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Abstract: A microgrid energy management system (MEMS) optimally schedules the operation of
dispatchable distributed energy resources to minimize the operation costs of microgrids (MGs) via an
economic dispatch (ED). Actual ED implementation in the MEMS relies on an optimization software
package called an optimization solver. This paper presents a comparative study of optimization
solvers to investigate their suitability for ED implementation in the MEMS. Four optimization
solvers, including commercial as well as open-source-based ones, were compared in terms of their
computational capability and optimization results for ED. Two-stage scheduling was applied for
the ED strategy, whereby a mixed-integer programming problem was solved to yield the optimal
operation schedule of battery-based energy storage systems. In the first stage, the optimal schedule is
identified one day before the operating day; in the second stage, the optimal schedule is updated
every 5 min during actual operation to compensate for operational uncertainties. A modularized
programming strategy was also introduced to allow for a comparison between the optimization
solvers and efficient writing of codes. Comparative simulation case studies were conducted on
three test-bed MGs to evaluate the optimization results and computation times of the compared
optimization solvers.

Keywords: microgrids (MGs); microgrid energy management system (MEMS); economic dispatch
(ED); optimization solver; modeling package; energy storage systems (ESSs)

1. Introduction

Microgrids (MGs) have gained much attention as an important building block for future power
systems. MGs provide an effective means to accommodate the high penetration of renewable generators
and minimize power transmission losses by supplying local loads using distributed energy resources
(DERs). A microgrid energy management system (MEMS) is a hierarchical supervisory control system
responsible for the reliable, secure, and economical operation of MGs [1,2]. For the economical
operation, the MEMS optimally coordinates the operation schedules of dispatchable DERs (e.g., micro
turbines, batteries, and controllable loads), such that the MG’s daily operating cost is minimized while
considering the forecasted load demand and renewable generation. This optimization process is referred
to as economic dispatch (ED), which is performed as the secondary control in the three-level hierarchical
control actions conducted by the MEMS [3]. Actual ED implementation in the MEMS relies on an
optimization solver. The optimization solver is a software package developed for solving optimization
problems according to pre-programmed solution algorithms. Various off-the-shelf optimization
solvers, including the commercial and open-source-based ones, are available for ED applications.
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Commercial optimization solvers generally have superior computational capability compared with
their open-source counterparts. The ED implementation environment is then programmed either in
general-purpose programming languages (GPLs), e.g., Python and Julia, or in algebraic modeling
languages (AMLs). AML is a high-level programming language dedicated to optimization applications.
Popular AMLs include GAMS and AMPL.

Numerous studies on ED have been conducted from the perspectives of its optimization
algorithms [4–10] and actual implementation methods [11–15]. Table 1 summarizes the optimization
algorithms, optimal solvers, programming languages, and demonstration methods used in these
studies. The optimization algorithms to the ED problem have been well studied. Particularly,
in references [4–10], various analytic-based optimization methods, such as linear programming (LP),
mixed-integer programming (MIP), and convex optimization, have been investigated for the application
to ED. In reference [4], day-ahead ED was formulated as an LP problem to determine the hourly planned
operation set points (i.e., charging and discharging power references) of battery-based energy storage
systems (ESSs) and electric vehicles (EVs). In reference [5], convex optimization method was used to
determine the optimal charging and discharging schedules of an ESS. In reference [6], an online battery
power control method based on an MIP formulation was used over a rolling horizon window. The ED
strategies proposed in [4–6] planned the operation schedule only once and the schedule is followed
without any modifications during operation. However, one-time scheduling strategies are vulnerable
to uncertainty in the operational conditions, such as forecasting errors in load demand and renewable
generation. To address this problem, a two-stage ED strategy proposed in [7–10] was employed.
In the first stage, the optimal operation schedule is developed one day before the operating day (i.e.,
day-ahead scheduling). In the second stage, the operation schedule obtained from the first-stage ED is
updated repeatedly during actual operation (i.e., real-time scheduling). In references [7,8], the two-stage
ED strategy was applied for combined cooling, heating and power (CCHP) MG, and networked MGs.
Two-stage ED strategy determines the daily charging and discharging power profiles of batteries in
reference [9], and the schedules of ESSs and controllable loads in reference [10].

Table 1. Summary of previous studies on the implementation of economic dispatch (ED) strategies.

Ref
Optimization
Algorithms (1)

Solver Types (2) Language Types (3) Demonstration Methods (4)

