambient pressure, obtaining 98%. By using
DMC to produce biodiesel, it is envisaged that the glut of crude glycerol in the market will be reduced.
The glycerol carbonate obtained from the reaction is a much valuable product. It has higher economic
value and it is used in many reactions as green chemical or solvent. The properties and benefits of
glycerol carbonate have been mentioned earlier.
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8. Kinetic Model of Transesterification of Glycerol with Dimethyl Carbonate

Transesterification of glycerol is also known as transcarbonation. As its name implies, it involves
the carbonate exchange reaction between the alcohols and carbonate sources [33]. One of the carbonate
sources is dimethyl carbonate, DMC. DMC is an environmentally friendly chemical and has been
widely studied in producing the value-added glycerol carbonate with different catalysts such as,
potassium methoxide (CH3OK) [104], trisodium phosphate [78], calcium oxide (CaO) [91], Mg-Al
hydrotalcite [105], guanidine ionic liquids [106], lipase [107], K-zeolite [108], and others. Notice that the
transcarbonation of glycerol with DMC is a reversible reaction as shown in Figure 5. Thus, an excess
amount of DMC should be used in order to shift the chemical equilibrium towards the formation of
glycerol carbonate. Moreover, Jiabo Li and Tao Wang concluded that the chemical equilibrium constant
of the reaction of glycerol and DMC increased as the reaction temperature increased. In order words,
the formation of glycerol carbonate is more favourable by increasing the reaction temperature [61].

To gain more understanding about the transesterification of glycerol, its kinetic study has been
conducted and reported by several researchers [104,109,110]. The kinetic study is usually performed
to obtain the kinetic parameters (reaction rate) for the ease of comparison with other works. Typically,
the kinetic analysis includes the investigation of the effect of different factors on reaction speed,
which is essential for the system design, and the optimization of chemical reaction [111]. In addition,
more information regarding the characteristics of a reaction mechanism can be obtained [112]. Moreover,
it allows the construction of a mathematical model that can represent a specific chemical reaction.
In determining the unknown parameters for a mathematical model, a series of experiments with high
accuracy should be conducted. However, recent times different types of modelling technique has been
introduced and eventually reduce the number of experiments [113].

Based on previous work there are four suitable kinetic models in describing the reaction of
transesterification of glycerol with DMC, as summarized in Table 6 [104]. Each model involves two
equations for the reaction before and after a certain conversion value, the critical conversion, Xcrit to
account for the effect of different phase regime on the catalytic behaviour. The first equation describes
the reaction under the biphasic regime in which the catalysts are soluble only in the glycerol-rich
stage with certain concentration, Ccat’. Moreover, the first order was assumed with respect to the
concentration of glycerol, Cgly. The DMC, however, reacts at a constant concentration, CDMCsol.
The second equation of the proposed models describes the reaction under the single-phase stage
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(at X larger than Xcrit) where the catalysts are assumed to be dissolved in the entire reaction medium
at Ccat. In addition, unlike the previous equation, the first-order effect was estimated for both
concentrations of glycerol, Cgly and DMC, CDMC. As mentioned previously, the transesterification of
glycerol with DMC is a reversible reaction. With the use of excess DMC, the reaction tends to shift
to the production of glycerol carbonate. Nevertheless, the effect of reversible should be taken into
consideration in proposing the kinetic model, and thus, kinetic models 2 and 4 are suggested.

In addition, more complex kinetic models (kinetic models 3 and 4) were contemplated by
accounting for the nature of the catalyst and its potential deactivation. This is because it had already
been investigated that some of the catalysts suffered from deactivation in the transesterification process
of glycerol with DMC [104,108,114,115]. Catalyst deactivation is defined as the loss of catalytic activity
over time. It is a continuing concern in the catalytic reaction, especially in the practice of industrial
catalytic process. Generally, the causes of catalyst deactivation can be divided into three groups,
which are chemical, mechanical and thermal. More specifically, the catalyst deactivation process
can be explained by six basic mechanisms, including poisoning, fouling, thermal degradation and
sintering, vapor formation, vapor-solid and solid-solid reactions, and crushing. Despite the best effort
to avoid catalyst deactivation, it is inevitable that all catalyst will decay. To restore the catalytic activity,
regeneration of the catalyst is usually the first choice, and disposal of the catalyst is the last resort.
However, the ability to regenerate the catalyst highly relies on the reversibility of the deactivation
process mentioned previously. As an example, sintering is basically irreversible. On the other hand,
some poisons can be removed through chemical washing, oxidation and/or mechanical and heat
treatment. Further details can be obtained from [116].

