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Abstract: Locating and planning charging stations for Low-Emission Vehicles (LEVs) such as
Battery Electric Vehicle (BEV), Hydrogen Fuel-Cell Vehicle (HFCV), and Natural Gas Vehicle (NGV)
are becoming increasingly important for LEV users, government, and the automobile industry.
Conventional planning approach of charging station usually plans single functional charging station
that can only serve one kind of LEVs, and other factors such as fuel type, driving range, initial fuel
tank level, and refueling time of the LEV are less considered in the planning stage. In this article,
we propose a bi-level planning model to locate and size Multi-Functional Charging Station (MFCS)
which can recharge BEV, HFCV, and NGV at the same time in a medium-sized city with different
functional areas (e.g., residential area, industrial area, CBD area). We also established a method
for generating a daily route considering vehicle attributes and user habits, and we loaded these
traveling data into the upper model to select a set of optimal combinations of refueling station
locations with a relatively high success ratio. In the lower model, we introduced the mathematical
relationship between number of chargers and average user waiting time, and set the total social
cost factor, including investment cost and waiting time cost, to evaluate each optimal combination,
and then identified the optimum locational result and defined the size of each station. In the case
study, we verify the proposed model in several scenarios and conclude that multifunctional refueling
station performs better in terms of investment cost and users’ satisfaction level.

Keywords: multi-functional charging station; charging station planning; Bi-level programming

1. Introduction

1.1. Background

In recent years, the phenomenon of climate change and energy shortage has brought tremendous
worldwide attention to Low-Emission Vehicles (LEVs) which could bring great environmental and
social benefits. The penetration of Battery Electric Vehicle (BEVs) and Natural Gas Vehicle (NGVs)
has been growing rapidly [1], and a great number of buses and taxis have been converted to BEVs
and NGVs [2]. For LEVs, there are currently more than ten types of alternative fuels in production or
under development. It is anticipated that LEVs will take the major automobile market share in the near
future [3]. However, the lack of charging station infrastructure is one of the most serious obstacles to
the promotion of LEVs [4]. Due to the limited fuel tank and battery range, most of the LEVs technically
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have a shorter driving range than traditional fossil fuel vehicles. Therefore, effective plans for LEV
charging stations are in necessary to support the LEVs promotion.

The analysis of charging demand is the basis of the planning problem. In the classic studies, the
charging demand is usually assumed to be a fixed value in order to simplify the problem [5,6]. In [5],
the charging demand is associatied with destination, ref. [6] assumed centroids of census blocks as
charging stations, ref. [7] assumes that the charging demand appears at the destination. However,
some literatures suggest that charging demand should reflect the mobility of alternative vehicles [8,9].
Then, ref. [8] proposed a battery capacity-constrained EV flow capturing location model which is highly
related with the charging demand, ref. [9] put emphasis on the relationship between charging demand
and trave route. Various of approaches are available to solve the locating problem of charging stations
from transportation network point of view, among which the flow refueling location model (FRLM)
is one of the mainstream methodologies to solve such problem [10,11]. Then [10] used the FRLM
methond, considering multiple deviation paths between each of the origin-destination (O-D) pairs.
Then [11] used the FRLM method to get the optimal charging station construction strategy. FRLM
method relaxes the commonly adopted assumption that travelers only take the shortest path between
any O-D pairs.. The main purpose of FRLM is to find the optimum location of refueling stations that
can maximize the successful refueling origin–destinations pairs [12]. However, the evaluation stage for
the feasibility of all possible combinations of refueling station location requires a large computational
effort. Researchers then proposed an improved FRLM method based on heuristic algorithms to solve
this problem [13]. Another mainstream solution method for charging station location problem is
set-covering approach. Unlike FRLM, the object of set-covering approach is to minimize the total
investment cost of charging stations under the premise that all of the traffic flow is covered. It also
leads to heavy computational burden, and to release the burden, authors in paper [14] proposed a
feasible method to solve the set-covering problem in a much faster way. While FRLM and set-covering
approach mainly focus on the road covering problem, many literatures have introduced total social cost
index infrastructures when determining the size and location of refueling stations [15–18]. Normally,
the total social cost consists of investment cost (including fixed investment cost, land rental cost, and
chargers purchase cost) and waiting time cost [15]. The planning objective of [16] is to minimize the
social costs of the whole PEV charging system. Compared with only construction cost, totoal social cost
reflects more information when selecting the optimum plan [17]. Then [18] proposed a cost–benefit
analysis method to evluate the installation of additional quick-charging units.

