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Abstract: The electrical grid has been changing in the last decade due to the presence of renewables,
distributed generation, storage systems, microgrids, and electric vehicles. The introduction of
new legislation and actors in the smart grid’s system opens new challenges for the activities of
companies, and for the development of new energy management systems, models, and methods.
A new optimization-based bi-level architecture is proposed for an aggregator of consumers in the
balancing market, in which incentives for local users (i.e., microgrids, buildings) are considered, as
well as flexibility and a fair assignment in reducing the overall load. At the lower level, consumers
try to follow the aggregator’s reference values and perform demand response programs to contain
their costs and satisfy demands. The approach is applied to a real case study.

Keywords: smart grid; optimization; energy management system; interconnected buildings;
renewable resources; multi-level; aggregator

1. Introduction and State of the Art

International policies for sustainable development have led to an increase in distributed power
production based on renewable resources. The electrical grid has been changing in the last decade due
to the presence of renewables, distributed generation, storage systems, microgrids, and electric vehicles.
These technologies introduce a lot of challenges mainly due to uncertainties and intermittencies
associated with their presence [1]. In particular, the massive presence of renewable resources can create
some problems to the distribution grid; as a matter of fact, the unpredictability of these sources can
cause some power quality issues in the power network (e.g., voltage unbalances and undesired peaks).
Usually, traditional controllable generators are called to compensate these fluctuations, operating at
different working points from the optimal ones. This function for the traditional generators cause
efficiency losses (increasing in operational and maintenance costs) and a decrease of regulation margins
for the distribution grid [2]. Moreover, due to the increase of generation from renewables, large
fossil-fueled production plants are no longer installed or are reduced in rated power; this affects the
capability of the grid to respond to emergency situations.

The characteristics of these new smart grids require an increase of the power reserve to face the
sudden request of active/reactive injection/absorption from a distribution system operator (DSO) to
compensate for example a sudden drop in the production from a photovoltaic plant. Microgrids and
smart buildings can see these issues as an opportunity to provide regulation and reserve services
in both directions since they can be considered as prosumers [3–5]. Interconnected buildings can
be seen as microgrids or districts that can share thermal and electrical power to satisfy comfort,
economic, and technical exigencies. In this framework, demand response (DR) (i.e., the possibility for
a traditional load to decrease the active power absorption for a certain period) is an effective and reliable
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strategy for the successful integration of renewable energy sources, handling the demand pattern using
load flexibility whenever the system requires it [6–8]. A significant portion of DR programs can be
represented by local users and/or prosumers, which, by themselves, cannot participate in the energy
market and offer a reduction of load at a certain price. In fact, the introduction of new legislation and
actors in the smart grid’s system opens new challenges for the activities of companies, and for the
development of new energy management systems, models, and methods. For example, the figure of
an aggregator that manages different local consumers and/or producers to reduce power demand or to
increase production gives rise to different possible optimization problems [1].

A key point is to integrate the different actors (transmission system operator (TSO), DSO,
aggregators, local users, etc.) that can act within collaborative, competitive, or hierarchical rules in
a market structure in which the decisions should be taken into account according to successive stages.
Each stage is characterized by different players with different objectives, thus representing a portion
of a multilayered energy market. An aggregator must take decisions interacting, first of all, with
the TSO offering an amount of power to be reduced at a certain price. Then, the aggregator has to
collect in its portfolio a large number of customers in order to be paid from the TSO; besides, it must
provide incentives to local users, and should avoid customers’ dissatisfaction in terms of both economic
costs and technical feasibility. At the lower level of the layered market structure, there are users that
have two main decisions to be taken: (a) How to provide constraints to the aggregator related to the
flexibility that they can technically offer; (b) how to manage their local systems following the requests
of the aggregator once they are available.

Distribution network’s optimization and control in presence of DR aggregators is particularly
interesting and some papers in the recent literature propose new operational management strategies.
In particular, it is necessary to define how to schedule load reduction or production increase among the
different customers to achieve an overall load reduction and/or shifting. The main effort is devoted to
the integration of different actors in a multi-layered market structure. A portion of the recent literature
is focused on bi-level programming, in which one or several constraints represent the optimal solution
of low-level problems. In other words, the upper-level problem has its own optimization problem
to be solved through mathematical programming, in which the analytical solution of the lower level
optimization model is inserted as a constraint. In [9], the authors propose a bi-level model for the
distribution network and renewable energy expansion planning in a DR framework. The objective
function of the upper-level problem minimizes investment, maintenance, energy purchased from
substations, and unserved power. The lower level has instead the objective of minimizing the overall
payment faced by the consumers. The Karush–Kuhn–Tucker (KKT) complementarity constraints
are used to ensure the optimality of the lower-level solution. In [10] the authors present a bi-level
architecture based on Model Predictive Control. An upper-level decision maker, by means of its
objective function, minimizes its own power losses and costs; moreover, it provides power exchange
references related to power-flow constraints. The main differences from our work are that we focus
on operational management in which the storage dynamics are represented as well as temperature
variation in each building. Moreover, in the present paper, at the upper level, it is considered
an objective function that represents an aggregator that receives remuneration from TSO, must provide
incentives, and has to manage buildings and microgrids equipped with their own energy management
systems (EMSs).

In the same line, in [11] the authors propose a bi-level programming approach, within a game
theory approach, for optimizing the electricity tariff offered by an electricity retailer to its customers.
The model identifies customers as ‘prosumers’ (i.e., both producers and consumers) who try to
maximize their utility and to minimize their cost of electricity.

The authors in [12] consider a framework in which an aggregator of distributed storage energy
systems, electric vehicles, and temperature control loads is present and bids in day-ahead energy
and reserve markets. Even in this case, a bi-level optimization model is proposed. In the present
paper, a similar framework is considered. However, the main difference, with respect to the previously
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mentioned contributions, is that microgrids and buildings here are represented with their own EMS.
Thus, the dynamic behavior of users is taken into account.

Bi-level programming is used in many other application areas of energy systems in which there
are multiple systems and objectives to be considered (see, for example, [13–15]). However, bi-level
programming is not the only approach that is used in energy systems for the integration of different
systems, actors/agents and decision-makers.

Authors in [16] develop a hierarchical and distributed DR control strategy. They consider
a center-free algorithm and information is not collected on all DR devices. A hierarchical EMS for
optimal multi-microgrids operation based on multi-agent systems is proposed by the authors of [17].
In [18] the authors proposes a distributed energy allocation mechanism for the DSO market. This
mechanism is based on a bi-level iterative auction. The DSO runs an upper-level auction with load
aggregators as intermediate agents competing for energy (the locational marginal price is assumed
to be known). Aggregators implement lower-level auctions in parallel until market equilibrium is
established. In this way, it is possible to converge to a socially optimal solution while maintaining
physical grid constraints.