OS CS Solver AML GPL S I Test-Beds

[4] LP X GLPK X X Grid-connected MG

[5] CONVEX X MOSEK X X Grid-connected MG

[6] MIP X CPLEX X X Grid-connected MG

[7] MIP (T-S) X CPLEX X X Grid-connected MG

[8] MIP (T-S) X CPLEX X X Grid-connected MGs

[9] MIP (T-S) X Gurobi X X Islanded MG

[10] MIP (T-S) X SCIP X X
IEEE 33-bus radial

system

[11] MIP X CPLEX X X
Budapest Tech

Renewable System,
Hungary

[12] MIP X CPLELX X X
Institute of Nuclear

Energy Research MG,
Taiwan

[13] MIP (T-S) X CPLEX X X
MG Research Lab. in

Aalborg Univ., Denmark

[14] MIP X AOA X X
MG Research Lab. in

Aalborg Univ., Denmark

[15] MIP (T-S) X CBC X X
Grid-connected Campus

MG, South Korea

(1) LP/MIP: linear/mixed-integer programming, T-S: two-stage scheduling strategy, (2) OS/CS:
open-source/commercial optimization solver, (3) AML/GPL: algebraic modeling/general-purpose programming
language, (4) S/I: simulation/implementation, MG: microgrid.
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With regard to research on the actual implementation of ED, in references [11–15],
field demonstrations were conducted to validate ED strategies under real MG operation. Specifically,
all these studies considered battery-based ESSs as their dispatchable DERs for ED and most of
them [11–14] established their ED environment using commercial optimization solvers, as shown in
Table 1. In references [11–13], the ED implementation environment was implemented using GAMS
and an optimal schedule was determined using a commercial optimization solver. In reference [13],
an ESS scheduling model called a power generation-side strategy, which was defined as a MIP
problem, was implemented to schedule the 2.2 kVA ESS under forecasting errors in load demand
and photovoltaic (PV) generation. In reference [14], based on the power generation-side strategy
used in [13], an MIP-based ED strategy was implemented considering Spanish self-consumption
regulatory constraints, which were introduced to facilitate the high penetration of renewable energy
resources into MGs, via a commercial AML of AIMMS and its add-in optimization solver AIMMS
Outer Approximation (AOA). Due to the guaranteed high computational capabilities of commercial
optimization solvers, they have been commonly adopted for an optimal scheduling application of
power systems. They are particularly effective for the optimization of complex problems involving a
substantial number of decision variables. However, such extreme computational capabilities provided
by commercial solvers may not be necessary for the application to ED of MGs, which generally involves
determining the operation schedules of a small number and simple combination of energy devices.
The licensing fees to use the commercial solvers can lead to significant increase in the setup costs for
MGs, which can aggravate the economic feasibility of the MG operation [16].

In this context, open-source-based optimization for power systems has recently received
much attention [17,18]. For example, in reference [15], the ED was implemented in a completely
open-source-based environment established using Python, with the incorporation of a coin-or branch
and cut (CBC) open-source optimization solver. In this case, a campus MG scheduling was on time,
and the daily operational costs were reduced by 58% using open-source optimization. In reference [19],
a completely open-source-based ED environment was established using the open-source programming
language Julia and its corresponding open-source optimization solver ECOS; computational capability
was verified over a 1-year period for a massive operation dataset measured from a German transmission
network. The results demonstrated that the open-source environment is suitable for hourly ED of a
large-scale grid.

However, for an open-source-based optimization solver to be further widely adopted for ED of
MGs, the suitability of their computational capabilities for ED application should be examined in detail.
In particular, to lay a firm basis to use open-source-based solvers, the computation time and optimal
results obtained using open-source-based solvers must be compared with those accomplished using the
commercial ones. A comparison of the commercial and open-source optimization solvers under various
operating conditions will help MG operators select an appropriate optimization solver that satisfies
their technical as well as budgetary requirements. The differences in the computational capabilities of
open-source-based solvers and commercial ones were examined for several test optimization problems
in references [16,20], and the open-source-based solvers showed comparable computational capability
as those of the commercial solvers in some cases.

Being motivated by the previous comparative studies on optimization solvers and the recent
increase in the needs for open-source-based ED environment, this paper presents a comparative study
on various optimization solvers to investigate their suitability for ED in MEMS environments. The
main contributions of this manuscript are as follows:

• The computational capabilities of the four widely employed optimization solvers, including
CPLEX and Gurobi as commercial solvers and GNU linear programing kit (GLPK) and CBC as
open-source solvers, are compared in terms of optimal cost, scheduling results, and computational
time. The results will be helpful for MG operators, who seek to find a cost-effective optimization
solver that best fits their technical requirements and budgetary constraints.
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• To examine the applicability to both day-ahead and real-time scheduling, the two-stage scheduling
algorithm was adopted as an ED strategy, whereby operation set points of ESSs and the power
injected from the main-grid are coordinated to minimize the operating costs of grid-connected MGs.

• To compare the optimization solvers considering actual operating conditions, a 6-bus campus MG
with actual renewable generation and load data [15] was used as a simulation test-bed. For a more
comprehensive investigation, additional simulation case studies were conducted on IEEE 33-bus
and 123-bus test systems [21], which were modified slightly to emulate mid- and large-scale
MGs, respectively.

• A modularized programming strategy is presented for a fair comparison between the optimization
solvers. The modularized programming strategy provides an effective way to avoid redundant
usage of functions and variable definitions. It also allows the overall architecture of the code to be
developed easily with enhanced readability, which is critical for managing and debugging the
programming code.

The rest of the manuscript is organized as follows. Section 2 presents an overview of the
ED implementation environment. Section 3 reviews the two-stage ED algorithm and explains its
implementation using modular programming architecture. Section 4 discusses simulation case study
results, and Section 5 concludes the paper.