It is anticipated that there would be a mixture of LEVs running on the road in the future, and
different types of recharging facilities need to be constructed to satisfy the various recharging demands.
The concept of Multi-Functional Charging Station (MFCS) is raised in [18], which would be essential
public-service facilities to sever LEVs. Further, ref. [18] proposed a hybrid refueling station model
which is designed for BEV, Hydrogen Fuel-Cell Vehicle (HFCV), and NFCV. It firstly established the
detailed mathematical model and facilities related in each sub-model and then focused on the operation
and management approach of the hybrid refueling station under various electricity tariffs. Our paper
draws on the concept of hybrid refueling station, which is named as MFCS. However, to the best
knowledge of there authors, there is little research about the locating and sizing of refueling station
that have the ability to support multiple types of fuel. In our research, we establish a planning model
for MFCS which is able to serve BEV, HFCV, and GFCV at the same time.

1.2. Introduction of the Whole Paper

The main purpose of this paper is to identify the optimum location and sizing plan of MFCSs
regarding user satisfaction level and investment cost. This is actually a multi-objective optimization
problem, but there are many combinations of possible refueling station locations in a medium-sized city.
It is nearly impossible to figure out an optimum result when you travel all the possible combinations
with the aim of minimum cost as well as maximum user satisfaction level. Therefore, our model
divides this multi-objective optimization algorithm into an upper and a lower model. In the upper
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model, we figure out a set of optimal combinations of positions considering the road coverage rate,
that is, the success rate. In terms of the charger number in each station, we created a simplified method
to estimate the relationship between charger number and waiting time, and then introduce total social
cost factor to judge the optimal solution in lower model. The main contributions of this paper are:

We proposed a daily route generating method for LEVs including BEV, HFCV, and NFCV.
The proposed methodology is able to distinguish various kinds of LEVs by driving range, initial fuel
tank level, fuel tank level, start time, and refueling time to reflect a realistic traffic flow. Compared to
the commonly used O-D pairs method that only have one destination on the whole round trip, a Monte
Carlo simulation-based method is used to make the spatial travel route as a closed-loop route with
multiple destinations.

We introduced the concept of MFCSs in the charging stations planning domain, and proposed
a mathematical model to estimate the relationship between the amount of MFCSs and average
waiting time.

We proposed a test-bench for evaluating the feasibility of the travel route and an algorithm for
selecting optimal combinations of refueling station location with high success ratio in the upper model.

A comprehensive analysis on the impact of LEVs to the planning results of MFCSs at different LEV
penetration levels is presented. We also compared the results of constructing Single Functional Charging
Station (SFCS) with MFCSs and concluded the benefits of constructing MFCSs in a quantitative way.

The remainder of this paper is organized as follows: Section 2 first establishes a daily path
generation method of BEV, HFCV, NFCV that takes into account vehicle attributes and user driving
habits. Then, an upper model is selected to select a set of optimal position combinations from all
possible combinations according to the success rate. This part includes a method to reasonably judge
the feasibility of the path and a selection of the optimal combination of gas station positions with a high
success rate Algorithm. Finally, a lower-level optimization scheme determination model considering
the total social cost and user satisfaction is proposed, and a mathematical model of the relationship
between the total number of multi-function chargers and the average waiting time is established.
In Section 3, the planning area with 81 traffic nodes is defined, we verify our model into several
scenarios to study how AF vehicle market share will influence the optimum decision of refueling
station distribution and total cost, we also compare the differences of constructing single-functional
refueling stations with multifunctional refueling stations and conclude the benefits of multifunctional
refueling station. Section 4 concludes the progress of planning method and suggestions for the future
work. Figure 1 illustrates the overall schematic diagram of the whole paper.
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2. Materials and Methods

2.1. Vehicles and User Characteristics

2.1.1. Vehicles Attributes

Existing research, for example, FRLM and FCLM, are based on the assumptions that all alternative
fuel vehicles are within the same driving range, initial fuel tank level, and charging time to simplify the
algorithm [19]. Although this simplified practice increases the computational speed for such models,
it would be difficult to reflect the refueling demands of various types of vehicles in the real-world.
There are a number of factors that will affect the alternative fuel vehicle’s driving range and charging
speed, among which one of the most important factors is the types of fuel used. Taxi drivers usually
choose to use natural gas vehicles (NGV) because the cost of fuel is relatively cheap but its driving
range is also shorter than petrol/diesel powered ones. Other factors like temperature, vehicle remaining
life, brand, technology, and user’s driving habit also make each vehicle’s driving range various. Unlike
fuel cell vehicles, temperature has a significant impact on the performance of electric vehicle batteries.
Data shows that the temperature variation is able to increasing or decreasing the driving range of BEV
by more than 25%. Table 1 lists the assumptions of current battery or fuel tank size based on existing
models in production (Toyota, Tesla, Nissan, Ford).
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Table 1. The driving range and charging time for each type of alternative fuel vehicle.