In [19] the authors study the operation of a retailer that acts as an aggregator with price-responsive
loads and submits demand bids to the day-ahead and real-time markets. The work presented in [20]
uses Benders’ decomposition method to reduce the computational burden in a two-stage stochastic
model for aggregators in a large-scale case study. In [21], customer aggregators are introduced
to supply downstream demand in the most economical way. A two-level optimization problem
considers aggregators’ flexible energy demand incorporated into the centralized energy dispatch
model. The objective function aims to maximize social welfare minimizing the energy purchase cost.
In [22] and [23], the authors jointly study energy storage systems (ESSs) and DR. They analyze their
impact and possible use in a smart grid.

In [24], the authors focus attention on the integration of residential users because they are in
huge numbers and require relatively small power loads. It is shown that residential users can receive
financial benefits from reserve provision. A hierarchical structure of users is adopted together with
a game-theoretic approach.

In [25], the authors focus attention on plug-in electric vehicles (PEV) in a district and on how they
can help in demand-side management. In the experiments, the results show that the proposed system
can reduce a significant amount of both electricity cost and peak power.

A crucial point is the estimation of the potential flexibility of different types of consumers for
day-ahead and real-time ancillary services provision taking into account customers’ reactions to
the price signals [26]. Moreover, the use of incentive-based payments as price offer packages is
recommended in order to implement DR [27].

In addition to the scheduling of an aggregator’s customers, it is fundamental to design the optimal
set of customers for an aggregator. In this framework, authors in [28] study the impact of consumer
behavior on the portfolio design of a DR aggregator, developing an optimization model.

The present paper considers an aggregator (AGG) that has the knowledge of the power distribution
grid because it is also a DSO or works in strict collaboration with the DSO.

The day-ahead balancing market is that session of the market where the TSO requests for some
power flexibility in order to deal with the variation of the demand. In this session, the AGG bids the
price of energy and the amount of power to be reduced/increased in each time interval during the
day and thus it is necessary to coordinate the different customers, trying to satisfy power demand
reduction/increase and giving incentives to local users in connection with these requests. For the sake
of simplicity, in this paper, only the case of power reduction is considered.

The main contributions provided in this paper can be summarized as follows:

• The development of an optimization-based bi-level architecture for a DSO/aggregator for
participation in the balancing market in which the incentives for local users (LUs), together
with active and reactive power exchanges, are decision variables.
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• The statement of an optimization problem for the optimal management of an aggregator/DSO
that considers a simplified prosumers’ model for flexibility assessment, providing set points for
DR operations of the LUs, ensuring a certain level of fairness.

• The inclusion of detailed dynamical models for the two main classes of LUs (microgrids and smart
buildings) including electrical and thermal elements.

The structure of the paper is organized as follows: In Section 2 the proposed control architecture
is presented. Section 3 describes the AGG’s optimization problem while Section 4 states the LUs’
optimization problem. Section 5 presents the obtained results in a case study. Finally, Section 6 reports
some concluding remarks.

2. The Proposed Decision Architecture

In this work, we propose a two-level hierarchical architecture for the problem, as depicted
in Figure 1.
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Figure 1. The proposed decision architecture of the Aggregator (AGG)–Local Users (LUs) problem.

The higher level represents the AGG, aiming at minimizing different terms of cost, that include:
(a) Incentives to be paid to LUs, (b) fees/benefits (to/from the main grid) for not reaching the agreed
reduction, (c) a term aiming at a fair distribution of the power reduction among the LUs. The AGG
has to define active and reactive power exchanges with the LUs, as well as the incentives (that are
expressed as a function of active power reduction).

At the lower level, LUs try to track the power reference values given by the solution of the AGG
problem. Unlike the AGG, each LU uses a detailed model of its components.

Before the process starts, the AGG has perfect knowledge about the balancing market results
(power reductions requests, incentives, and fees), and receives the maximum flexibility affordable by
LUs calculated in the day-ahead on the basis of technical and economic considerations. Then, the AGG
solves its optimization problem by using a simplified (emulated) model for each LU and assuming
to have access to an estimate of the storage element associated with each LU. Instead, each LU does
not have any information about the electrical grid and the other users, thus avoiding competitive
behaviors. In fact, no competition between different LUs is allowed.
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It is important to note that the above two-level optimization procedure is intended to operate
within a receding horizon control scheme. In particular, as reported in Figure 2, an optimization
horizon (T) is defined over which it is assumed that reliable forecasts about future uncertain inputs
and parameters (in this case, power demand, generation from renewables, prices) are available. Such
forecasts are provided by prediction models which are considered to be external to the proposed
control scheme. Of course, the optimization horizon is the length over which the optimization problem
is run. In a receding horizon scheme, in the first run, the optimal control actions for the entire length of
the optimization horizon are found, but only the solution corresponding to the first time interval is
actually applied. Then, at the beginning of the second time interval, new information from sensors
in field (concerning the system state) and updated forecasts of the external inputs are acquired. On
this basis, a new optimization run is carried out, and so on until the horizon over which the system is
actually operated or simulated (simulation horizon) is completely covered (see Figure 2).

Energies 2019, 12, x FOR PEER REVIEW 5 of 24 

 

horizon (T) is defined over which it is assumed that reliable forecasts about future uncertain inputs 

and parameters (in this case, power demand, generation from renewables, prices) are available. Such 

forecasts are provided by prediction models which are considered to be external to the proposed 

control scheme. Of course, the optimization horizon is the length over which the optimization 

problem is run. In a receding horizon scheme, in the first run, the optimal control actions for the entire 

length of the optimization horizon are found, but only the solution corresponding to the first time 

interval is actually applied. Then, at the beginning of the second time interval, new information from 

sensors in field (concerning the system state) and updated forecasts of the external inputs are 

acquired. On this basis, a new optimization run is carried out, and so on until the horizon over which 

the system is actually operated or simulated (simulation horizon) is completely covered (see Figure 

2). 

The optimization problem considered in this paper refers to a single iteration of the receding 

horizon control procedure and is focused on the possibility of efficiently solving the problem via a 

two-level approach. Clearly, in a receding horizon scheme, at each new time interval, new 

information is acquired and the two-level optimization procedure is again carried out. 

 

Figure 2. A pictorial representation of the receding horizon control scheme. 

3. The AGG System Model and Optimization Problem 

3.1.  Representation of the Network Constraints 

The considered physical system is composed by buildings and microgrids, both including 

renewables and storage systems, and connected to the main grid. 