2. Overview of the ED Implementation Environment

2.1. Configuration of the ED Implementation Enviroment

Figure 1 presents an overview of the implementation environment for the ED in the MEMS.
The implementation environment can be programmed either in GPLs or in AMLs. Compared with
GPLs, AMLs have the advantage of having a syntax similar to that of the mathematical notation of
optimization problems, which allows for intuitive writing and understanding of the code. In the
GPL-based implementation, this difference can be complemented by adopting a modeling package.
The modeling package provides a convenient programming interface similar to that of AMLs, so it is
widely employed with optimization solvers when an optimization environment is established using
GPLs. However, the overall computational speed slows significantly as additional processes are added
due to the modeling package. This will be discussed in detail, along with the simulation results,
in Section 4.
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Optimization solvers consist of functional libraries, a set of functions dedicated to optimization.
Functional libraries are often classified into two types according to their tasks: modeling libraries
and optimizer libraries. The modeling library formulates the optimization problem for the ED using
input data, such as the predicted load demands and renewable generation, MG parameters and energy
resources, and electricity price. The optimizer library is responsible for finding the optimal solution
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according to a pre-programmed solution algorithm, which is often based on analytic methods involving
LP, MIP, and convex optimization.

When an optimization solver is used within the environment established in AMLs or employed
with a modeling package, the modeling library is not used. Instead, the optimization problem is
first formulated by the AML or modeling package and is then passed on to the optimizer library.
An optimization solver is compatible with certain kinds of modeling packages. Table 2 lists the
optimization solvers based on their type and compatible modeling packages. Each GPL supports
different modeling packages. For example, PuLP and Pyomo are the modeling packages supported in
Python environments, and JuMP is the modeling package available with Julia.

Table 2. Summary of optimization solvers and compatible modeling packages.

Solver
Solver Types (1) Python Modeling Packages Julia Modeling Packages

OS CS PuLP Pyomo JuMP

CBC X X X X

GLPK X X X X

CPLEX X X X X

Gurobi X X X X

SCIP X X X

XPRESS X X X X

MOSEK X X X

(1) OS/CS: open-source/commercial optimization solver

2.2. Modularized Programming Architecture

For a fair comparison of computational capability, the optimization solvers should be executed
within the ED environment programmed with the same architecture. In this study, this was achieved
by modularizing the entire code according to the tasks. Figure 2 presents the modularized architecture
for implementing the two-stage ED strategy. Module 1 (M1) is responsible for loading the data, e.g.,
load demands, renewable generation forecasts, parameters of the energy resources, and electricity
price, into the ED environment. Such information can be obtained from the forecasting system or
the supervisory control and data acquisition (SCADA) system established in the MEMS [22]. Based
on the acquired information, M2 and M3 formulate the A and b matrices, representing the equality
and inequality constraints of the ED, respectively. The equality constraints include equality operating
conditions, as well as physical models of the MGs and devices (e.g., power balance equations and
battery energy conservation). The inequality constraints comprise inequality operating conditions for
reliable MG operation, such as the state-of-charge (SOC) limits and charging and discharging power
limits of ESSs; Section 3 presents the details of the constraints considered in this investigation. In M4,
A and b matrices are provided as inputs to the modeling package or optimization solver to formulate
and solve the optimization problem.

Figure 2 presents the first and second scheduling stages of the two-stage ED strategy, executed
using an identical program architecture. Therefore, redundant usage of functions and variable
definitions that occur when programming the two scheduling stages separately is effectively avoided.
Additionally, the overall structure of the code can be developed easily with enhanced readability to
make the writing and debugging of the programming code more efficient.
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3. Description of the Two-Stage ED Strategy

3.1. MG Configuration

Figure 3 presents a schematic diagram of a grid-connected MG, where PV generators and Li-ion
battery-based ESSs are considered as DERs. Battery-based ESSs have high energy densities and rapid
dynamic responses, which make them suitable for high-power and high-frequency cyclic operation [23].
The operation set points (i.e., charging and discharging power references) of the ESSs were dispatched
from the MEMS via communication links. The operating cost of an MG is given by the total daily
electricity fee charged to the imported power from the main grid (i.e., utility power). To minimize
operating costs, the MEMS implements the two-stage ED strategy, while considering the forecasted
load demand and renewable generation. Note that the performance of the optimization module in
the MEMS depends on the accuracy of the forecasting module. Even though the forecasting error is
inevitable, it is assumed that the forecasting module provides accurate forecasts of load demand and
renewable generation output power. This is not a radical assumption, and already there have been
many studies that show high accuracy with many forecasting algorithms such as linear regression,
clustering, and support vector machine (SVM) [24,25]. When the amounts of accumulated data in
the database increase over time, the accuracy of forecasts will improve. In another approach to deal
with the variation and uncertainties, robust ED strategies based on stochastic optimization were
proposed in [26,27]. This approach can provide robust and efficient solutions, but modeling with
scenarios can increase the computational difficulty of the optimization problem. To address this
problem, a problem modeling approach proposed in [28] and a scenario selection algorithm in [29]
were proposed. However, we did not consider the representative scenarios since we applied not
the stochastic optimization method but the deterministic optimization approach to the proposed ED
strategy. For brevity, this stochastic optimization approach is not further discussed in this paper, where
instead we focus on the deterministic one. Furthermore, it is possible to get more accurate forecasts
as real-time operation becomes more imminent [30]. Thus, we proposed the two-stage scheduling to
mitigate forecast errors and improve the accuracy of scheduling.
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3.2. Two-Stage ED Strategy