Vehicle Type Range Charging Time

Electric Vehicle
147 miles in winter 50 min in winter

280 miles in summer [20] 90 min in summer [21]

Hydrogen Fuel Cell Vehicle 300 miles [22] 5–10 min

Natural Gas Fuel Cell Vehicle 200 miles 5–10 min

2.1.2. User Daily Travel Route

The daily travel route for each vehicle owner are various based on a number of factors such as
occupation, age and gender. In order to simulate real time traffic flow on the road, we introduced
a multi-destination method. Statistics have shown that 71% of vehicle users travel 2–4 trips a day,
and the remaining 29% users travel more than 5 trips a day, which means the daily travel route of a
single LEV should contain 2–9 destinations [23]. Thus, the classic FRLM model that only take one
destination into account does not reflect the actual travel path of vehicles in term of trips number and
trip purpose. We assume that every route is a closed loop trip chain which originates and ends at
users’ home with several destinations. Figure 2 illustrates the schematic diagram of a closed loop
route for one vehicle user, where i refers to destination number and the dotted line with an arrow
at the end represents the direction of one vehicle. Figure 3 illustrates the percent of vehicle trips by
start time and trip purpose, we find the peak trip period in total is from 6 a.m. to 6 p.m., peak period
for commute traffic is around 7 a.m. and 5 p.m. Most people who drive from 5 to 6 are engaged in
non-work activities such as shopping.
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The 2017 National Household Travel Survey classifies trip purposes (the factors which are highly
related to the destinations) into six categories: commute, work related business, shopping, other family
or personal errands, school and church, social and recreation [23]. Generally, commute trip happens
between residential areas and industrial or commercial areas, work related business happens among
industrial areas, family, or personal errands, school and church activity and social and recreation
activity happen in commercial and residential areas. Therefore, the types of vehicle travel destinations
regarding trip purposes are classified into three categories in this paper: residential area (R), industrial
area (I), and commercial area (C).

Figure 4 shows the method of traffic data generation in a day. We first generated the total number
of electric vehicles, hydrogen fuel cell vehicles, and natural gas vehicles in the area, and then assigned
attributes to each vehicle (fuel type, driving range, fuel tank level, initial fuel tank level, refueling
time). When generating the initial data, it is assumed that all electric vehicle owners have installed
household charging piles, so the initial battery level of all electric vehicles is 100%. To simplify the
model, the initial fuel tank level for all Hydrogen Fuel-Cell Vehicle and Natural Gas Vehicle are
assumed to be 50%. Then according to the average number of destinations, the average length of a
single trip, the probability of destination types, the probability of departure time and so on shown
in Figure 3 and Table 2, we used the Monte Carlo method to randomly simulate the daily journey of
each vehicle to obtain the number of destinations, the type of destinations, the location of destinations,
the arrival time, and the dwell time of each destination for car i. In this way, we can get the 24-h traffic
flow distribution data in the region.
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Table 2. Travel characteristics for Weekday vs. Weekend [23].

Day Type Vehicle Trips
Number Work Trips Non-Work Trips

Average
Vehicle Trip

Length

Average Time
Spent Driving
(in Minutes)

Weekday 2.9 31% 69% 9.3 mile 59
Weekend 2.3 11% 89% 10.3 47.3
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The proposed method for generating road traffic flow data using different numbers and locations
of destinations that generated by Figure 3 and Table 2 will not need to rely on the road historical traffic
data. The reason why we used such methodology is because the historical road traffic data are difficult
to collect, and the proposed methodology can reflect the traffic conditions of every road in the area
within one day and generate the hour-by-hour refueling demand of each vehicle.

Studies have shown that the car types will not influence the travel patterns of vehicles’ owners [12],
we assume the travel pattern of BEV, HFCV, and GFCV are the same.

When considering traffic flow, it is necessary to collect travel information on the time scale and
spatial scale of each vehicle, so we introduced the stay duration or parking time SDk

i and start time STi
attributes (the two factors describe vehicles parking characterizes) at destination k for vehicle i.