In order to formally represent the system model, the following sets are considered: 

 𝑁 = {1, . . . , 𝑛} set of indexes associated to the distribution grid nodes; 

 𝐵 = {1, . . . , 𝑏} set of indexes associated to LUs of type building; 

 𝑀 = {𝑏 + 1, . . . , 𝑏 + 𝑚} set of indexes associated to LUs of type microgrid; 

 𝐴 = 𝐵 ∪𝑀 set of the indexes associated to all users; 

 𝐻𝑗 = {1, . . . , ℎ𝑗} set of indexes associated to the cogeneration plants of microgrid j, j M ; 

 𝑅𝑅𝑗 = {1, . . . , 𝑙𝑗} set of indexes associated to the renewable sources of LU j, j A ; 

 𝑅𝑗 = {1, . . . , 𝑟𝑗} set of indexes associated to rooms in building j, j B . 

It is necessary to consider the power flow equations for active and reactive power, which affect 

the power exchanges among LUs connected to the grid. As in [29,30], in the linearized form and in 

discrete time, these equations can be expressed as follows 

𝑝𝑢,𝑧,𝑡 = 𝐺𝑢,𝑧(𝑣𝑢,𝑡 − 𝑣𝑧,𝑡) + 𝐵𝑢,𝑧(𝛿𝑢,𝑡 − 𝛿𝑧,𝑡)   𝑢, 𝑧 ∈ 𝑁, 𝑢 ≠ 𝑧, 𝑡 = 0,… , 𝑇 − 1 (1) 

𝑞𝑢,𝑧,𝑡 = 𝐵𝑢,𝑧(𝑣𝑢,𝑡 − 𝑣𝑧,𝑡) − 𝐺𝑢,𝑧(𝛿𝑢,𝑡 − 𝛿𝑧,𝑡)   𝑢, 𝑧 ∈ 𝑁, 𝑢 ≠ 𝑧, 𝑡 = 0,… , 𝑇 − 1 (2) 

where: 

 ,u zG  and 
,u zB  are conductance and susceptance parameters for line ( , )u z ; 

t=0

Time interval (t, t+1), t=0,…,S

Optimization Horizon (T) 

Simulation horizon (S)

First run

Second run S-th (final) run

Figure 2. A pictorial representation of the receding horizon control scheme.

The optimization problem considered in this paper refers to a single iteration of the receding
horizon control procedure and is focused on the possibility of efficiently solving the problem via
a two-level approach. Clearly, in a receding horizon scheme, at each new time interval, new information
is acquired and the two-level optimization procedure is again carried out.

3. The AGG System Model and Optimization Problem

3.1. Representation of the Network Constraints

The considered physical system is composed by buildings and microgrids, both including
renewables and storage systems, and connected to the main grid.

In order to formally represent the system model, the following sets are considered:

• N = {1, . . . , n} set of indexes associated to the distribution grid nodes;
• B = {1, . . . , b} set of indexes associated to LUs of type building;
• M = {b + 1, . . . , b + m} set of indexes associated to LUs of type microgrid;
• A = B∪M set of the indexes associated to all users;

• H j =
{
1, . . . , h j

}
set of indexes associated to the cogeneration plants of microgrid j, j ∈M;

• RR j =
{
1, . . . , l j

}
set of indexes associated to the renewable sources of LU j, j ∈ A;

• R j =
{
1, . . . , r j

}
set of indexes associated to rooms in building j, j ∈ B.

It is necessary to consider the power flow equations for active and reactive power, which affect
the power exchanges among LUs connected to the grid. As in [29,30], in the linearized form and in
discrete time, these equations can be expressed as follows

pu,z,t = Gu,z(vu,t − vz,t) + Bu,z(δu,t − δz,t) u, z ∈ N, u , z, t = 0, . . . , T − 1 (1)
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qu,z,t = Bu,z(vu,t − vz,t) −Gu,z(δu,t − δz,t) u, z ∈ N, u , z, t = 0, . . . , T − 1 (2)

where:

• Gu,z and Bu,z are conductance and susceptance parameters for line (u, z);
• vu,t and δu,t are the voltage magnitude and phase at node u, respectively;

• pu,z,t and qu,z,t are the active and the reactive power flows (from u to z), respectively.

T is the number of time intervals considered, that is, the optimization horizon.
The quantities vu,t, pu,z,t and qu,z,t, are a-dimensional and are expressed with reference to a common

voltage/power base value (i.e., as p. u. values).
The balance equation for active power at each node p is given by∑

j∈ACONNu, jD j,t +
∑

z ∈ N
z , u

Pu,z,t = 0 u ∈ N, u , 1, t = 0, . . . , T − 1 (3)

where CONNu, j is equal to 1 if the LU j is directly connected to u and 0 otherwise.D j,t is the power flow
[kW] to the j-th LU from the unique node to which is connected (assumed positive if it is sent to the
user j). Pu,z,t is the power flow [kW], unrestricted in sign, from node u to node z (i.e., the p.u. value
(pu,z,t) multiplied by the base value).

Note that (3) holds for u , 1. In fact, conventionally node 1 is defined as the connection node
to the main grid, to which no LU is directly connected. For this node, instead of (3), the following
equation holds: ∑

z ∈ N
z , 1

P1,z,t − Pgrid,t = 0 t = 0, . . . , T − 1 (4)

where Pgrid,t is the power flow [kW] between node 1 and the main grid (considered as positive when
the power is entering the node).

Similarly, the balance equation for reactive power is given by:∑
j∈ACONNu, jQ j,t +

∑
z ∈ N
z , u

Qu,z,t = 0 u ∈ N, u , 1, t = 0, . . . , T − 1 (5)

where Q j,t is the reactive power exchange [kvar] between node u and the LUs and Qp,q,t represents
reactive power flows from node u to node z. In this case too, node 1 has a different equation, namely:∑

z ∈ N
z , 1

Q1,z,t −Qgrid,t = 0 t = 0, . . . , T − 1 (6)

where Qgrid,t is the reactive power flow [kvar] between node 1 and the main grid.
In this model, the following constraints must be fulfilled:

vMIN
u ≤ vu,t ≤ vMAX

u u ∈ N, t = 0, . . . , T − 1 (7)

QMIN
grid ≤ Qgrid,t ≤ QMAX

grid t = 0, . . . , T − 1 (8)

PMIN
grid ≤ Pgrid,t ≤ PMAX

grid t = 0, . . . , T − 1 (9)

DMIN
j ≤ D j,t ≤ DMAX

j j ∈ A, t = 0, . . . , T − 1 (10)

QMIN
j ≤ Q j,t ≤ QMAX

j j ∈ A, t = 0, . . . , T − 1 (11)

where the upper and lower bounds have a straightforward meaning.
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It is supposed that the AGG only requests for a variation (decrease) of active power. To this
end, the AGG, in order to determine incentives and to divide among its customers the (active) load
reduction, has to quantify the reductions’ possibilities of each LU using limited information about the
local systems’ states. For this reason, an emulation is necessary (i.e., an approximate simulation) of the
dynamic behavior of each LU, as described in the following sub-sections.

