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Abstract: This study developed a data-driven surrogate model based on a deep neural network (DNN)
to evaluate gas–liquid multiphase flow occurring in horizontal pipes. It estimated the liquid holdup
and pressure gradient under a slip condition and different flow patterns, i.e., slug, annular, stratified
flow, etc. The inputs of the surrogate modelling were related to the fluid properties and the dynamic
data, e.g., superficial velocities at the inlet, while the outputs were the liquid holdup and pressure
gradient observed at the outlet. The case study determined the optimal number of hidden neurons
by considering the processing time and the validation error. A total of 350 experimental data were
used: 279 for supervised training, 31 for validating the training performance, and 40 unknown data,
not used in training and validation, were examined to forecast the liquid holdup and pressure gradient.
The liquid holdups were estimated within less than 8.08% of the mean absolute percentage error,
while the error of the pressure gradient was 23.76%. The R2 values confirmed the reliability of the
developed model, showing 0.89 for liquid holdups and 0.98 for pressure gradients. The DNN-based
surrogate model can be applicable to estimate liquid holdup and pressure gradients in a more realistic
manner with a small amount of computating resources.

Keywords: surrogate model; deep neural network; multiphase flow; horizontal pipe; liquid holdup;
pressure gradient

1. Introduction

The accurate evaluation of multiphase flow has been essential not only for optimum facility designs,
but also for the estimation of transport features in pre-installed pipes. The oil and natural gas industries
require time-consuming experimental analyses, but the flow characteristics, e.g., flow patterns, liquid
holdup, superficial velocities, and pressure gradient, are uncertain. These uncertain parameters are
important for demonstrating transport phenomena but they are linked nonlinearly. A few analytical
models implement closure relationships that depend on experimental data and therefore they have the
limitation of the applicable ranges used in the experimental works. The experiments validated the
numerical simulations with the closure relationships, as well as the mechanistic modules, e.g., OLGA
(Schlumberger, Houston, USA) and Ledaflow (Kongsberg, Norway). However, the detailed designs
of these numerical simulations become complicated, e.g., computational fluid dynamics, and require
a large amount of computing resources and skillful user interactions [1,2].

Many works have validated their effectiveness using the experimental database, e.g., TUFFPDB
(University of Tulsa Fluid Flow Projects Database) and the experimental database of the University
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of Amsterdam. The empirical interpretations proposed different interpolation rules within the
experimental ranges [3–9]. Choi et al. [6] introduced a drift–flux closure relationship to interpolate
the experimental results and estimate the liquid holdup. Their model estimated the liquid holdups
of experimental data from 0.042 up to 0.156 of the mean absolute error. Lee et al. [7] examined the
applicability of the minimum dissipated energy concept to explain the stratified gas–liquid flow in
horizontal pipes and confirmed its usefulness by estimating liquid holdups and pressure gradients.
Luo et al. [9] proposed an empirical power-law model not subject to the experimental ranges to predict
the liquid holdup in vertical gas wells.

Machine learning methods have been actively implemented to predict the multiphase flow
characteristics [10–15]: some studies implemented an artificial neural network [10–12] and
Mask et al. [13] implemented dimensionless parameters to estimate the flow patterns. Kanin et al. [14]
trained a machine learning algorithm to validate the mechanistic models. Mohammadi et al. [15] used
a genetic algorithm to select closure relationships in multiphase flow models. These studies have
focused on securing the most accurate ways to explain the nonlinearity more effectively between input
and output data. Deep neural networks (DNNs), as a class of machine learning techniques, implement
a few hierarchical hidden layers of non-linear transforms and improves the performances of a typical
artificial neural network with one hidden layer [16–19]. The neural networks normalize the input
data such that they can integrate different-scaled data. Added hidden layers reduce the number of
calibrating parameters, thereby it can seek the non-linear relationships among the parameters more
effectively, i.e., deep learning.

An objective of this paper was to develop a DNN framework, i.e., a data-driven surrogate (proxy)
model, to estimate the liquid holdup and pressure gradient for a gas–liquid multiphase flow in
horizontal pipes instead of using numerical simulations. DNN with multiple hidden layers was
applied to secure an accurate empirical relationship between the experimental input factors and the
estimating values. The experimental data were used to validate the reliability, to train the neural
network, and to predict the flow-related parameters.