2.2. Upper-Level Model

2.2.1. Feasibility Judgement of the Travel Route

This section is to illustrate how vehicle attributes (driving range and initial fuel tank level) and
CSs’ locations will influence the feasibility of a certain route. For a certain route, if vehicle is capable of
completing the whole route without changing route to refuel the car, this route is deemed as a success
in the progress of feasibility judgment.

The following is a detailed introduction to the feasibility judgment method. Figure 5 illustrates
the spatial characteristics for one route with two destinations (A and C), one original home node (O)
and two common road nodes (B and D). Each path between nodes is the shortest path generated by
Dijkstra’s algorithm, the total length of the whole route A-B-C-D-A is 250 miles. We will use this
example to describe all the possible conditions that the user may encounter and the criteria for the
feasibility of the route, as below.
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Figure 5. Example closed loop trip flow for one vehicle’s route.

Before the travel, we suppose all drivers have already determined the quantities and location
of destinations on the day before the trip and planed the route in advance with the help of smart
navigation apps such as Google Maps, which can provide the refueling station information that users
may use on their way.

Case 1: If initial fuel tank level is over 250 miles, for example i f tlpi = 300, there is no doubt that
the car can go through all the journeys without refueling.

Case 2: If initial fuel tank level is below 250 miles and there is no refueling station available on
the route. The vehicle cannot finish this closed loop journey, and we deem that this route plan is not
successful. Users will need change their route to complete the planned trip tomorrow. In our model,
although a user may plan a new route, the new route is not considered when calculating the total
success radio.
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Case3: If initial fuel tank level is below 250, for example i f tlpi = 200, and there are refueling
stations on the route. The possible combinations of location for refueling station are {O}, {A}, {O,A},
{O,B}, {O,C}, {O,D}, {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {O,A,B}, {O,A,C}, {O,A,D},{O,B,C}, {O,B,D},
{O,C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}, {O,A,B,C}, {O,A,B,D}, {O,B,C,D}, {A,B,C,D}, {O,A,B,C,D}, a
total of 31 combinations. If we analyze each case one by one, the computational progress of calculation
to determine whether it is successful is very complex and time-consuming. In fact, when the total
path contains n nodes, the number of possibility combinations is 2n

− 1. When the number of nodes
increases, the number of combinations increases exponentially, and the amount of calculation increases
sharply. So we need to find a new way to judge the possibility to avoid computational complexity.

In fact, when the set of locations of the refueling stations is known, there is a quick way to judge
whether this refueling station location combination can support vehicle to go through all the journeys.
Figure 6 is a simplified schematic diagram of Case 3 where the destination node is omitted, O and O′

are the same node which refer to the home location.
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𝑗
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between station 𝑠𝑖
𝑗−1 and 𝑠𝑖

𝑗,  𝑖𝑓𝑡𝑙𝑖
𝑝 refers to initial fuel tank level for route 𝑖, 𝜁 refers to the safety 

threshold for tank below which driver will look for refueling station immediately, λ refers to drivers’ 
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𝑝 refers to the driving range for p type vehicle i. 
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The route is deemed a success if and only if:
when i = 1,

li(O, s1
i ) = ζ× i f tlpi (1)

li(s1
i , O′) = λ× ζ× drp

i (2)

when i > 1,
li(O, s1

i ) = ζ× i f tlpi (3)

li
(
s j−1

i , s j
i

)
= λ× ζ× drp

i (4)

li
(
s j

i , O′
)
= λ× ζ× drp

i (5)

where i refers to route i, j refers to refueling station j, li
(
s j−1

i , s j
i

)
refers to the shortest path length

between station s j−1
i and s j

i , i f tlpi refers to initial fuel tank level for route i, ζ refers to the safety threshold
for tank below which driver will look for refueling station immediately, λ refers to drivers’ preference
for refueling level at refueling station. drp

i refers to the driving range for p type vehicle i. It is important

to notice that if there are destinations between s j−1
i and s j

i , li
(
s j−1

i , s j
i

)
is not the shortest path length

generated by Dijkstra’s algorithm, it should consider the path to and from destinations. Suppose there
is one destination Dk

i between s j−1
i and s j

i , li
(
s j−1

i , s j
i

)
, we have:

li(s
j−1
i , s j

i ) = di
(
s j−1

i , Dk
i

)
+ di

(
Dk

i , s j
i

)
(6)

where di
(
s j−1

i , Dk
i

)
represents the shortest path length via Dijkstra’s algorithm.