In the two-stage ED strategy, the operation schedule of the first stage is such that it minimizes the
total daily operating cost of the MG. First-stage scheduling is conducted only once, one day prior to
the actual day of operation (i.e., day-ahead scheduling). The single scheduling time interval of the first
stage is 1 h. The scheduled profiles do not change during an hour. The second stage is implemented to
mitigate the difference between the scheduled utility power and the second-stage scheduled utility
power, which arises due to variabilities in load demand and renewable generation. Figure 4 presents
the timeframe of the ED strategy. In second-stage scheduling, the operating set points of ESSs and the
utility power scheduled in the first stage are updated every 5 min during actual operation, with a unit
scheduling time step of 5 min. The second stage is carried out in an hour-ahead scheduling mode, with
a unit scheduling time step of 5 min. The time horizon of the second stage diminishes by 5 min at each
execution, as shown in Figure 4, and recovers over the subsequent hour. For the first 5-min interval of
every hour, the operating set points of the ESSs are given as scheduled in the first stage. After the first
5-min interval, the operation schedule is updated every 5 min by the second-stage scheduling during
the remaining 55 min, with a diminishing time horizon. Thus, the initial scheduling of every hour
has more time steps to schedule (i.e., 11 time steps) compared with subsequent scheduling within the
hour. In this way, second-stage scheduling effectively compensates for the uncertainties inherent in
day-ahead scheduling.
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The objective, time window, and time interval of each stage are specified as follow:

1. First-stage scheduling: In this first-stage (i.e., day-ahead scheduling), hourly schedules for a day
are performed one day in advance. The objective function is to minimize the operating cost.
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The total time window is 24 h, and the single scheduling time interval is 1 h. The scheduled
profiles do not change during an hour.

2. Second-stage scheduling: In the second stage (i.e., hour-ahead scheduling), the optimal schedule
obtained from the first stage is updated every 5 min during the day of operation to compensate
for the uncertainties in load demands and PV output power. It should be noted that hour-ahead
scheduling is not performed at the beginning of every 5-min interval, but rather follows the
day-ahead scheduled profile. In other words, the second stage runs 11 times per an hour.
Only the first interval of each run set serves as a final decision and the rest of the intervals are for
reference only.

The following subsections present the detailed objective functions, constraints, and model for
implementing the two-stage ED strategy; most of these have been employed in the author’s previous
work [15].

3.2.1. Objective Function

The objective function of the first stage is given as

min{
∑

t

(
ctPd

u,t) + α1U1,t} ∀t ∈ Td, (1)

U1,t = max(0, Pd
u,t − Pcont) ∀t ∈ Td, (2)

where ct is the hourly electricity price of the main grid and Pu,t
d is the imported power from the utility

at time t; α1 is the weighting coefficient for the penalty function and U1,t is the continuous decision
variable determining the penalty function at time t; Pcont is the contracted power and Td is set of hourly
periods. Equation (1) represents the objective to minimize daily operation costs, which consist of the
charged electricity fee on the imported power from the utility side and the penalty function to maintain
the utility power within the contracted power. For the hourly varying electricity fee, time-of-use (TOU)
rates were considered in this study. Equation (2) describes the penalty term.

The objective of second-stage scheduling is to mitigate the difference between scheduled utility
power and second-stage scheduled power due to uncertainties in load demands and renewable
generation. The objective function of the second stage is given as

min
{
(|Pd

u,t − Ph
u,t|) − α2U3,t + α3U4,t

}
∀ t ∈ Th, (3)

U3,t= min (0 , SOCh
n,t − SOCmin

n

)
∀n ∈ N,∀ t ∈ Th, (4)

U4,t= max(0 , SOCh
n,t − SOCmax

n

)
∀n ∈ N,∀ t ∈ Th, (5)

where Pu,t
h is the hour-ahead scheduled utility power at time t; α2 and α3 are the weighting coefficients

for penalty functions; U3,t and U4,t are the continuous decision variables determining the penalty
function at time t, which consider the exceeded SOC value; SOCn,t

h is the state-of-charge of nth ESS in
the second stage at time t; SOCn

min and SOCn
max are the minimum and maximum SOC limit of the nth

ESS; Th is the set of second stage scheduling time periods. In Equation (3), the second and third terms
are penalty functions to prevent the overcharge and discharge of ESSs due to parameter uncertainties
and nonlinear operation characteristics, such as natural battery discharge.

3.2.2. Equality Constraints

The equality constraints consist of the physical model of the MG and ESSs, as well as equality
operating conditions to assure the uniform and continuous participation of ESSs in the ED. The physical
model of MG and ESSs are represented by the power balance equation and energy convergence in
the battery, respectively. The power balance between net power production and consumption in an
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MG is represented by the linearized DistFlow formulation [31]. The power balance equation used in
day-ahead and hour-ahead scheduling is given as

Pu,t +
∑

j : (i, j) ∈ L
P j,i,t =

∑
k: (k,i) ∈ L

Pi,k,t + (Pch,n,t − Pdch,n,t) + (P f
Li,t
− P f

PV,t)

∀i, j, k ∈ B, ∀t ∈ {Td, Th}, ∀n ∈ N,
(6)

where Pj,i,t and Pi,k,t are the power flow from bus j to bus i and from bus i to bus k at time t, respectively;
PLi,t

f and PPV,t
f are the forecasted load demand and PV generation at bus i at time t, respectively; Pch,n,t

and Pdch,n,t are the scheduled charging and discharging power of nth ESS at time t, respectively; B is
the set of buses; and L is the set of power lines in an MG.