3.2. Emulation of the LUs Corresponding to Buildings

This subsection reports the model used for the emulation of a building, embedded in the statement
of the higher-level problem. This model includes a storage system, renewables, and heat pumps.
The state of charge (SOC) dynamics of storage systems (one for each building) can be represented by
the following equations

SOC j,t+1 = loss jSOC j,t −
η j

(
PS, j,t

)
PS, j,t∆

CAP j
j ∈ B, t = 0, . . . , T − 1 (12)

η j
(
PS, j,t

)
=

{
ηc, j i f PS, j,t < 0
1/ηd, j otherwise

j ∈ B (13)

where CAP j [kWh] is the capacity of the storage in building j, ηc, j, ηd, j are efficiency parameters [adim]
(≤ 1) in charging and discharging modes, loss j [adim] is a loss coefficient due to the internal losses
and ∆ is the time discretization interval [h]. Instead, PS, j,t is the power flow (unrestricted in sign and
assumed as positive when energy is drawn from the storage) from/to the storage [kW], and SOC j,t
[adim] is the storage state of charge (expressed as a fraction with respect to the capacity).

The electrical balance equation includes the sum of power feeding the building (i.e., power from
storage, renewables, power from the main grid) that is equal to the power demand L j,t minus a possible
decrease DAGG, j,t [kW] requested by the AGG (being of course DAGG, j,t ≤ L j,t). That is,

PRES, j,t + PS, j,t + D j,t = L j,t −DAGG, j,t j ∈ B, t = 0, . . . , T − 1 (14)

with
L j,t = qHP, j,t + qE, j,t j ∈ B, t = 0, . . . , T − 1 (15)

where PRES, j,t is the power from renewables for building j, qHP, j,t is the electrical power feeding the
heat pumps, and qE, j,t the remaining forecasted electrical load.

As regards reactive power, it is possible to write:

QRES, j,t + QS, j,t + Q j,t = QF, j,t j ∈ B, t = 0, . . . , T − 1 (16)

where QRES, j,t, QS, j,t, and QF, j,t are the reactive power [kvar] associated with renewables and storage
systems and the forecasted demand, respectively, and Q j,t is the reactive power [kvar] exchange with
the main grid.

It is supposed that the AGG has no detailed information about the temperature in the various
rooms in each building. Thus, a single variable T j,t [K] is used to represent the temperature of the
overall building j. The dynamics of such temperatures is represented as in [31], namely:

T j,t+1 = T j,t +
∆

CTH, j
[ηsqHP, j,t −

1
RTH,ext, j

(T j,t − Text,t)] j ∈ B, t = 0, . . . , T − 1 (17)

where CTH, j is the thermal capacitance in building j [kWh/K], Text,t is the external temperature [K],
ηs qHP, j,t is the thermal power [kW] provided by heat pumps, RTH,ext, j is the thermal resistance [K/kW]
between building j and the external environment, and ηs [adim] is given by:

ηs = σηs,heat − (1− σ)ηs,cool j ∈ B (18)
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where σ is a given constant specifying whether the heat pump operates in heating mode (σ = 1) or in
the cooling mode (σ = 0), and ηs,heat and ηs,cool are efficiency parameters [adim].

The following upper and lower bound constraints must be taken into account:

TMIN
j ≤ T j,t ≤ TMAX

j j ∈ B, t = 0, . . . , T − 1 (19)

0 ≤ qHP, j,t ≤ qMAX
HP j ∈ B, t = 0, . . . , T − 1 (20)

SOCMIN
j ≤ SOC j,t ≤ SOCMAX

j j ∈ B, t = 0, . . . , T − 1 (21)

PMIN
S, j,t ≤ PS, j,t ≤ PMAX

S, j,t j ∈ B, t = 0, . . . , T − 1 (22)

QMIN
S, j,t ≤ QS, j,t ≤ QMAX

S, j,t j ∈ B, t = 0, . . . , T − 1 (23)

QMIN
RES, j ≤ QRES, j,t ≤ QMAX

RES, j j ∈ B, t = 0, . . . , T − 1 (24)

where all bounds for control and state variables are known parameters, being PMIN
S, j,t and QMIN

S, j,t negative
values. Note that, whereas PRES, j,t is a given quantity (known at least as a forecast), QRES, j,t may be
considered as a decision variable since its value may be adjusted, for any time interval, by means of an
electronic system based on the use of inverters.

Finally, the following constraints must be satisfied:

DAGG, j,t ≤ DMAX
AGG, j,t j ∈ B, t = 0, . . . , T − 1 (25)

T−1∑
t=0

DAGG, j,t ≤ DAGG,TOT, j j ∈ B, (26)

where the upper bounds DMAX
AGG, j,t and DAGG,TOT, j are given for each building.

3.3. Emulation of the LUs Corresponding to Microgrids

This subsection presents the model used to emulate microgrids within the statement of the
higher-level problem. Microgrids can be modeled in a similar way as for buildings. However,
the system model is in this case a bit more complicated because the thermal balance must be considered,
given the presence of cogeneration plants in microgrids.

Specifically, the electrical balance is given by:

PRES, j,t + PS, j,t + PEL, j,t + D j,t = qHP, j,t + qE, j,t −DAGG, j,t j ∈M, t = 0, . . . , T − 1 (27)

QRES, j,t + QS, j,t + Q j,t = QF, j,t j ∈M, t = 0, . . . , T − 1 (28)

where PEL, j,t is the power produced from fossil fuel plants.
The thermal balance in the heating operation mode is given by:

PTH,BOIL, j,t + PTH,RES, j,t + PTH, j,t ≥ DH, j,t j ∈M, t = 0, . . . , T − 1 (29)

where PTH,BOIL, j,t, PTH,RES, j,t, PTH, j,t represent thermal power from the gas-fed boiler, renewables,
and cogeneration plant, respectively, and DH, j,t is the thermal demand for heat.