2. Methodology

The representative parameters used to explain gas–liquid flow characteristics are the liquid
holdup and pressure gradient; the liquid holdup, i.e., the fraction of a part of pipe occupied by
liquid, demonstrates the amount of liquid transported through pipes, while the pressure gradient,
i.e., pressure drop divided by the given length of the horizontal pipe, is essential for designing the
transport facilities. Various empirical correlations have been proposed to explain these parameters,
e.g., Equations (1) and (2) for a horizontal pipe [20–22], but these correlations are challenging to use
due to the complexity and the uncertainty of multiphase flow.
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=
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In Equations (1) and (2), the no-slip liquid holdup (λL) is the ratio of the liquid volumetric flow
rate to the total volumetric flow rate [22]. AP represents the cross-sectional area of pipe and AL is
the cross-sectional area occupied by liquid in the pipe. qL is the flow rate of liquid and qg is the flow
rate of gas. vSL =

qL
AP

is the liquid superficial velocity and vSG =
qg
AP

is the gas superficial velocity.
a1, a2, and a3 are the coefficients for liquid holdup correlation, which are different for different flow

patterns. f is the friction factor related to the pipe diameter (d) and roughness. NFR =
v2

m
gd is the

mixture Froude number, where vm = vSL + vSG (mixture velocity). Ek is a dimensionless kinetic or
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acceleration energy term. ρn is the no-slip density. The no-slip condition occurs where the input
phase-superficial velocities are constant in the course of the gas–liquid flow, e.g., a typical stratified
flow pattern. A homogeneous two-phase flow is defined as the flow structure in which the two phases
travel at the same in-situ velocity while a non-homogeneous flow means the flow structure in which
the mixture physical properties vary across the pipe’s cross-sectional area [22].

The experimental data were from Gokcal [23,24], which considered a viscous oil–air mixed flow
in horizontal pipes, where the viscous oil was Citgo sentry 220 oil with a density range from 833.6 to
884.5 kg/m3 (Table 1). Gokcal [23] investigated various flow patterns while Gokcal [24] investigated
slug flow. The experimental data showed a slip condition since the liquid holdups resulting from
the multi-phase flow experiment were not equal to the no-slip liquid holdups (λL). The total number
of available data was 350: 279 for the supervised training of the DNN, 31 for validating the training
performance, and the other 40 data were for testing the predictability. A reason why 310 training
data were divided into the training and validation sets was to examine any overfitting or underfitting
problems. A data-shuffling process was implemented to split the data. A total of 40 experimental data
that were not used in either training or validation were randomly selected for testing the predictability
(Table 2).

Table 1. Summary of experimental data for the input and the output parameters in the deep neural
network (DNN).

Experimental Data Parameters 1 Number of Data Points

Gokcal [23]

Air and oil (Citgo sentry 220 oil)
ID = 0.0508 m, T = 20.8–38.1 ◦C
ρL = 833.6–884.5 kg/m3, ρG

=1.25–4.5 kg/m3

vSL = 0.01–1.76 m/s, vSG =
0.09–20.3 m/s

Annular (33) 2, annular/slug (4),
stratified wavy (3), slug (120),

elongated bubble (19),
dispersed bubble/slug (4)

183

Gokcal [24]

Air and oil (Citgo sentry 220 oil)
ID = 0.0508 m, T = 20.8–38.1 ◦C
ρL = 833.6–884.5 kg/m3, ρG =

1.12–2.08 kg/m3

vSL = 0.05–0.8 m/s, vSG = 0.1–2.17
m/s

Slug (167)

167

1 ID: Inner diameter, T: Temperature; 2 (number) indicates the number of available experimental data with the
specified flow pattern; The subscripts L, G, SL, SG stand for liquid, gas, liquid superficial velocity, and gas superficial
velocity, respectively.

Table 2. Experimental data and their flow patterns used in the DNN model.

Training Operation
Prediction (Test Set)

Training Validation

Number of Data Points 279 31 40

Flow pattern
Annular (31), annular/slug (3), stratified wavy (3),

elongated bubble (14), dispersed bubble/slug (4), slug
(257)

Annular (4), annular/slug
(1), elongated bubble (5),

slug (30)
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Figure 1 explains how to establish empirical correlations using a backpropagation algorithm
between the input and output data in multi-hidden-layered neural networks (Equation (3); [18,25]).

a(1)i = fa
(∑n

j=1 w(1)
i, j x j + b(1)j

)
, ∀i = 1, 2, 3, · · · , m,

a(2)i = fa
(∑m

j=1 w(2)
i, j a(1)j + b(2)j

)
, ∀i = 1, 2, 3, · · · , h,

ŷi = fa
(∑h

j=1 w(3)
i, j a(2)j + b(3)j

)
, ∀i = 1, 2, 3, · · · , l.