2.2.2. An Algorithm for Selecting Combinations of Refueling Station Location with High Success Ratio

The purpose of the upper model is to find a set of combination h of refueling station nodes which
have a relatively high success ratio. With a great number of possible route plans generated by the
method proposed in Section 2.1.2, an algorithm is necessary to determine which case (or cases) matches
each route and selects the optimal combination of refueling stations based on the value of success ratio.
Before implementing the algorithm, there is an unrealistic scenario if the algorithm is only based on
the objective of maximum success ratio. The scenario is that the number of refueling station would be
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very large (located in every possible location for CS) according to the objective of achieving the highest
success ratio. However, a large number of planned refueling stations is not economically friendly and
achievable. We eliminated the negative outcome by the assumption that the government will limit the
total number of refueling stations to maximal µ. The following steps are adopted to obtain the set of
refueling station locations combinations with a relatively high success ratio.

Step 1: Initialization based on a daily route generating method.
(1) Generate the daily route including number, location, type, and sequence of destinations,

location of home, and shortest path for all cars, store the all the related nodes and links of paths.
(2) Establish and initialize an empty master list h, p, y and g.
Step 2: Beginning with the next route i, implement feasibility analysis, if case 1 is not suitable for

route i, then it is necessary to generate all the possible combination of refueling stations.
(1) If initial fuel tank level is over total route length, this route is deemed to a success, record si = 1

and jump to next route i + 1, if not continue to the next step.
(2) Generate all the possible combinations of refueling stations, for example, for the route in

Figure 3, the possible combinations are {O}, {A}, {O,A}, {O,B}, {O,C}, {O,D}, {A,B}, {A,C}, {A,D}, {B,C},
{B,D}, {C,D}, {O,A,B}, {O,A,C}, {O,A,D},{O,B,C}, {O,B,D}, {O,C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D},
{O,A,B,C}, {O,A,B,D}, {O,B,C,D}, {A,B,C,D}, {O,A,B,C,D}. Analyze the feasibility of each combination,
store all the success combination in the master list h.

(3) Remove combinations that are supersets of any other remaining combinations in master list h.
(4) Repeat steps 2.1–2.3 for all the route i.
Step 3: Put all refueling stations involved in master list h, and generating all the subsets of master

list h with elements less than µ, index each subset sequentially beginning with 1 and record all the
subsets in master list p.

(1) Beginning with the next subsets j, record the feasibility outcome for each route i (FJ ji = 1 if
success, FJ ji = 0 if fail).

(2) Calculate the success ratio according to Equation (7), record it in master list y, jump to step 3.1
until there is no subset left.

sr j =
1
n

n∑
i=1

s ji (7)

where n refers to the total number of cars.
(3) Rank the success ratio list, and select the subsets with top 10% scores, record the subsets which

include the number and locations of refueling stations and the associated success ratio into master list g.
After the whole progress, a list of optimal combinations of refueling station locations and

corresponding success ratio value are obtained.

2.3. Lower-Level Mode

After running the upper model algorithm, a set of optimal solutions with a relatively high success
ratio is obtained. However, the planning problem of refueling station in a certain area is not only to
find the distribution of refueling station that capture most traffic flows. Economic factors and customer
satisfaction also need to be taken into account when searching for an optimum solution. Therefore,
we introduced the lower model to find the optimum solution considering economic factors and user
satisfaction factor.

The purpose of lower model is to (1) select the optimum combination of refueling station location
from master list h in term of user satisfaction index and total social cost, and (2) to determine the
capacity of each refueling station.
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2.3.1. A Method for Obtaining the Relationship Between Average Waiting Time and Charger Number

For a certain distribution plan of refueling stations in master list g, the time when vehicle i arrives
at nodes nm

i is:

tm
i =

l(O, nm
i )

V
+ STi +

d∑
k=1

SDk
i (8)

where node O refers to the origin node, l(O, nm
i ) refers to the path length from node O to node nm

i ,
i refers to route number which is the same as vehicle number, m refer to the node number in route i,

STi refers to the start time of vehicle i from home,
d∑

k=1
SDk

i refers to the total stay duration in destinations

before arrive node nm
i based on the assumption that the user has been to d destinations before the node

nm
i . Note that Equation (8) does not consider refueling time and waiting time.

In this way, we obtained the timetable of each vehicle. For each refueling station, we recorded
the arriving time of vehicle i and summed it up to obtain the refueling demand during 24 h for each
potential refueling station.

