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Abstract: In contemporary power systems, the load shedding schemes are typically based on
disconnecting a pre-specified amount of load after the frequency drops below a predetermined
value. The actual conditions at the time of disturbance may largely differ from the assumptions,
which can lead to non-optimal or ineffective operation of the load shedding scheme. For many years,
increasing the effectiveness of the underfrequency load shedding (UFLS) schemes has been the subject
of research around the world. Unfortunately, the proposed solutions often require costly technical
resources and/or large amounts of real-time data monitoring. This paper puts forth an UFLS scheme
characterized by increased effectiveness in the case of large disturbances and reduced disconnected
power in the case of small and medium disturbances compared to the conventional load-shedding
solutions. These advantages are achieved by replacing time-consuming consecutive load dropping
with the simultaneous load dropping mechanism and by replacing ineffective fixed-frequency
activation thresholds independent of the state of the system with implicit adaptive thresholds based
on fuzzy logic computations. The proposed algorithm does not require complex and costly technical
solutions. The performance of the proposed scheme was validated using multivariate computer
simulations. Selected test results are included in this paper.
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1. Introduction

The algorithms of underfrequency load shedding (UFLS) operating in power systems were adopted
more than half a century ago. Conventional load shedding relies on frequency relays. The principle
is elementary and consists of switching off pre-defined groups of loads when the frequency drops
below certain thresholds. The main drawbacks of the typical load-shedding scheme are the lack of
the adaptation of frequency threshold values to the current operating conditions of the power system
and consecutive disconnection of load portions. Over the decades, power systems have undergone
significant changes. On one hand, certain measures have been taken to increase the stability of
system operation such as increasing the number of interconnections or enhancing the reliability of
the generating units. On the other hand, the capacities of thermal power plant units have increased,
and the number of renewable energy sources (wind, photovoltaic) has risen dramatically. As a result,
the stability of system operation exhibits extended risks due to potential failures of large power
plant units or unexpected changes in the system inertia, which can cause significant difficulties in
maintaining the balance of active power.

There is no confidence that the existing UFLS schemes will effectively handle the stability of power
systems in the changing settings. Additionally, as reported in [1], UFLS algorithms currently used
are not compliant with the latest European Network of Transmission System Operators for Electricity
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(ENTSO-E) standards [2,3], and should be upgraded in the near future. Consequently, transmission
system operators are on the lookout for improvements in UFLS performance.

For many years, increasing the effectiveness of UFLS has been the subject of research around the
world. The algorithms proposed in the literature focus inter alia on the following issues:

• advanced load monitoring concepts including centralized [4–16] or decentralized monitoring [17–22];
• application of various types of hybrid systems [13,23,24] including those using advanced

optimization algorithms (e.g., meta-heuristic techniques [14,15]);
• application of wide area monitoring systems [25–28] or smart grid technology [13,26–34];
• use of information technology [4,33,34] including Supervisory Control and Data Acquisition

(SCADA) systems [35–37].

Another approach to minimizing frequency deviations is to apply demand side management
tools [13,38,39]. A popular functionality belonging to this category is load curtailment [40–42]. However,
it is mainly used to optimize economic profits, for instance, by reducing the use of expensive energy
sources during peak hours, while typical load shedding addresses large frequency deviations for the
sake of power system safety. Some other algorithms focus specifically on the dynamic determination
of power to be disconnected [13–15,18,29,43–45] in order to limit random load shedding. Still, another
group of algorithms address the voltage dependence of power loads [15,17,46–48].

The cited solutions tend to be complex and require costly technical measures (centralized
management and control with complex communication infrastructure and wide-area distributed
measurements). The complexity of the algorithm may result in its insufficient selectiveness due to
large numbers of decision variables. In the case of the centralization of decision making, reliable
and fast communication infrastructure is necessary and the coordination of multiple devices is a
serious challenge.

The dispatcher control services are reluctant to introduce more complex solutions to operational
practice. The more complex the algorithm, the greater the range of changes needed when updating the
algorithm (including the development of new usage procedures, changes in the threshold settings etc.).
The parameterizing of the most popular UFLS algorithms involves the following settings:

• total number of shedding thresholds and the frequency values at each threshold; and
• values of power to be switched off at each threshold.