(3)

Figure 1. DNN structure to establish the empirical relationship between the input and the output layer.

In Equation (3), ak
i denotes the value of the ith neuron at the kth hidden layer. fa is an activation

function. w is a weight and b is a bias. x is the value in the input layer and ŷ is the estimated value at
the output layer. Figure 2 depicts the DNN framework consisting of one input, one output, and two
hidden layers in this study. The performance of estimating the output neurons depended on the
design of hidden layers, e.g., the number of neurons in the hidden layers, the activation function,
and the filters.

Figure 2. DNN design to estimate the liquid holdup and pressure gradient. One input layer (X),
one output layer (Ŷ), and two hidden layers (HDNN1 and HDNN2) were implemented.

The input layer (X) was composed of the normalized properties, such as the liquid superficial
velocity, gas superficial velocity, liquid density, gas density, and temperature (see Equation (4)). On the
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other hand, the output layer (Ŷ) had the liquid holdup and pressure gradient. Two hidden layers were
introduced and the effects of setting the number of neurons were examined as a result of changing
the neurons in the hidden layers in terms of the computation cost, i.e., the processing time, and the
validation loss, i.e., the mean square error between the estimated values and the true (experimental)
data for cost function. The number of nodes in the second hidden layer (HDNN2) was assumed to be
half of the node number in the first hidden layer (HDNN1).

xnorm =
x− xMIN

xMAX − xMIN
(4)

In Equation (4), xnorm in X represents the normalized x value, and the subscripts MIN and
MAX are the minimum value and the maximum value of x. The Nesterov accelerated gradient was
introduced as a momentum optimizer (Equation (5); [26]) and the rectified linear unit (ReLU) was used
for the activation function. The training continued until the optimizer converged before 40 epochs.
Some methods, e.g., dropout, batch normalization, and weight regularization, was used to try to fix
the overfitting matter.

θt = γθt−1 + η∇w J(w− γθt−1)

w = w− θt
(5)

In Equation (5), w is the parameter to update, i.e., weight. θt denotes the update vector of the
current time, t. γ is the momentum term that this work set to 0.9. J is a loss function, i.e., cost function,
and ∇w J is a gradient vector of the loss function. η represents the learning rate that was assigned 0.001
in this study. He et al.’s scheme initializes the weights applicable to ReLU (Equation (6); [27]). W is
a set of weights. σ2(W) is the variance of weights and nin is the number of nodes in the previous layer.

W ∼ N
(
0, σ2(W)

)
σ2 = 2

nin

(6)

Three kinds of errors were applied: the root mean squared error (RMSE; Equation (7)),
the percentage error (Equation (8)), and the mean absolute percentage error (MAPE; Equation (9)):

εRMSE =

√
1
n

∑n

i=1
(Yi − Ŷi)

2
, (7)

εPE = 100

∣∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣∣, (8)

εMAPE =
100
n

n∑
i=1

∣∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣∣. (9)

In Equations (7)–(9), εRMSE denotes RMSE, n is the number of output data points, Yi represents the
actual experimental data, and Ŷi are the values estimated using the DNN. The percentage error (εPE)
measures the difference between the predicted and the experimental value, divided by the experimental
value, and expresses the error as a percentage. The MAPE (εMAPE) is the arithmetic mean value of the
percentage errors and is implemented for both the validation and testing sets. The optimum number of
nodes in the hidden layers was determined using the results of the processing time, i.e., training time
to construct the DNN model, and the MAPEs.

3. Results and Discussion

3.1. Design of the Deep Neural Network: The Number of Hidden Neurons

Both performances of training with validation loss and the predictability with the testing dataset
were examined by changing the number of nodes in the hidden layers. Since the node number of the
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second hidden layer was set as half of that in the first hidden layer, the performances were observed
in terms of the number of the first hidden layer from 10 to 1000. The processing time refers to the
training time, i.e., time for constructing the DNN using supervised training. It was measured when the
optimization scheme, i.e., the Nesterov accelerated gradient, converged until 40 epochs, thereby it can
be different with the number of nodes in the hidden layers and the final epoch number. The measuring
computer system was as follows: Intel Xeon CPU E5-1620v3 @3.50GHz, 64GB RAM, and NVIDIA
GeForce GTX 1060 6GB.