Instead, in the cooling operation mode, the balance is:

PTH,RES, j,t + PTH, j,t ≥ DH, j,t + PTH,CHI, j,t j ∈M, t = 0, . . . , T − 1 (30)
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where PTH,CHI, j,t is the thermal power needed to feed chillers. Moreover, in the cooling mode, also the
following constraints need to be satisfied:

ηs,coolqHP, j,t + χPTH,CHI, j,t ≥ DC, j,t j ∈M, t = 0, . . . , T − 1 (31)

where DC, j,t is the cooling power demand, and χ is the efficiency of the chiller [adim].
Besides, also in the case of microgrids, constraints (12),(13) (written of course for j ∈ M) and

(20)÷(26) must be fulfilled.
Finally, owing to the finite capacity of the plants, the following upper bounds must be considered:

PEL, j,t ≤ PMAX
EL j ∈M, t = 0, . . . , T − 1 (32)

PTH,CHI, j,t ≤ PMAX
TH,CHI, j j ∈M, t = 0, . . . , T − 1 (33)

3.4. The Higher-Level Optimization Problem

In this subsection, the statement of the higher-level optimization problem solved by the AGG will
be provided. This problem will embed, as constraints, all equations and inequalities that have been
introduced in the previous subsections in order to emulate the LUs’ behavior.

The cost function of the higher-level decision problem consists of several terms.

(A) The first of them is Cinc [€], that is the cost relevant to incentives that must be provided to the
LUs in order to diminish their own load. Let CAGG, j,t [€/h], the incentive that the AGG gives to
the generic j-th LU per unit time. The following structure of CAGG, j,t as a function of DAGG, j,t is
assumed:

CAGG, j,t = a j(DAGG, j,t)
2 + b jDAGG, j,t + c j j ∈ A, t = 0, . . . , T − 1 (34)

where a j, b j and c j are given parameters of suitable physical dimension. Then, Cinc can be
expressed as:

Cinc =
T−1∑
t=0

∑
j∈A

CAGG, j,t∆ (35)

(B) The second term (actually a benefit) is BDR [€], that is the benefit from the external grid due to the
load reduction. To express this term, note that the benefit recieved from the market for the generic
time interval is given by a known unit cost CMarket,t [€/kWh] multiplied by the reduction of power
DRt [kW] at the point of connection with the main grid. It is supposed that an overall (maximal)
reduction MRt t = 0, . . . , T − 1 [kW] has been agreed in advance. The reduction of power DRt can
be formalized as the difference between the forecasted request Pgrid,da,t (in the day-ahead) and the
new actual request Pgrid,t that has to be determined. That is:

DRt = Pgrid,da,t − Pgrid,t t = 0, . . . , T − 1 (36)

It is important to note that Pgrid,da,t is a given value that cannot be updated, whereas Pgrid,t is
a decision variable appearing in (4).

Moreover, if the power reduction is lower than MRt, there is a fee that must be paid. Thus the
overall benefit obtained through a set of reductions DRt t = 0, . . . , T − 1 is given by:

BDR =
T−1∑
t=0

[
CMarket,tDRt −C f ee,t(MRt −DRt)

]
∆ (37)
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where C f ee,t is a unit cost coefficient [€/kWh]. Namely, this coefficient represents the cost associated to
a unit of unsatisfied energy demand. The following constraints hold as regards DRt, namely:

0 ≤ DRt ≤MRt t = 0, . . . , T − 1 (38)

On this basis, BDR can be written simply as:

BDR =
T−1∑
t=0

[(
CMarket,t + C f ee,t

)
DRt −C f ee,tMRt

]
(39)

(C) Finally, there is a term called “Assignment Fairness” (CAF [kW2]) that is introduced to avoid too
unbalanced power reductions among the population of LUs. This term can be written as:

CAF =
T−1∑
t=0

∑
j∈A

[
DAGG, j,t −DRt

L j,t∑
l∈A Ll,t

]2

(40)

At this point it is possible to formalize the overall AGG decision problem as follows.
The higher-level (AGG) decision problem:

min J = Cinc − BDR +ωCAF (41)

s.t. constraints (1)÷(40) and

αminCMarket,tDAGG, j,t ≤ CAGG, j,t ≤ αmaxCMarket,tDAGG, j,t j ∈ A, t = 0, . . . , T − 1 (42)

In the expression of the cost (41), ω [€/kW2] is a tradeoff coefficient whose value should be tuned
on the basis of the real case study considered.

Constraint (42) must be inserted in order to avoid excessive discrepancies between the benefit
provided by the market to the AGG (with reference to a specific LU j) and the overall incentive provided
by the AGG to that LU. In (42) αmin and αmax are fixed parameters (<1) and represent minimum and
maximum fractions of the benefit to the LUs.

Having so represented the optimization problem to be solved by the AGG, we are now in a position
to introduce problems that have to be solved by each LU.

4. The LUs’ Optimization Problem

The LUs track the references coming from the solution of the AGG problem, but have detailed
local information and may decide how to manage production plants and storage systems in order to
accomplish the AGG’s requests.

4.1. The Model Used for the Optimization Problem of a Building

In the detailed model considered for the optimization of a single building, each room is individually
considered. The dynamics of the temperature of the i-th room of building j (T̃i, j,t [K]), is represented as:

T̃i, j,t+1 = T̃i, j,t +
∆

Ci, j

[
ηsqi, j,t −

1

R̃TH,ext,i, j
Ãext,i, j

(
T̃i, j,t − Text,t

)
−

∑
r ∈ R j
r , i

1

R̃TH,i,r, j
Ãi,r, j

(
T̃i, j,t−T̃r, j,t

)]
j ∈ B, t = 0, . . . , T − 1, i ∈ R j

(43)
where:

• Ci, j is the thermal capacitance of room i in building j [kWh/K];
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• Text,t is external temperature [K];

• R̃TH,ext,i, j is the thermal resistance between room i in building j and the external environment
[k/kW];

• R̃TH,i,r, j is the thermal resistance between room i and room r in building j [K/kW];

• Ãi,r, j is an entry of the adjacency matrix: It is equal to 1 if room i is adjacent to room r and 0
otherwise [adim];

• Ãext,i, j is a coefficient equal to 1 if room i is adjacent to external environment and 0 otherwise
[adim];

• ηs qi, j,t is the thermal power (unrestricted in sign) provided by heat pumps in room i in building
j [kW].

Moreover, let
q̃HP, j,t =

∑
i∈R jqi, j,t j ∈ B, t = 0, . . . , T − 1 (44)

where q̃HP, j,t has the same physical meaning as qHP, j,t but now it corresponds to the power provided to
the heat pumps in building j that is actually determined solving the problem for the detailed model of
that building.

Even for the detailed model of the single building the presence of a single storage element is
considered, whose dynamics can still be represented via (12)–(13).