Nowadays, the communication system for traffic control has not been commonly used. Therefore,
we assume that the mechanism of refueling service in station follows the ‘first come, first service’ rule.
Based on this assumption, we introduced a simplified way to estimate the waiting time. First, select
the busiest one-hour period from the refueling demand table for each refueling station. Suppose a total
of n vehicles need to refuel, sort them by arrival time. Assume that the number of vehicles that need
to be charged is always larger than the number of chargers during the busiest period, so that all the
chargers are kept in service without rest. Then the waiting time can be estimated roughly from the
number of chargers:

WT ≈
ATn + AT1 −

∑n
1 f tp

i
CN

n
(9)

where WT refers to waiting time, AT1 refers to the arrive time for the first arrive vehicle,
m∑
1

f tp
i refers to

the total refueling time for vehicle 1 to m, AT1 refers to the arrive time for the last arrive vehicle, f tp
m

refers to refueling time of the last arrive vehicle (vehicle n), CN refers to the total number of chargers.
Noted that Equation (9) is only accurate when the fueling demand is high.

2.3.2. Total Social Cost

The total social cost consists of waiting time cost, land rental cost, fix construction cost, and
charger purchase cost, the total social cost is shown as Equation (10):

C =
H∑

h=1

(WTh ×Mh ×Ctc) +
H∑

h=1

(C f c,h + LhClc,h + Ccc,h) (10)

where
H∑

h=1
(WTh ∗Mh ∗Ctc) refers to the total waiting time cost of users, H refers to the total number

of refueling stations, WTh refers to the waiting time in refueling station h, Mh refers to the total
customers number in refueling station h during the busiest period, Cm is the time cost of each

user,
H∑

h=1
(C f c,h + LhClc,h + Ccc,h) refers to the investment cost including land rental cost (LhClc,h),

fix construction cost (Cfc,h) and charger purchase cost (Ccc,h).
Assume that the total number of chargers in reality is 20% larger than the number of chargers

calculated by our model, that is:
Ccc,h = 1.2×

∑
CNp (11)

where CNp refers to the charger number for vehicle of p kind.
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2.3.3. Mathematical Model

The mathematical model for lower level model considering the success ratio given by the upper
model can be described as:

Min f = C + ξ× sr (12)

Subject to Equations (9)–(11).
where f = C + ξ × sr is the objective function, ξ × sr represents the success ratio factor when

considering the optimal solution, ξ is the coefficient for the success ratio. C refers to the total social
cost of the whole area.

Finally, we used Gurobi Software to solve this mixed integer optimization problem in Python 2.7.
The proposed model is a (Mix Interger Linear Problem) MILP problem, and there is no high-dimensional
nonlinear nonconvex optimization problem. It can be solved by using software like GUROBI, CPLEX,
and other solvers. We used the Python interface of GUROBI to call GUROBI to solve the problem. A
similar MILP problem to that solved by GUROBI can be found in other research [24].

3. Results and Discussion

3.1. Planning Area

Figure 7 shows a simplified city map with an area of 45 × 45 km2. The planning city area is split
by three functional zones: industrial zone, commercial zone, and residential zone. Like the structure of
typical medium-sized and large-sized cities, the commercial area is in the city center, the industrial
area is on the edge of the city because the land price is cheap, and the residential area is distributed
between the commercial area and the industrial area. Our model is based on the assumption that all
refueling station are distributed at traffic nodes. We do not consider the midlink location as a potential
location because the benefits of a refueling station in the midlink location may be offset by the fact that
it is unable to refuel the crossing traffic flows [2]. There are a total of 81 traffic nodes in our model,
among which, commercial area has 20 traffic nodes, residential area has 29 traffic nodes, and industrial
area has 32 traffic nodes.
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Table 3 shows the parameters used in our model, most of the value is hypothetical. Table 4 shows
the land rental cost in different functional zones.

Table 3. Model Parameters.

Parameter Value

ζ 5%
λ 80%
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Table 4. Land Rental Cost for three functional zones [13].