The appropriate values of all parameters are determined by simulations. The first group of
parameters are changed every few years. The second group of parameters need verification once a
year. In the Polish Power System, for example, UFLS schemes include about 2500 underfrequency
relays. Each relay may require several threshold values, meaning that it can be necessary to verify
several tens of thousands of connections between relays and circuit breakers.

It is known that the higher the number of parameters to be set, the more maintenance work is
needed, the higher the competences required and the bigger the risk of mistakes. Therefore, new
solutions for the UFLS should limit, as much as possible, the role and responsibility of dispatcher
control services. To this end, an algorithm was sought that would be capable of effective and reliable
load shedding while using a limited number of decision thresholds (frequency values) and values of
power to be disconnected. The above goal was achieved using an adaptive algorithm and fuzzy logic.

The rest of this paper is organized as follows. Section 2 presents the general idea of the proposed
approach, Section 3 discusses the implementation, Section 4 briefly presents and discusses sample
results of simulation tests used to validate the proposed algorithm, and Section 5 concludes the paper.

2. General Idea of the Proposed Approach

The operating range of UFLS is delimited by f max and f min, where the former denotes the frequency
at which the load shedding process is initiated and the latter is the safety threshold defined by steam
turbines. This range is very narrow (∆f � 1 Hz), which poses a challenge to the UFLS. The effectiveness
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of load shedding depends on a number of variables. The most important variables are the actual
frequency f , the rate of frequency change f ′ (also referred to as the frequency derivative or RoCoF), the
assumed total amount of load that can be disconnected ∆Pmax, and the opening time of the considered
circuit breaker Tcb. The current frequency value and circuit breaker opening time determine the
theoretical maximum rate of frequency change as follows:

f ′max =
fmin − f

Tcb
(1)

If the actual rate of frequency change is lower than that calculated from Equation (1), some
amount of load (either predetermined or evaluated on-line) will typically be disconnected before
the frequency reaches fmin. However, this does not guarantee that the load shedding process will
be effective. If the disconnected load power is insufficient and the frequency decrease cannot be
counteracted by appropriate control of the power generation, the frequency decrease can continue
until some generating units have to be disconnected. This will deepen the power imbalance, possibly
leading to a blackout. Consequently, the load shedding process will be ineffective. For the UFLS
process to be effective, sufficient load power has to be disconnected at the appropriate time. Thus, the
following goals were to be achieved by the new algorithm: (1) to increase the effectiveness of the UFLS,
while reducing the incidence of unnecessary load shedding actions, and (2) to reduce the number of
UFLS parameters that have to be set.

The first goal was achieved by fast disconnection of the calculated amount of load. The latter was
determined online, based on the current frequency and its rate of change. Shorter disconnection time
was achieved by the use of a new variable— f ∗min—that is a dynamically corrected value of fmin (cf.
Equation (3) in the next section). Stated differently, the dynamic operating range of the UFLS (from fmax

to f ∗min) is constantly updated. The idea is illustrated in Figure 1. Consider two different cases of power
imbalance. A low power imbalance (plot A) means that the magnitude of the frequency derivative at
an example frequency measurement denoted f 1 is also low. As a consequence, the corrected minimum
frequency evaluated at this point, denoted as f *

min(tA1), is close to f min. Based on this, the proposed
algorithm decides that no load dropping is necessary (comp. simulation results in Figures 8 and 10).
When the imbalance is high (plot B), the magnitude of the frequency derivative at f 1 is much higher,
that is f *

min(tB1) � f *
min(tA1). As the frequency continues to drop, the dynamic operating range is

further narrowed, meaning f *
min(tB2) > f *

min(tB1). This can lead to a decision of disconnecting one or
more load power portions, as described in the sequel.
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It is typically assumed for the UFLS that the total amount of load to be disconnected is
predetermined and that the frequency is measured locally. The same assumptions were adopted in
the development of the proposed algorithm. Concerning the amount of power to be shed at a given
stage, it should depend on the current generation deficit. According to Newton’s Second Law, a good
indicator of this deficit can be the rate of frequency change f ′. Therefore, the proposed algorithm
evaluates the maximum permissible rate of frequency change f ′max using Equation (1). Based on this
quantity as well as the current frequency and its rate of change, the amount of load to be shed is
evaluated online. The evaluation is inevitably fuzzy, which justifies the use of fuzzy logic for performing
this task.