The power balance equation is given by:

PRES, j,t + P̃S, j,t + DLU, j,t = L̃ j,t −DAGG, j,t j ∈ B, t = 0, . . . , T − 1 (45)

which has the same meaning as (14) but where:

• P̃S, j,t is the power flow form the storage element corresponding to the solution of the local problem;
• DLU, j,t is the actual power flow from the main grid to the LU j, determined by the solution of the

local problem;
• L̃ j,t is the building load, expressed in a more detailed way with respect to (14), that is:

L̃ j,t = q̃HP, j,t + Pveh, j,t + Pwash, j,t + q̃E, j,t j ∈ B, t = 0, . . . , T − 1 (46)

Including:

- fixed consumption q̃E, j,t;
- power necessary to feed electrical vehicles Pveh, j,t;

- power necessary to feed washing machines Pwash, j,t.

However, there is a fundamental difference between (45)–(46) with respect to (14)–(15). In fact,
whereas L j,t, qHP, j,t, and qE, j,t are considered as fixed in (14)–(15), quantities L̃ j,t, Pveh, j,t, and Pwash, j,t are
decision variables within the problem of the LU corresponding to building j. The washing machines
(partly) and the electrical vehicle loads are considered as deferrable, provided that the following
constraints are fulfilled: ∑

T−1
t=0 Pveh, j,t∆ = ETOT,veh, j j ∈ B (47)

Pwash, j,t = P f ix
wash, j,t + Pde f

wash, j,t j ∈ B, t = 0, . . . , T − 1 (48)∑
T−1
t=0 Pde f

wash, j,t∆ = Ede f
TOT,wash, j j ∈ B (49)

where ETOT,veh, j, is the total electrical energy demand for electrical vehicles [kWh]. Pwash, j,t is the power

demand for the washing machines that is split in two terms: one fixed P f ix
wash, j,t (not adjustable) and one

deferrable Pde f
wash, j,t. Ede f

TOT,wash, j is the total deferrable energy demand [kWh] for washing machines.
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4.2. The Optimization Problem for a Building

Each LU j receives form the AGG, as a part of the solution of its problem, the load reductions
DAGG, j,tt = 0, . . . , T − 1 attributed to the specific LU, and the (reference) values D j,tt = 0, . . . , T − 1,
corresponding to the power flow between the grid and that LU. Then, the LU problem can be formalized
as the minimization of the quadratic deviation between the sequence DLU, j,t of the actual power flow
from the main grid and the LU, and the reference sequence D j,t.

Optimization Problem For The Single Building j

minJB, j =
T−1∑
t=0

(
DLU, j,t −D j,t

)2
(50)

s.t. constraints (12)–(13) and (43)÷(49), written for the index j of interest.

4.3. The Model Used for the Optimization Problem of a Microgrid

We consider a model with the following entities: Microturbines (representing the cogeneration
plants), photovoltaics, electric vehicles charging stations, heat pumps and chillers. Even for the detailed
model of the single microgrid, the presence of a single storage element is considered, whose dynamics
can still be represented via (12)–(13).

In this model, the electric power balance is given by:∑
h∈H jPEL,h, j,t +

∑
l∈RR jPRES,l, j,t + P̃S, j,t + DLU, j,t = L̃ j,t −DAGG, j,t j ∈M, t = 0, . . . , T − 1 (51)

L̃ j,t = q̃HP, j,t + q̃E, j,t + Pveh, j,t j ∈M (52)∑
l∈RR jQRES,l, j,t + Q̃S, j,t + QLU, j,t = QD, j,t j ∈M, t = 0, . . . , T − 1 (53)

where:

• PEL,h, j,t is the active power coming from the controllable microturbine h in microgrid j;

• PRES,l, j,t is the active power that is injected from local renewable energy sources of kind l;

• P̃S, j,t is the active power (unrestricted in sign) drawn from the storage;
• DLU, j,t is the power coming from the grid;
• q̃HP, j,t is the power requested by heat pumps;
• q̃E, j,t is the fixed electrical demand;
• Pveh, j,t is the power consumed by electric vehicles.

Powers Pveh, j,t is considered as a deferrable load and is subject to constraints similar to those in
Equation (47).

Furthermore, QRES,l, j,t and Q̃S, j,t, are the corresponding reactive power flows. Note that it is
assumed that it is possible to regulate the reactive power from the controllable microturbines, imposing
them as equal to zero. Thus, there is no decision variable corresponding to these powers. Instead, it is
assumed that the reactive power coming from the renewable energy sources, as well as the reactive
power coming from the storage, can be regulated. Thus, such powers are considered as decision
variables. Besides, QD, j,t is a fixed amount of reactive power corresponding to the heat pumps and the
electric load (the reactive power for electric vehicles is assumed to be zero).

Besides, the following constraints must be taken into account:

PEL,h, j,t ≤ PMAX
EL,h, j j ∈M, t = 0, . . . , T − 1 (54)
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The thermal balance constraints, for the heating mode, correspond to:

P̃TH,BOIL, j,t +
∑

l∈RR jPTH,RES,l, j,t +
∑

h∈H jPTH,h, j,t ≥ DH, j,t j ∈M, t = 0, . . . , T − 1 (55)

whereas, for the cooling mode, the constraints are:∑
l∈RR jPTH,RES,l, j,t +

∑
h∈H jPTH,h, j,t ≥ DH, j,t + P̃TH,CHI, j,t j ∈M, t = 0, . . . , T − 1 (56)

ηs,coolq̃HP, j,t + χP̃TH,CHI, j,t ≥ DC, j,t j ∈M, t = 0, . . . , T − 1 (57)

P̃TH,CHI, j,t ≤ PMAX
TH,CHI, j j ∈M, t = 0, . . . , T − 1 (58)

where:

• P̃TH,BOIL, j,t is the thermal power produced by the (unique) gas-fed boiler;
• PTH,RES,l, j,t is the thermal power from the l-th renewable energy source;

• PTH,h, j,t is the thermal power produced by the h-th co-generative microturbine;

• P̃TH,CHI, j,t is the thermal power consumed by the (unique) chiller;

It is important to note that the thermal balance and the electrical power balance are coupled owing
to the presence of co-generative microturbines. Namely, for a given microturbine h, it is assumed that
the following relationship holds:

PTH,h, j,t = µh, jPEL,h, j,t j ∈M, t = 0, . . . , T − 1 (59)

where µh, j is a given parameter characteristic of the considered microturbine. More complex
relationships could be used instead of (59) but, for the sake of simplicity, in this paper a purely
linear model is adopted.

4.4. The Optimization Problem for a Microgrid

Even in this case, the optimization problem can be stated as the minimization of the quadratic
deviation of the actual behavior with respect to the reference value given by the upper problem, as
regards both active (D j,tt = 0, . . . , T − 1) and reactive (Q j,tt = 0, . . . , T − 1) powers.