The battery-based ESSs are modeled by the energy convergence stored in a battery, which is
represented by the variation in SOC level with respect to the input power, given by

SOCn,t = SOCn,t−1 + ((ηch,nPch,n,t − Pdch,n,t/ηdch,n
)
∆t)/CAPmax

n ∀n ∈ N, ∀ t ∈ {Td, Th}, (7)

where SOCn,t is the SOC level of the nth ESS at time t; ηch,n and ηdch,n are the charging and discharging
efficiency of the nth ESS; CAPn

max is the maximum capacity of the nth ESS.
Generally, charging and discharging of batteries is strictly determined by cost-effective operation

constraints. However, without using constraint (8), the final SOC level might be extremely low,
especially when the PV output power is deeply low and load demand is high. To ensure the continuous
participation of ESSs with uniform performance in next-day ED, the SOC levels at the initial and
final time steps of first-stage scheduling should be equal [32]. The energy stored at the last time of
scheduling should be set to its initial value, as

SOCn, f inal = SOCn,init ∀n ∈ N, (8)

where SOCn,init and SOCn,final are the SOC levels at the initial and final time steps of a day, respectively.
The equality constraint (8) may be relaxed to inequality constraints that represent the acceptable
variation in the SOC with respect to the initial SOC level, to allow for more flexible operation of
ESSs [33].

Meanwhile, the objective functions given in Equations (1) and (3) should be linearized to be applied
to the two-stage MIP strategy. Here, the piecewise linearization method is employed. The linearization
introduces additional equality constraints and variables, as

Pd
u,t = U1,t + U2,t + r0 ∀t ∈ Td, (9)

SOCh
n,t = U3,t + U4,t + U5,t + r3 ∀ t ∈ Th, (10)

where r0 and r3 are the parameters for objective function linearization and U2,t and U5,t are the
continuous variables for objective function linearization at time t.

3.2.3. Inequality Constraints

Inequality constraints include charging/discharging power capacity and SOC limits of ESSs, as
well as contracted power penalty functions. The SOC limit constraint is given by

SOCmin
n ≤ SOCn,t ≤ SOC max

n ∀n ∈ N, ∀ t ∈ {Td, Th}, (11)

Charging/discharging power limits of an ESS is given as

0 ≤ Pch,n,t ≤ un,tP max
ch,n ∀ t ∈ {Td, Th}, (12)

0 ≤ Pdch,n,t ≤ (1 − un,t
)
P max

dch,n ∀ t ∈ {Td, Th}, (13)
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where un,t is a binary decision variable to determine the operation status of the nth ESS at time t (i.e.,
un,t = 1: charging and un,t = 0: discharging).

To prevent the utility power from exceeding the contracted power in real-time scheduling,
a surcharging system is considered in the second scheduling stage. The electric meter installed by
Korea Electric Power Corporation (KEPCO), South Korea, estimates the peak power over a 15-min
period [34]. When the peak power that updated from the electric meter exceeds the contracted power,
KEPCO imposes extra charges for overuse. The surcharging system requires that the utility power
averaged over a 15-min period be maintained within the contracted power to stabilize the supply. This
requirement is imposed by (

Pu, t−1 + Pu, t + Pu, t+1

)
/3 ≤ Pcont ∀ t ∈ Th, (14)

Additionally, linearizing the first-stage objective function (1) using the piecewise linearization
method yields the inequality constraints

(r1 − r0) S1,t ≤ U2,t ≤ (r1 − r0) ∀ t ∈ Td, (15)

0 ≤ U1,t ≤ (r2 − r1)S1,t ∀ t ∈ Td, (16)

where r1, r2 are parameters for objective function linearization and S1,t is a binary variable for
linearization of objective function at time t.

Similarly, linearizing the second-stage objective function (9) gives additional inequality constraints
expressed by

(r4 − r3)S2,t ≤ U3,t ≤ (r4 − r3) ∀ t ∈ Th, (17)

(r4 − r3)S3,t ≤ U5, t ≤ (r5 − r4)S2,t ∀ t ∈ Th, (18)

0 ≤ U4,t ≤ (r6 − r5)S3,t ∀ t ∈ Th, (19)

where r4 and r5 are parameters for objective function linearization and S2,t and S3,t are binary variables
for objective function linearization at time t. Finally, nonlinear objective functions (1) and (3) are
linearized to a set of equality constraints (9), (10), and inequality constraints (15)–(19), which are in the
form of an MIP problem tractable for analytic method-based optimization solvers.

3.3. Implementation of the Two-Stage Strategy with the Modular Architecture

Figure 5 presents the coupling of the two-stage ED strategy using a modular program architecture,
as discussed in Section 2. Four modules were deployed in both the first and second scheduling stages.
The detailed tasks of each module are described below.

Module (1) Loading the input data for each scheduling stage as follows:

—First-stage scheduling:
MG topology; PV generation and load demand
forecasts; electricity price; initial SOC level of ESSs;
ESS parameters.