In order to reduce the number of parameters required in the configuration of the UFLS (frequency
thresholds and powers to be dropped at a particular threshold), the total amount of load to be
disconnected is divided into identical groups. Such a solution means that there is no need to carry out
simulations to find the best values. The frequency at which a load portion is dropped is a function
of the frequency itself and its rate of change. There are no fixed and explicit activation thresholds.
The thresholds are only implicit in the output y of the algorithm (cf. Figure 2 and Equation (10)).
Thanks to this, in the event of high imbalance, it is possible to disconnect several or even all groups
available for shedding. Stated differently, the proposed approach permits simultaneous disconnection
of load groups, in contrast with the inherently consecutive disconnection characteristic of conventional
UFLS procedures. If the imbalance is low, even if the frequency falls below fmax, the operation of the
algorithm will not disconnect any load, or will only disconnect a relatively small single group.
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Figure 2. Flowchart of the fuzzy adaptive underfrequency load shedding (UFLS; y is the number of
load groups to be disconnected).

3. Implementation

The block diagram of the considered algorithm is depicted in Figure 2. The input quantities
are the measured values of frequency f and its derivative f ′. Based on the measured values and
assumed parameter values, the algorithm computes online the number of load groups that have to be
disconnected to assure effective functioning of the UFLS.

3.1. Fuzzification

The algorithm relies on fuzzy logic and thus it starts by determining two membership functions
µA1 and µA2. A graphical interpretation of µA1 is given in Figure 3a. The second membership function
(µA2) shows the membership degree of the current frequency derivative in the fuzzy set high rate of
frequency change (Figure 3b).
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The first function evaluates the membership degree of the current frequency in the fuzzy set low
frequency using the following formula:

µA1 =


0 f or f ≥ fmax

fmax− f
fmax− f ∗min

f or fmin < f < fmax

1 f or f ≤ fmin

(2)

As mentioned in Section 2, in order to ensure high effectiveness of the algorithm, the fixed minimum
frequency f min is replaced in the computation of µA1 by its dynamically corrected value f *min

f ∗min = fmin + ∆ f1 − f ′·Tcb (3)

∆ f1 =


0 for f ≥ fmax

fmax − f for fmin < f < fmax

fmax − fmin for f ≤ fmin

(4)

The second membership function (µA2) shows the membership degree of the current frequency
derivative in the fuzzy set high frequency derivative (Figure 3b). The quantity f ′∗max appearing in this
figure is the assumed maximum rate of frequency change at a given frequency f and can be defined by
the following semi-empirical formula:

f ′∗max =
∆ f2

Nsh·Tsh
(5)

∆ f2 =


fmin − fmax for f ≥ fmax

fmin − f for fmin < f < fmax

0 for f ≤ fmin

(6)

where Nsh is the maximum number of shedding stages and Tsh is the sum of the circuit breaker opening
time and the relay operating time. The assumed upper limit of the rate of frequency change is zero
because the UFLS only reacts to negative frequency derivatives. Taking the above into account, µA2

can be expressed as follows:

µA2 =


0 for f ′ ≥ 0
f ′

f ′∗max
for f ′∗max < f ′ < 0

1 for f ′ ≤ f ′∗max

(7)
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3.2. Inference

Based on the values of µA1 and µA2, the inference block calculates the resultant function µA; the
function represents the number of load groups that should be disconnected.