Optimization problem for the single microgrid j:

minJM, j =
∑

T
t=0

(
DLU, j,t −D j,t

)2
+ (QLU, j,t −Q j,t)

2 j ∈M (60)

s.t. constraints (12)–(13), (47) and (51)÷(59)

5. Application to a Case Study

The developed bi-level architecture has been applied to a case study in the Liguria Region, Italy.
In particular, the considered case study is related to Savona Municipality data, which is located in
the north western part of Italy. In particular, on the territory, it is already present a microgrid at the
campus level [29], which includes heat pumps, buildings and renewables, a laboratory microgrid,
and a sustainable building that, with renewables and storage systems, can be operated in islanded
mode and considered as a microgrid. Moreover, the municipality is planning to replicate the microgrid
in different areas and to constitute an energy community in the context of a so-called “smart city
project”. For these areas data have been estimated on the basis of territorial characteristics and the
Savona Campus Microgrid.

Specifically, six different local users have been considered. Three of them are building type
LUs, while others are microgrid type LUs. Figure 3 shows a scheme of the considered case study.
The network is composed by a slack node (i.e., the connection to the main grid, green), plus other
5 (blue) nodes: two with building type LUs connected, and three with microgrid type LUs.
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The model has been implemented with the optimization modeling software LINGO and the
results are presented in the following sub-sections. Due to the high-computational burden, each
problem runs in about 4 to 6 min.

5.1. The Available Data and Demands

The upper level represents the AGG and emulates the LUs’ behavior in order to determine and
distribute the demand reduction. The considered power production from renewables for the different
local users (only from PV plants) is reported in Figure 4, while electrical (L j,t) and thermal (DH, j,t)
demands (the latter is considered only for microgrids) of two LUs (one building and one microgrid)
are reported in Figures 5 and 6. Electrical and thermal demands for the other LUs have profiles similar
to those reported in Figures 5 and 6, respectively. Note that a 24 h optimization horizon has been
considered, whereas the time discretization interval is 1 h.Energies 2019, 12, x FOR PEER REVIEW 15 of 24 
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Figure 7. Power reduction at the grid node.

The optimal solution has a power reduction DRt as presented in Figure 7. It highlights that the
power reduction requested at the grid node (MRt) is almost satisfied along the entire optimization
interval, with a slight difference during the first and the last hours due to the absence of renewable power.
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Besides, Figure 8 reports the values for the power exchanged between the main grid and each
LU (D j,t), while Figure 9 shows the optimal results related to the power reduction DAGG, j,t. It can be
noted that the overall power reduction is split in rates which are maintained almost equal along the
whole day. This is mainly due to the presence of the “Assignment Fairness” term in the cost function
minimized in the higher level problem.
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Once the upper-level optimization problem is solved, its solution is used as a reference pattern for
the lower-level decision problems.

5.3. Lower-Level Results: Building-Type LUs

The results of the lower-level optimization problems are presented in Figures 10 and 11. It can be
noted that the power reference pattern set by the AGG is tracked almost exactly in the solution of the
lower-level problems (Figure 10).
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reference values.

Figure 11 presents the electrical balance (51) at each LU where the largest portion of the load is
satisfied by purchasing from the grid since there is not any other power sources but the PV plants and
the storage. Note that, for the sake of simplicity in the representation of the power pattern, the power
exchanged with the storage P̃S, j,t is represented as:

P̃S, j,t = P̃S,inj, j,t − P̃S,abs, j,t j ∈ B, t = 0, . . . , T − 1 (61)

where P̃S,inj, j,t the first term in the r.h.s. represents the power drawn from the storage and injected into
the building, whereas P̃S,abs, j,t represents the power absorbed by the storage.
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5.4. Lower-Level Results: Microgrid Type LU

The second type of LUs are microgrids. They have higher flexibility due to the presence of a larger
pool of energy production technologies. This leads to a solution (Figure 12) which perfectly fits the
reference data.
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reference values.

In Figures 13 and 14 both the electrical (51) and thermal balances (56)are reported, highlighting
the variety of the energy production pool. Specifically, the presence of two microturbines for each of
the three microgrids, one with electrical nominal power of 35 and 65 kW (C30 and C65, respectively).
The fraction of the load satisfied through the energy bought from the grid is definitely lower than in
the case of buildings because the microturbines are co-generative plants, which are able to satisfy also
thermal demands.
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As expected, the higher flexibility of the microgrids provides a better solution in regards to the
objective function, since the electrical profile totally fits the reference one (see Figure 12).

6. Conclusions

Demand response is a subject of utmost importance and it can provide a noteworthy improvement
to the performance of the grid. Of course, this requires the development and the application of viable
and effective approaches for energy management. In this framework, an approach was proposed in this
paper based on a bi-level architecture in which an AGG of consumers plays the role of a higher-level
decision-maker. The problem solved at the AGG level is relevant to the balancing market, and incentives
for LUs (i.e., buildings and microgrids) are considered as well as their flexibility. The higher-level,
representing the AGG, determines the reference values, to be considered by the LUs, minimizing the
overall cost function considered. At the lower level, the local users try to follow the reference values
and, through demand response programs, try to contain their costs and to satisfy their demands.
The microgrids are characterized by higher flexibility with respect to the other LUs (buildings), owing
to the presence of several production plants. The proposed architecture has been developed within
the following assumptions in regards to the (bidirectional) interaction between the two levels. First
of all, the higher level provides the reference patterns for the lower-level problems. Besides, there
is information flow from the lower level to the upper level in regards to the storage initial state and
the maximum affordable reduction for each LU. The application of the presented decision scheme
could be viewed within a receding-horizon framework, in which, at each time step, only the solution
referring to the next time discretization interval is applied. Then, at the next time step, a new solution
to the same problem, concerning an optimization interval of the same length as above, is determined
after having received the information about the current system state. Further developments will
be the implementation of more detailed models for single plants and the use of different renewable
energy sources. Another possible extension could the application of the model to grids with different
architectures to determine if the load flexibility can be improved.
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Nomenclature

Sets:
T = {1, . . . , t} set of time instants;
N = {1, . . . , n} set of indexes associated to the distribution grid nodes;
B = {1, . . . , b} set of indexes associated to LUs of type building;
M = {b + 1, . . . , b + m} set of indexes associated to LUs of type microgrid;
A = B∪M set of the indexes associated to all users;
H j =

{
1, . . . , h j

}
set of indexes associated to the cogeneration plants of microgrid j, j ∈M;

RR j =
{
1, . . . , l j

}
set of indexes associated to the renewable sources of LU j, j ∈ A;

R j =
{
1, . . . , r j

}
set of indexes associated to rooms in building j, j ∈ B.