Area Type Residential Area Industrial Area Commercial Area

Land Rental Cost ($/m2) 330 109 1070

3.2. Low-Emission Vehicles (LEVs) Vehicle Market Share Scenarios Based on Multifunctional
Refueling Stations

In this part, we evaluate the impact of LEVs vehicles penetration on the optimal location of
refueling station. Before the analysis, we assume that the number of BEVs, HFCVs, and GFCVs
in the planning area are identical, 1000 per type in low penetration situation and 4000 per type in
high penetration situation. That is, the total number of LEVs vehicle is 3000 in low penetration case,
and 12,000 in high penetration situation. Assume that the city’s land planning department allows up
to 10 refueling stations to be established due to policy and economic factors. Bring this factor into the
upper model and obtain a set of optimal location combinations for 10 cases where the total number
of refueling station is 1 to 10. After that, the most optimal combination of refueling stations and
number of chargers for each station are determined by lower models considering the total social cost
and success ratio. Figure 8a,b reveals that the relationship between success ratio and total number of
refueling stations is positively related. However, along with the number of refueling stations increases,
the convergence gap becomes smaller. The growth rate of success ratio in high penetration situation
is higher than that in the low penetration situation. Figure 8c,d displays the traffic flow information
in term of arrive frequency. Compared with optimal location shown in Table 5, we find that most of
traffic nodes which are selected as a refueling station by lower models have high arrival frequency.
Figure 8e,f illustrate the changes of total investment along with the change of total number of refueling
stations from 1 to 10, the optimum number of refueling station is 5 for low market share scenario and 7
for high market scenario as the objective function f is smallest. Figure 8g,h shows that average waiting
time drops fast in both scenarios as the refueling station number increases, for the optimum result
determined by the lower model, the average waiting time in high penetration (4.34 min) is nearly
half of that in low penetration (7.27 min). Therefore, high market share of LEVs vehicle can greatly
reduce the average waiting time in our model. Figure 9 summarizes the geographical distribution of
refueling station in low and high market share scenarios. Although industrial land accounts for 40% of
a proposed city, the optimum results calculated by our model suggests that it is unnecessary to invest
in a refueling station in industrial areas. Furthermore, we collect the refueling frequency data for BEV,
HFCV, and GFCV. According to the data, it can also be found that there are 78.67% BEV, 25% HFCV,
and 3% GFCV who can finish their journey without refueling. Those numbers are related closely to
the initial fuel tank level when drivers start at home. Because the penetration of household chargers
for BEV is absolutely high than that for HFCV, GFCV, so most of BEV can complete their daily route
without refueling because their 100% initial battery level can cover the whole route. At the beginning
of simulation, we assumed that the initial fuel tank level for all BEVs are 100% while that of HFCV and
GFV are 50%. The result is reasonable. The data also indicated that most of the daily route in city is
below 200 miles.

Table 5. The optimum plan for low and high market share scenarios.

Traffic Type Total Number of
Refueling Stations Successful Ratio Optimal Location Number of Chargers in

Each Station

Low Penetration 5 81% 32, 40, 41, 49, 51 14, 18, 16, 17, 13

High Penetration 7 88% 23, 24, 40, 41, 48, 52, 60 33, 34, 48, 41, 34, 30, 32
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3.3. Single-Functional and Multifunctional Refueling Station Scenarios

Nowadays, refueling stations service for different types of LEVs vehicle are usually constructed as
single function. This section is to study the possibility of replacing single-functional refueling station
by MFCS. Planning method for single functional refueling station is similar to the method of MFCS
planning. Firstly, the vehicle number for each type is assumed to be 1000 (total number is 3000, same as
that in low penetration scenario using multifunctional refueling station), and then generate daily routes
for BEV, HFCV, and GFCV based on the method in Section 2, bring the traffic data into the proposed
bi-level model respectively. If BEV, HFCV, and GFCV need refueling stations in the same location, we
combine them into a multifunctional refueling station and use ‘EHG’ represent it, as well as ‘GE’ and
‘GH’. ‘EHG’ refers to the stations that service BEV, HFCV, and GFCV, ‘GH’ refers to the stations that
service HFCV and GFCV, ‘GE’ refers to the stations that service BEV and GFCV. The optimum results
are shown in Figure 10.
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Figure 10. The optimal location for single-functional and multifunctional refueling stations.

Because vehicles have the fuel anxiety value which means it can travel a limited distance before
the defined unsuccessful fuel tank level when a vehicle needs to refuel, it can detour to the near station
for refueling. Thus, we can combine every two single functional refueling station if the distance
between them is shorter than 10 miles (assume the fuel anxiety value is 5%). Therefore, the optimum
location of refueling station after adjustment is shown in Figure 10.
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Table 6 shows the cost comparison between single-functional refueling station and multifunctional
refueling station based on our model in low penetration scenario. From Table 6, we conclude that
MFCS is better than single functional refueling station in term of investment cost, waiting time cost,
land rental cost, charger purchase cost, and average waiting time. Due to the success ratio for using the
single functional station method being very high, the value of objective function f of single functional
refueling station is relatively low. However, this benefit may be offset by the fact that 20 refueling
stations are needed if we construct single-functional station independently while only 7 refueling
station are needed in the MFCS scenario. Besides, almost 72% of refueling action for HFCV happens
upon returning to home.