Due to the structure of the analyzed fuzzy sets (one set covering the entire input signal space)
used in the developed model, the inference was performed using compensating operators. As the
function of affiliation, the Iγ operator [49,50] was used, leading to the following formula:

µA =

 2∏
i=1

µAi


(1−γ)

︸           ︷︷           ︸
Element I

·

1− 2∏
i=1

(1− µAi)


γ

︸                  ︷︷                  ︸
Element II

(8)

If f ≥ f max or f ′ ≥ 0, one or both of the corresponding membership functions µA1 and µA2 assume
zero values and hence element I also assumes a zero value (no load shedding action is necessary).
Element II assumes a value of 1 if f goes below f min or f ′ is greater than or equal to 0. The application
of the Iγ operator has enabled all components to be taken into account, not just the ones with the
highest degree of fulfillment.

In order to obtain a proportional contribution to the resulting function of both elements in
Equation (9), γ = 0.5 is assumed, leading to

µA =
√
µA1·µA2·

√
(1− (1− µA1)·(1− µA2)) (9)

3.3. Defuzzification

As the number of load groups to be disconnected must be an integer and the result of the above
formula is a real (non-integer) value, µA should be appropriately discretized to yield the ultimate
output y, that is, the number of load groups to be disconnected. The discretization can be effected by
the following formula:

y =


0 for µA < 1

Nsh

i for µA ≥
i

Nsh

Nsh for µA > 1
(10)

where i = 1, 2, . . . , Nsh. It is worth observing that nonzero values of y implicitly represent
context-adaptable activation thresholds, while zero means no action.

Note that the block diagram in Figure 2 does not include a block responsible for assigning circuit
breakers to the output y (it is not part of the algorithm).

3.4. Frequency Thresholds

At least two frequency thresholds are necessary in the UFLS. One is the frequency value at which
the UFLS should initiate counteracting the frequency reduction (the UFLS remains idle if the system
frequency is above this value). This threshold is usually f max = 49 Hz and this value was assumed in
this study. The other threshold is the so-called safety margin f min, defined by steam turbines and house
loads. In order to comply with the regulations in force, the results presented in the next part of the
paper are based on the assumption that f min = 48.1 Hz. Of course, it is possible to assume other values.

3.5. Maximum Number of Shedding Stages

The influence of the number of shedding stages on the efficacy of the proposed algorithm was
assessed by simulations using a 23-node CIGRE test grid model (french: Conseil International des
Grands Réseaux Électriques, CIGRÉ is the International Council on Large Electric Systems). The tests
were multivariant and included:
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• Five different structures of turbine controllers used in the Polish Power System;
• A variety frequency- and voltage-dependent characteristic of loads;
• Fifteen different operating points of the grid, including different initial loads Pg(t = 0) and power

imbalances; and
• Different numbers of thresholds Nsh ranging from six to 72.

The selection of the best solution relied on a successive elimination approach. The assessment of
efficacy was based on two indicators. One of them was ∆P% given by Equation (11) and expressed
the relative difference between the total disconnected load power PNshΣ (corresponding to the tested
number of thresholds) and the total power of the reference variant PNshRefΣ, which corresponds to the
assumed reference number of thresholds NshRef; the difference is related to the maximum expected
power deficit ∆Pmax.

∆P% =
PNshΣ − PNshRe f Σ

∆Pmax
·100% (11)

The other indicator is given by Equation (12) and expresses the relative difference between f minNsh,
which is the lowest frequency that occurred during the load shedding for the given number of
thresholds Nsh, and f minRef that denote the minimum frequency of the reference variant; the difference
is related to the maximum permissible distance between the rated frequency and the actual frequency.

∆ fmin% =
fminNsh(t) − fminRe f (t)

fn − fmin
·100% (12)

The reference number of thresholds was assumed to be NshRef = 6.
The results of the studies confirmed the expectation that the more thresholds are used, the better

the disconnected power fits the actual deficit, which leads to a more efficient limiting of frequency
excursions. Nevertheless, the effect of the number of thresholds on the frequency nadir becomes
weaker and weaker as Nsh becomes large enough. Based on the results of numerous simulation studies,
Nsh = 12 was identified as a good tradeoff between efficacy and simplicity. It is worth stressing that the
number of thresholds does not significantly affect the ability of the UFLS to work efficiently under
large imbalances.