—Second-stage scheduling:

First-stage scheduled utility power; MG topology;
5-min sampled measurements of PV generation, load
demand, SOC levels, and utility power; electricity
price; initial SOC level of ESSs;
ESS parameters.

Module (2) Creating the A and b matrices that represent the equality
constraints of an optimization problem using the following Equations:

—First-stage scheduling: Equations (6)–(9).
—Second-stage scheduling: Equations (6), (7), and (10).
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Module (3) Creating the A and b matrices that represent the inequality
constraints of an optimization problem using the following Equations:

—First-stage scheduling: Equations (11)–(13), (15), and (16).
—Second-stage scheduling: Equations (11)–(14), (17), and (19).

Module (4) Formulating the optimization problem from the A and b matrices obtained from M2
and M3 using the modeling package or modeling library of the optimization solver in
a GPL-based platform or using the inherent interface provided in the AML-based
environment; solving the optimization problem by executing the optimizer library of
the optimization solver.
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4. Simulation Case Studies for Comparison

4.1. Simulation Conditions

Four widely adopted optimization solvers, CPLEX, Gurobi, GLPK, and CBC, were applied for
the two-stage ED strategy in simulation case studies, to compare computational capabilities. Figure 6
presents three grid-connected MGs considered for the test-beds containing loads, PV generators,
and ESSs. The 6-bus MG shown in Figure 6a represents a small-scale campus MG in operation [15].
The IEEE 33-bus and 123-bus radial test systems [21] shown in Figure 6b,c, respectively, were also
examined, with slight modifications to emulate mid- and large-scale MG operations.
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Figure 6. Grid-connected MGs for simulation case study. (a) 6-bus campus MG; (b) IEEE 33-bus radial
test system; (c) IEEE 123-bus radial test system.

All ESSs in the test-bed MGs were assumed to have the same parameters listed in Table 3, which
is an actual parameter set provided by an ESS manufacturer. Table 4 lists the three-level (i.e., off-peak,
mid-, and peak-loads) TOU rates used in the simulation case studies; these are the rates used by
KEPCO, South Korea [35]. Figure 7 presents the hourly sampled actual load demand and PV generation
forecasting data provided in [36]. For simplicity, the PV generation and load demand information
of each bus are assumed to have the same forecasting profiles. The real-time variations in load
demands and PV generations were emulated by applying the 5-min sampled stochastic variations to
the forecasting data shown in Figure 7, which are uniformly distributed within the range of±5% of them.
The contracted utility power was set to 2 MW. Table 5 lists the specifications of the implementation
environment. The compared optimization solvers were applied with the open-source modeling
package PuLP in Python, using an Intel Xenon Silver 4114 CPU with 192.0 GB RAM. The computational
capability of the optimization solvers was evaluated by investigating the optimal costs, scheduling
results, and computation time. Simulations were performed 100 times for each optimization solver,
and the average computation times were compared.
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Table 3. Actual energy storage system (ESS) parameters.

Parameters Values Units

Pch
max 50 [kW]

Pdch
max 50 [kW]

ECmax 250 [kWh]
SOCmax 90 [%]
SOCmin 20 [%]
ηch 80 [%]
ηdch 80 [%]

Table 4. Three-level time-of-use (TOU) rates on utility power.

Classifications Time Periods Prices ($/kWh)

Off-peak load 23:00–09:00 0.038

Mid-load
09:00–10:00

0.07612:00–13:00
17:00–23:00

Peak-load
10:00–12:00

0.13013:00–17:00
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Table 5. Detailed specifications of the implementation environment.

Functionality Software Types Versions

GPL Python Open-source 3.6.9 [37]

Modeling Package PuLP Open-source 1.6.8 [38]

Optimization Solver

CBC Open-source 2.10 [39]
GLPK 4.65 [40]

Gurobi
Commercial

8.1.1 [41]
CPLEX 12.9 [42]

4.2. Comparison of Optimal Costs and Scheduled Profiles

All the compared optimization solvers identically determined the minimal operating costs of
the three MGs as USD 86.20, USD 1698, and USD 8610; thus, the same optimal results were achieved.
Figure 8 presents the scheduled power profiles of the ESS and utility power for the three MGs. The ESS
power profiles shown in Figure 8b,c are those of arbitrarily selected ESSs in the 33-bus and 123-bus
systems (Figure 6b,c, respectively). Note that positive power represents discharging of the ESS.
In contrast, the ESS power profiles differed from each other, as shown in Figure 8a–c. However,
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they have a common tendency; the ESSs are charged when the TOU is low (e.g., from 18:00 to 24:00)
and discharged when the TOU is high (e.g., from 10:00 to 18:00). Note that all optimization solvers
scheduled the ESS power to be maintained well within its limit (i.e., 50 kW).
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Similarly, the scheduled utility power profiles shown in Figure 8d–f have a common tendency to
import the high power from the main grid when the TOU is inexpensive (e.g., from 18:00 to 24:00) to
enhance MG operation efficiency by lowering operating costs. This tendency was due to not only the
low TOU price but also the increased load demand at that time, as shown in Figure 7.
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Figure 9 presents the variations in the scheduled SOC levels corresponding to the ESS power
profiles of Figure 8a–c. All of the scheduled SOC levels were well maintained within the limits for
secure operation (i.e., 20% to 90%). Additionally, all of the compared optimization solvers succeeded
in making the SOC levels at the final time step equal to the initial SOC levels, assuring continuous
participation in the next-day ED with uniform contribution.
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4.3. Comparison of Computation Time