Table 6. The outcome between single-functional and multifunctional refueling station.

Refueling Station Type
Objective
Function f

(×$103)

Investment
Cost (×$103)

Waiting Time
Cost (×$103)

Land Rental
Cost

Charger
Cost

Average
Waiting Time

(Minute)

Single-Functional
Refueling Station 314.8 1986.33 21.63 980 124.6 11.21

Multifunctional
Refueling Station 740.3 1503.2 6.2 360 52.7 7.27

4. Conclusions

In this article, we introduced a methodology for the optimal planning of MFCSs which are able
to serve multi-types vehicles (BEV, HFCV, GFCV). We verified the proposed planning methodology
in a medium-sized city with 81 simplified traffic nodes. For most of the existing literature regarding
the location and sizing problem of LEVs, vehicles are generally assumed to have the same attributes
which is impossible in reality. To reflect the actual traffic flow in urban area, we defined four attributes
(driving range, initial fuel tank level, current fuel tank level, and refueling time) to distinguish vehicles
that use different fuel types (electric, hydrogen fuel cell, and natural gas). In order to figure out the
daily travel route for drivers, we introduced a multi destination method. Usually, the daily route for
each user is a closed-loop journey which starts and ends at home. The lifestyle of users who live in the
city is not easy to predict, however, the possibility of going to every possible destination is concluded
by surveys. Surveys also suggest the relationship between start time and destination types. Therefore,
the daily route data for the whole city can be generated by the data mentioned before based on the
Monte Carlo simulation.

In order to solve this multi-objective question effectively, we divided the model into two sub-models.
The purpose of upper model is to select a number of optimal plans of refueling station locations based
on the max-cover ratio (success ratio). We proposed a judgment method for the feasibility of the travel
route, and explain it by a simple example. After that, an algorithm for selecting optimal combinations
of refueling station location with high success ratio was established. Considering the investment
budget, we selected every optimum plan for different situations where the total number of refueling
station is from one to ten. These data will be put into the lower model.

The purpose of the lower model is to select the optimum plan from the optimal results given by the
upper model. The determining factors includes not only successful ratio, but also the investment cost
(charger purchase cost, fix construction cost and land rental cost) and waiting time cost. We simplify
the relationship between waiting time and charger number in the busy period, and consider it as a
constraint when solving lower model optimal questions.

We verified the model in two directions (1) how low and high LEVs vehicle market share will
impact the planning of refueling stations; (2) comparison of single-functional refueling station and
multifunctional refueling station in the planning progress. The main conclusions are listed as follows:

For a middle-sized city, the number of refueling station is suggested to be 5 (with 81% success
ratio) for low LEV market share scenario and 7 (with 88% success ratio) for high LEV market share
scenario. It is suggested that all of refueling stations are distributed in residential areas and commercial
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area and no refueling station is needed in industrial area although it accounts for 40% land. With the
increase of market share, the distribution of refueling stations is gradually shifting to residential areas
(from 40% to 70%).

The proposed location and sizing model performs better in a high LEV market share scenario.
After a 300% increase in vehicles, the construction cost only increased by 44.8%, but the average waiting
time decreased by 40.3%, and the success ratio increased from 81% to 88%.

The transformation to multifunctional refueling station from single-functional refueling station
is possible and positive. For a medium-sized city, the number of multifunctional refueling stations
needed to achieve 88% success rate is 7 while the number of single-functional refueling stations needed
in the same situation is 20. The reduction in the number of refueling stations directly reduced the cost
of land to 36.73% of the single-functional refueling station scenario. Besides, multifunctional refueling
station greatly reduce the average waiting time by 35%.

Future research will center on the planning method when a vehicle is allow to detour when
finding a refueling station.
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Abbreviations

LEV, lev Low-Emission vehicles
BEV, bev Battery electric vehicle
HFCV, hfcv Hydrogen fuel-cell vehicle
NGV, ngv Natural gas vehicle
MFCS, mfcs Multi-functional charging station
SFCS, sfcs Single-functional charging station
FRLM, frlm Flow refueling location model
CS, cs Charging station
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