3.6. Selection of the Amounts of Power to Be Disconnected

Due to the fact that all stage thresholds except for f max are determined in real time, it is convenient
and justifiable to divide the total power ∆Pmax that can be disconnected by the UFLS into equal
portions, that is

Psh =
∆Pmax

Nsh
(13)

4. Validation of the Proposed Algorithm

Validation of the effectiveness of the presented algorithm was carried out on a single synchronous
machine island (Figure 4). In each simulation test, the disturbance was initiated by opening the grid
circuit breaker.

The rated generator power was assumed to be Pgr = 0.85 and the minimum technically allowed
power was Pgmin = 0.45. The UFLS was validated under the following four test conditions:

A. rated load of generator Pg(t=0) = Pgr and ∆P = 0.41;
B. rated load of generator Pg(t=0) = Pgr and ∆P = 0.15;
C. generator operation with a power equal to the technical minimum Pg(t=0) = Pgmin and ∆P = 0.25;
D. generator operation with a power equal to the technical minimum Pg(t=0) = Pgmin and ∆P = 0.05;

where ∆P denotes the initial power imbalance after the disturbance. The above power values are given
as pu of the assumed rated generator power Sgr = 235.4 MVA. The use of diverse generator operating
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points and ∆P values leads to different control margins of the generating unit and different rates of
frequency change.
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Figure 4. Test system topology.

A conventional UFLS was used as a reference solution for comparisons. The number of stages
Nsh = 5 was assumed and the amounts of power to be shed at a particular stage threshold were as
shown in Table 1 (as a percentage of ∆Pmax), based on the requirements of the Polish grid operator.

Table 1. The assumed amounts of power to be shed at particular stages (conventional UFLS).

Stage No. I II III IV V

Psh [%] 29 29 20 11 11

Concerning the proposed method, the amounts of power were evaluated from Equation (13).
Following [2], it was assumed for all tests that the total active power that can be used in the load
shedding process equals 50% of the peak load power.

∆Pmax = 0.5·Pg(t=0) (14)

The workings of the proposed solution denoted UFLS-1 was compared with the conventional
UFLS denoted UFLS-2 on the basis of frequency variation during the unloading process (Figures 5–8).
An additional criterion was the total active power disconnected during the shedding process (Figure 9).
Since one of the most important factors influencing the effectiveness of the UFLS is the sum of the circuit
breaker opening time and the relay operating time, the same value of this parameter (Tsh = 150 ms) was
used for both the proposed and conventional UFLS solutions. The corresponding plots in Figures 5–9,
respectively. Additionally, a zero-delay conventional UFLS (Tsh = 50 ms) was tested to get a greater
basis for comparisons (the corresponding plots are denoted by UFLS-3). For easy reference, Table 2
shows the rate of frequency change at the first threshold (f max = 49 Hz), corresponding to the four test
conditions A through D as defined earlier in this section.

Table 2. Rate of frequency change at the first threshold.