Table 6 lists the computation times of the optimization solvers for the three simulation cases.
To investigate the computation time without a modeling package, additional tests were conducted
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with CPLEX and Gurobi, which provide application programming interfaces (APIs) for the Python
environment. Using APIs, the optimization solver can be interfaced directly with the ED environment
without a modeling package. In first-stage scheduling, all of the compared optimization solvers yielded
a suitable computation time for the day-ahead scheduling application in all cases. Specifically, for all
three cases, the open-source optimization solver CBC yielded the maximum computation time (i.e.,
1.32, 12.42, and 113.64 s, respectively).

Table 6. Computation times of the optimization solvers.

Cases
Modeling
Packages Solvers (1) First Stage (s)

Second Stage (s)

Avg. Initial
Scheduling

Max. Initial
Scheduling

Case 1
6 Bus system

PuLP

CBC 1.32 0.44 0.47

GLPK 1.25 0.42 0.47

Gurobi 1.02 0.38 0.43

CPLEX 1.03 0.41 0.49

Gurobi (API) 0.26 0.03 0.03

CPLEX (API) 0.13 0.02 0.02

Case 2
33 Bus system

PuLP

CBC 12.42 3.80 3.93

GLPK 11.55 3.81 3.96

Gurobi 10.94 3.59 3.68

CPELX 10.98 3.76 3.98

Gurobi (API) 2.67 0.25 0.28

CPLEX (API) 0.61 0.07 0.08

Case 3
123 Bus system

PuLP

CBC 113.64 37.61 42.42

GLPK 110.87 38.74 42.70

Gurobi 105.13 36.52 39.11

CPELX 105.36 35.57 39.10

Gurobi (API) 27.82 2.42 2.52

CPLEX (API) 3.55 0.76 0.80

(1) API: application programming interface

For the second-stage scheduling, the maximum and average computation times of the initial
scheduling of each hour were investigated. This is because the initial scheduling has the most time
steps to schedule (i.e., 11 time steps) as shown in Figure 4. Thus, the longest computation time will
occur during the initial scheduling, and subsequent scheduling will have shorter computation times.
For all optimization solvers, the computation time for the second-stage scheduling also yielded sound
results for the hour-ahead or real-time scheduling application, with the maximum and the average
computation time for initial scheduling of all the optimization solvers completed within 300 s (i.e.,
5 min).

Figure 10 presents the computation times obtained with the modeling package. In both first-stage
and second-stage scheduling, the open-source optimization solvers (i.e., CBC and GLPK) and the
commercial optimization solvers (i.e., Gurobi and CPLEX) yielded similar computation times. The main
reason for the similar computation times from the different optimization solvers is due to the additional
processes by the modeling package: converting the input data syntax given in high-level mathematical
notation into low-level syntax that can be processed by optimization solvers took up most of the total
computation time. Therefore, when the optimization solvers were executed using their APIs (i.e.,
Gurobi (API) and CPLEX(API)), they yield much shorter computation times; however, as noted above,
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the prolonged computation time due to the modeling package is a trade-off to convenient interfaces.
Another factor that determines the computation times is a programming language, and the study that
compared programming languages with respect to the computational time, readability, accessibility,
and strengths/weaknesses was examined for general-purpose computational problems in reference [43].
However, this is not further discussed in this paper, where we instead focus on the optimization solvers
and modeling package.Energies 2020, 13, 1096 17 of 22 
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Table 7 lists the detailed computation times spent by the modeling package with respect to its
performing of tasks (i.e., formulating equality and inequality constraints). The time ratio represents
the portion they occupy in the total computation times listed in Table 6. In all cases, the modeling
package accounts for more than half of the total computation time. For further investigation, the
computation time data are visualized in Figure 11. In both scheduling stages, the computation time
for formulating constraints becomes more dominant than the other processes for optimization in the
total computation time as the scale of an MG increases. This result means that the computation speed
of an ED environment is largely affected by a modeling package as well as an optimization solver.
Furthermore, adopting an efficient modeling package becomes the more important issue, as opposed
to which type of optimization solver to use, when the MG involves a large number of buses and DERs.

Table 7. Detailed computation time for the modeling package.