Li and Wang investigated the deactivation effect of the alkali solid catalyst (calcium oxide, calcium
hydroxide and calcium methoxide) in the transesterification process of glycerol with DMC [114].
They found that the alkali solid catalysts reacted with glycerol and glycerol carbonate, transformed
into basic calcium carbonate and eventually, deactivated the catalysts as the basic calcium carbonate
consists of less catalytic strength. In the transesterification of glycerol with DMC that utilized K-zeolite
as the catalysts, the deactivation phenomenon observed might be attributed to the reduction of the
available active spaces for the conversion of glycerol to glycerol carbonate [108]. Moreover, it is
reported that the use of crude glycerol led to rapid catalyst deactivation, which was not observed for
runs with pure glycerol [117]. This is because the impurities present in the crude glycerol has limited
the catalytic activity, resulting in significant deactivation of the catalyst. However, pure glycerol is far
more expensive than crude glycerol. Hence, understanding the effect of impurities in crude glycerol
on catalyst performance is crucial to optimize the overall production cost of glycerol carbonate.

Table 6. Kinetic models for the transesterification of glycerol with dimethyl carbonate.

Model
Number

Reaction
Type

Potential Catalyst
Deactivation If X≤Xcrit If X>Xcrit

1 Irreversible
Excluded r1 = k1·Ccat

,
·CGly·CDMCsol

r1 = k1·Ccat·CGly·CDMC

2 Reversible r1 = k1·Ccat·CGly·CDMC
r2 = k2·Ccat·CGC·CMeOH

3 Irreversible
Included

r1 =

k1·Ccat
,
·

[
(1− β)·e−kd·t + β

]
·CGly·CDMCsol

r1 = k1·Ccat·β·CGly·CDMC

4 Reversible r1 = k1·Ccat·β·CGly·CDMC
r2 = k2·Ccat·β·CGC·CMeOH

In conjunction with the kinetic models stated in Table 6, the Arrhenius equation is applied to
consider the temperature effect, T as in equation (1):

ln k = ln A−
Ea

R
·
1
T

(1)

where k indicates the kinetic constants of the reaction, A is the pre-exponential factor, Ea symbolizes
the activation energy (kJ/mol), and lastly, R is the ideal gas constant (8.314 J/mol.K).
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9. Summary and Future Perspectives

The worldwide inclination to embrace a sustainable and bio-compatible process has led to
the development of systems focused on the use of CO2 and CO2-based compounds as feedstocks,
promoters, and reaction media. In the present article, the synthesis of various carbonates has been
reviewed with the main emphasis on the usage of crude glycerol as the raw material. Production of
surplus glycerol in the biodiesel industry is a pressing issue and the industry is looking for ways to
utilize and transform crude glycerol into valuable products, such as glycerol carbonate, with green
solvent, the dimethyl carbonate (DMC) especially. DMC is one of the simplest carbonates and is termed
as the green compound of the 21st century due to its low toxicity, high biodegradability and peculiar
reactivity. Although studies on organic carbonates have been done extensively, there remain some
shortcomings that must be resolved. In this regard, different ways to improve the thermodynamically
limited equilibrium conversion to shift towards DMC formation is crucial (DMC yield is only around
1%, even at thermodynamically favourable, high-pressure conditions). Therefore, the development
of high activity and high stability catalysts are crucial. Determining the mechanistic kinetics in the
synthesis of organic carbonates has the potential to inspire improved catalyst design, which will
result in mitigating the problems of long reaction times and high reaction temperatures. Furthermore,
microwave-assisted organic synthesis is well known due to its shorter reaction time, lower operating
temperature, volumetric heating mechanism, specific microwave effect, and rapid heating. The specific
microwave effect is the non-thermal effect of microwave irradiation which causes the specific heating
of polar intermediates and leads to a modified selective reaction, that normally cannot be performed
using conventional heating. However, non-thermal microwave effects should be further investigated
as their presence is still a controversial issue, especially in the chemical synthesis area. Moreover,
mechanisms and process improvements using microwave irradiation are very limited and further
work is needed in order to develop an understanding of these synthesis routes.
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