Case Frequency Derivative

A −1.15 Hz/s
B −0.430 Hz/s
C −1.198 Hz/s
D −0.141 Hz/s

In the event of large initial power imbalances (Figures 5 and 7), the rate of frequency decrease is
high, and thus for the load shedding to be effective, a sufficiently high power should be disconnected
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at a sufficiently short time. The proposed algorithm achieves this by simultaneously disconnecting an
arbitrary part of the available ∆Pmax. For example, in Case A (Figure 5) almost 60% of ∆Pmax was shed
before the conventional UFLS reached the second stage threshold. Consecutive tripping, characteristic
of conventional load shedding, introduces additional time delays—on top of the circuit breaker operate
times—corresponding to the times of passage from one stage to the next stage. The delays may result
in the frequency remaining relatively long below the threshold of underfrequency protections (ca.
47.5 Hz in the Polish Power System), as can be seen in Figures 5 and 7 (magnified views of traces
UFLS-2). This, in turn, poses a risk of disconnection of part of the generating units and consequently
a blackout. The behavior of the idealized conventional UFLS (traces UFLS-3 in Figures 5 and 7) is
comparable to that of the proposed solution. This underlines the fact that the latter has the ability to
speed up the load shedding.
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Even if the power imbalance after the disturbance is relatively low (Figures 6 and 8), the proposed
algorithm exhibits a valuable additional advantage. As can be seen in Figure 9, the power disconnected
by this algorithm in Case B is significantly lower than for the conventional approach. The effect is even
more spectacular in Case D. As can be seen in Figure 8, the frequency remained below the first threshold
(f max = 49 Hz) for almost 5 s, but the proposed procedure did not trip any load, correctly assessing the
system condition as not requiring intervention of the UFLS. The frequency nadir can be worsened
(Figures 6 and 8), but the idea is exactly to allow deeper frequency excursions (yet well controlled
above f min) in order to allow more loads remaining connected during the disturbance. This reduces
the economic cost of load shedding and speeds up the restitution of the grid after a blackout.

It should be stressed that the algorithm is capable of adapting to possible contingencies including
failures of the switchgear to effect the requested disconnections. This is because µA1 and µA2 depend
on both f and f ′. A possible disconnection failure will lead to steeper frequency decrease, which will
result in an appropriate correction of the load to be shed. This feature of the proposed algorithm is
illustrated by the waveforms shown in Figure 10. The waveforms were obtained for the following cases:

• disconnection failure at the first stage threshold, meaning Psh(1) = 0 (the corresponding plots are
labeled “w/o Psh(1)“ in Figure 10);

• disconnection failure at the fourth stage threshold, meaning Psh(4) = 0 (the corresponding plots
are labeled “w/o Psh(4) “ in Figure 10); and

• disconnection failures at the first and fourth stage thresholds, meaning Psh(1) = 0 and Psh(4) = 0
(the corresponding plots are labeled “w/o Psh(1 and 4)“ in Figure 10).

The reference plots correspond to UFLS-1 in Figure 6; the fourth stage represents the last load
group disconnected in the reference case. The plots labeled “w/o Psh(1)“ illustrate the situation with a
disconnection failure at the beginning of the shedding process. Insufficient reduction of the RoCoF
and continuing drop in frequency resulted in the algorithm deciding to disconnect additional load
group Nsh = 5 at time t � 11 s (Figure 10c,d). The plots labeled “w/o Psh(4)“ illustrate the situation
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where the initial shedding stages are effected correctly, but when y = 4, the RoCoF remains unchanged
compared to y = 3, which results in a decision to disconnect another load group Nsh = 5 at time
t � 12.8 s (Figure 10c,d). Finally, the plots labeled “w/o Psh(1 and 4)“ illustrate the situation with two
disconnection failures to which the algorithm responds with two additional load shedding decisions
fixing the problem. This study confirmed that the proposed algorithm has the ability to reduce the risk
of the unsuccessful operation of the shedding process.
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5. Conclusions

The example test results presented in this paper confirm the following favorable effects resulting
from the application of the proposed algorithm:

• high effectiveness in the case of large disturbances; and
• reduced disconnected power in the case of small and medium disturbances.

The above advantages were achieved while decreasing the number of variables required for
appropriate parameterization of the load shedding process. The approach only relies on local
measurements of frequency and frequency derivative; thus it can be implemented without additional
infrastructure costs. It preserves the decentralized structure of conventional UFLS, which can facilitate
its application.

Physical implementation issues such as the maximum sampling time and the effect of measurement
noise on the workings of the proposed UFLS have not been addressed in the studies reported in this
paper. However, the authors are currently preparing physical model tests in the LINTEˆ2 Laboratory
where we can control the level of electromagnetic interference, notably from various power electronic
converters, and thus study the robustness of the proposed algorithm to noise and disturbances.
The sampling frequency of real-time measurements can also be changed in a broad range with the
resolution of 1 millisecond, and so the significance of this parameter can also be studied in a demanding
test environment. We expect to be able to publish interesting results thereon in a future paper.
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