Case MIP
Solver

First Stage Second Stage

Inequality
Const. (s)

Equality
Const. (s)

Time
Ratio (%)

Inequality
Const. (s)

Equality
Const. (s)

Time
Ratio (%)

Case 1
6 Bus

system

CBC

0.39 0.50

67.42

0.14 0.13

61.93
GLPK 71.20 64.88
Gurobi 87.25 71.71
CPLEX 86.40 66.46

Case 2
33 Bus
system

CBC

2.61 7.67

82.77

1.06 1.78

74.90
GLPK 89.00 74.71
Gurobi 93.96 79.29
CPLEX 93.62 75.70

Case 3
123 Bus
system

CBC

17.19 86.43

91.18

8.87 20.82

78.97
GLPK 93.46 76.66
Gurobi 98.56 81.33
CPLEX 98.35 83.50
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5. Conclusions 

This paper presents a comparative study on optimization solvers to investigate their suitability 
for ED applications. Four widely employed optimization solvers, both commercial and open-source-
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two-stage scheduling strategy was applied for the ED algorithm. Equations representing the 
operating conditions and models of MGs and DERs were formulated and combined into a set of 
constraints to constitute the MIP problem, which is tractable for off-the-shelf optimization solvers 
adopting analytic solution algorithms. A modularized programming strategy was also introduced to 
allow a fair comparison between the optimization solvers and the efficient establishment of the two-
stage ED environment. Simulation case studies were conducted on three MGs of varying size. The 
simulation results revealed that all of the compared optimization solvers were achieved the same 
optimal costs and operated within the time required for each step of the two-stage scheduling 
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5. Conclusions

This paper presents a comparative study on optimization solvers to investigate their suitability for
ED applications. Four widely employed optimization solvers, both commercial and open-source-based
ones, were compared in terms of optimal cost, scheduling results, and computation time. A two-stage
scheduling strategy was applied for the ED algorithm. Equations representing the operating conditions
and models of MGs and DERs were formulated and combined into a set of constraints to constitute
the MIP problem, which is tractable for off-the-shelf optimization solvers adopting analytic solution
algorithms. A modularized programming strategy was also introduced to allow a fair comparison
between the optimization solvers and the efficient establishment of the two-stage ED environment.
Simulation case studies were conducted on three MGs of varying size. The simulation results revealed
that all of the compared optimization solvers were achieved the same optimal costs and operated within
the time required for each step of the two-stage scheduling strategy. With regard to computational
capability, a much shorter computation time was achieved when the optimization solvers were used
with their APIs compared to the cases where the modeling package was employed together with the
optimization solvers. However, the delay in computation time due to the modeling package can be
compensated for by the convenient interfaces that the modeling package provides. Additionally, for
large-scale MG applications, the modeling package is a critical factor that determines the computation
speed of the ED environment.

Further work is required to investigate how the computational efficiency of an ED environment
varies under different combinations of modeling packages, optimization solvers, and programming
languages. Specifically, PuLP was adopted as a modeling package in this study, though other modeling
packages, such as Pyomo or JuMP, need to be employed and analyzed in subsequent studies. The relative
computational efficiency of AML-based ED environments (e.g., GAMS and AMPL) compared with
those that are GPL-based needs to be examined, because the simulation results obtained in this study
revealed that formulating the constraints accounts for a large portion of the computation time.
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Nomenclature

Acronyms
AML Algebraic modeling language
AOA AIMMS outer approximation algorithm
API Application programming interface
CBC Coin-or branch and cut
CCHP Combined cooling, heating and power
DER Distributed energy resource
ED Economic dispatch
ESS Energy storage system
EV Electric vehicle
GAMS General algebraic modeling system
GLPK GNU linear programing kit
GPL General-purpose programming language
KEPCO Korea electric power corporation
LP Linear programming
MEMS Microgrid energy management system
MG Microgrid
MIP Mixed-integer programming
OPF Optimal power flow
PV Photovoltaic
SCADA Supervisory control and data acquisition
SOC State-of-charge
SVM Support vector machine
TOU Time-of-use
Sets and Indices
d Day-ahead stage values
h Hour-ahead stage values
Td Set of hourly periods in the first stage (i.e., t ∈ Td and Td = [0, 1, ···, 23])
Th Set of 5 minute periods in the second stage (i.e., Th = [5, 10, ···, 55])
t Index for a scheduling time step (i.e., t ∈ Td and t ∈ Th)
i, j, k Indices for buses in an MG
L Set of lines of the topology in the MG (i.e., (i, j), (k, i) ∈ L)
B Set of buses in the MG (i.e., i, j, k ∈ B)
n, N Index and total number of ESSs, (i.e., n ∈ N)
f Forecasted values
max, min Maximum/minimum values
Parameters and Constants
Pcont Contracted power (kW)
α Weighting coefficients for penalty functions
r Parameter for objective function linearization
SOCn

min, SOCn
max Minimum/maximum SOC limit of the nth ESS (%)

ηch,n, ηdch,n Charging/discharging efficiency of the nth ESS (%)
CAPn

max Maximum capacity of the nth ESS (kWh)
Pch,n

max, Pdch,n
max Maximum charging/discharging power of nth ESS (kW)

SOCn,init,SOCn,final SOC levels of nth battery at the initial/final times steps of a day (%)
Variables
ct Hourly electricity price at time t ($/kWh)
Pu,t

d Imported power from the utility at time t (kW)
Pu,t

h Hour-ahead scheduled utility power at time t (kW)
Ut Continuous decision variable determining the penalty function at time t
St Binary variable for objective function linearization at time t
Pj,i,t, Pi,k,t Power flow from bus j to bus i and from bus i to bus k at time t
PLi,t

f, PPV,t
f Forecasted load demand/PV generation at bus i at time t (kW)

Pch,n,t, Pdch,n,t Scheduled charging/discharging power of nth ESS at time t (kW)
SOCn,t SOC level of the nth ESS at time t (%)
un,t Binary decision variable to determine the operation status of the nth ESS at time t
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