Decision Variables:
pu,z,t = active power flow for line (u, z) at time t [p.u.];
Pu,z,t = active power flow for line (u, z) at time t [kW];
qu,z,t = reactive power flow for line (u, z) at time t [p.u.];
Qu,z,t = reactive power flow for line (u, z) at time t [kvar];
vu,t = voltage magnitude at node u at time t [p.u.];
δu,t = phase magnitude at node u at time t [p.u.];
D j,t = active power exchange from the node u to the LU at time t [kW];
Q j,t = reactive power exchange from the node u to the LU at time t [kvar];
Pgrid,t = active power exchange form the slack node to the main grid at time t [kW];
Qgrid,t = reactive power exchange from the slack node to the main grid at time t [kvar];
SOC j,t = State of Charge of the storage element j at time t;
QRES, j,t = reactive power from renewables of the j-th LU at time t [kvar];
PS, j,t = active power exchange with the storage of the j-th LU at time t [kW];
QS, j,t = reactive power exchange with the storage of the j-th LU at time t [kvar];
DAGG, j,t = active power decrease requested by the AGG to the j-th LU at time t [kW];
qHP, j,t = electrical power provided by heat pumps in the j-th LU at time t [kW];
L j,t =active power demand of the j-th LU at time t [kW];
T j,t = temperature of the building j at time t [K];
PEL, j,t = power produced from cogeneration plants in microgrid j at time t [kW];
PTH,BOIL, j,t =thermal power produced by the boiler in microgrid j at time t [kW];
PTH, j,t = thermal power produced by the cogeneration plants in microgrid j at time t [kW];
DRt = actual power reduction at the slack node at time t [kW];
CAGG, j,t = incentive that the AGG gives to the generic j-th LU per unit time [€/h];
DLU, j,t = actual power flow (calculated at the lower level) from the grid to the LU j at time t [kW];
T̃i, j,t = temperature of the i-th room of building j at time t [K];
q̃HP, j,t = same physical meaning as qHP, j,t in the lower-level problem [kW];
P̃S, j,t = same physical meaning as PS, j,t in the lower-level problem [kW];
L̃ j,t = same physical meaning as L j,t in the lower-level problem [kW];
Pveh, j,t = power necessary to feed electrical vehicles in the j-th LU at time t [kW];
Pwash, j,t = power necessary to feed washing machines in building j at time t [kW];

Pde f
wash, j,t = deferrable fraction of Pwash, j,t [kW];

QLU, j,t = actual reactive power flow (calculated at the lower level) from the grid to the microgrid j at time t
[kvar];
PEL,h, j,t = active power coming from the cogenerative microturbine h in microgrid j at time t [kW];
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PTH,h, j,t = thermal power produced by the h-th cogenerative microturbine in microgrid j at time t [kW];
PTH,B, j,t = thermal power produced by the (unique) gas-fed boiler in microgrid j at time t [kW];
QRES,l, j,t = reactive power coming from the renewable plant l in microgrid j at time t [kvar];
Parameters
Gu,z = conductance for line (u, z);
Bu,z = susceptance for line (u, z);
CONNu, j = coefficient expressing the connection of LU j and node u;
xMIN = minimum value of a physical quantity x;
xMAX = maximum value of a physical quantity x;
∆ = time interval length [h]
PRES, j,t = active power from renewables of the j-th LU at time t; [kW]
loss j = loss coefficient in the storage of the j-th LU;
CAP j = capacity of the storage of the j-th LU [kWh];

η j
(
PS, j,t

)
= efficiency parameter of the storage of the j-th LU;

ηc, j = charging efficiency parameter of the storage of the j-th LU;
ηd, j = discharging efficiency parameter of the storage of the j-th LU;
QF, j,t = reactive power demand of the j-th LU at time t [kvar];
DAGG,TOT, j = maximum active power decrease over the entire day in the j-th LU [kW];
qE, j,t = active power load without the heat pumps in the j-th LU at time t [kW];
Text,t = external temperature at time t [K];
CTH, j = thermal capacitance in building j [kWh/K];
RTH,ext, j = resistance between building j and the external environment [K/kW];
ηs =heat pump efficiency coefficient;
ηs,heat = heat pump efficiency coefficient in heating mode;
ηs,cool = heat pump efficiency coefficient in heating mode;
σ = constant specifying whether the heat pump operates in heating or cooling mode;
χ = efficiency of the chiller;
PTH,RES, j,t = thermal power produced by renewables in microgrid j at time t [kW];
DH, j,t = thermal demand (heating) in microgrid j at time t [kW];
DC, j,t = thermal demand (cooling) in microgrid j at time t [kW];
PTH,CHI, j,t = thermal power needed to feed the (unique) chiller in microgrid j at time t [kW];
ω = tradeoff coefficient [€/kW2];
a j = parameter of the cost function of the j-th LU [€/h·kW2];
b j = parameter of the cost function of the j-th LU [€/kWh];
c j = parameter of the cost function of the j-th LU [€/h];
MRt = overall (maximal) power reduction at the slack node at time t [kW];
Pgrid,da,t = day-ahead power forecast regarding the slack node at time t [kW];
CMarket,t = benefit from the market for the generic time interval at time t [€/kWh];
C f ee,t = unit cost coefficient at time t [€/kWh];
Ci, j = thermal capacitance of room i in building j [kWh/K];
qi, j,t = electrical power provided by heat pumps in room i in building j at time t [kW];
R̃TH,ext,i, j = thermal resistance between room i in building j and the external environment [K/kW];

Ãext,i, j = entry of the adjacency matrix;
R̃TH,i,r, j = is the thermal resistance between room i and room r in building j [K/kW];

Ãi,r, j = entry of the adjacency matrix regarding rooms i and r in building j;
q̃E, j,t = fixed electrical demand in the lower-level problem in the j-th LU at time t [kW];
ETOT,veh, j = total electrical energy demand for electrical vehicles in the j-th LU [kWh];

P f ix
wash, j,t = fixed fraction of Pwash, j,t [kW];

Ede f
TOT,wash, j = total deferrable energy demand for washing machines in building j [kWh];
µh, j = parameter characteristic of the h-th cogenerative microturbine;
PRES,l, j,t = active power coming from the renewable plant l in microgrid j at time t [kW];
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QD, j,t = fixed amount of reactive power corresponding to the heat pumps and the electric load [kvar];
PTH,RES,l, j,t = thermal power from the l-th renewable energy source in microgrid j at time t [kW];
Objective function:
J = objective function of the AGG optimization problem;
ĴB, j = objective function of building j;
ĴM, j = objective function of microgrid j;
Cinc = cost of providing incentives to the LUs [€];
BDR = benefit from the external grid due to the load reduction [€];
CAF = “Assignment Fairness” [kW2];
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