Table 3 summarizes the range of the validation loss to evaluate the DNN training performances.
The RMSEs of the validation dataset ranged from 0.0632 to 0.0742 (unitless) for the liquid holdup and
from 615.87 to 903.84 Pa/m for the pressure gradient. The predictability of the pressure gradient was
less than that of liquid holdup; the reasons for this could be the high nonlinearity and complexity of the
pressure gradient. The large range of the pressure gradient, e.g., from 6000 to 8000 Pa/m, caused a high
RMSE such that both the RMSE and MAPE should be considered.

Table 3. Summary of the processing time and the errors for validating the DNN training performances.

Number of Nodes 1

(First Hidden Layer)
Processing Time (s) RMSE MAPE (%)

10–30 116.02–131.49 0.0648–0.0742 (HL)
681.04–838.40 (dP/dL)

9.778–11.015 (HL)
33.564–142.051 (dP/dL)

30–100 128.87–144.19 0.0648–0.0721 (HL)
618.04–773.73 (dP/dL)

9.791–11.170 (HL)
45.690–94.514 (dP/dL)

100–1000 138.16–176.02 0.0632–0.0735 (HL)
615.87–903.84 (dP/dL)

9.376–11.687 (HL)
47.104–75.831 (dP/dL)

1 The number of neurons in the second hidden layer assumes the half of given number in the first hidden layer.
RMSE: Root Mean Squared Error; MAPE: Mean Absolute Percentage Error. HL: liquid holdup (unitless); dP/dL:
pressure gradient (Pa/m) in RMSE

Figure 3 depicts the processing time and the MAPE (εMAPE defined in Equation (9)) of liquid
holdups estimated using the validation data (31 data not used in training). Figure 4 demonstrates
those of the pressure gradient. Both overall trends of processing time increased as the number of nodes
in hidden layers increased. The processing time for less than 100 nodes in the first hidden layer was
not high, but if applying over 100 nodes, the processing time increased dramatically in the case of
predicting the liquid holdup (Figure 3). For the pressure gradient, the trend of processing time was
similar to that of the liquid holdup but the errors fluctuated in the range of 30 to 100 for the number
of nodes in the first hidden layer. The overall trend of errors, i.e., both for the liquid holdup and
pressure gradient, converged after 70 nodes and decreased by up to 30% of the MAPE (Figures 3 and 4).
The errors did not necessarily decrease even when the number of neurons in the hidden layer increased.
This trend of processing time and error shows that the optimum conditions satisfying the acceptable
training time and errors could be contentious because this study assumed several fixed constraints: the
neuron number in the second hidden layer was half that in the first hidden layer and the converging
criterion was limited until the given epoch. Figures 3 and 4 can be used to recommend 70 nodes in
the first hidden layer and 35 nodes in the second hidden layer as the optimum DNN model with the
consideration of the processing time and the training accuracy for both the results of validating the
liquid holdup and pressure gradient.
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Figure 3. Processing time and training accuracy of the liquid holdup (unitless) for the validation data
(31 data points) in relation to the number of nodes in the first hidden layer (HDNN1) in the range of (a)
10 to 30, (b) 30 to 100, and (c) 100 to 1000.
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Figure 4. Processing time and training accuracy of pressure gradients (Pa/m) for the validation data
(31 data points) in relation to the number of nodes in the first hidden layer (HDNN1) in the range of (a)
10 to 30, (b) 30 to 100, and (c) 100 to 1000.

3.2. Prediction Accuracy of the Liquid Holdups and Pressure Gradients

Figure 5 compares the values predicted using the DNN with those of the experimental results; the
proposed DNN implemented 70 nodes in the first hidden layer and 35 nodes in the second hidden
layer. The MAPEs were 8.08% for the liquid holdup and 23.76% for the pressure gradient. The R2

showed a high correlation, i.e., 0.89 for the liquid holdup and 0.98 for the pressure gradient, which was
enough to confirm the robustness of the proposed DNN (Table 4). The predictability of the pressure
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gradients was reliable given the high R2 value, notwithstanding that they had a wide range from 0 to
near 8000 Pa/m in this study. The predictability of the liquid holdup was better or similar to the existing
closure relationships [6,8,10,11], e.g., 3.7%–24.5% [6]. The errors of the pressure gradient were not
less than the results of the previous works, e.g., around 4%–36% [5,7,8]. Since the available data and
the methods in the previous works are different, a direct comparison of the results does not provide
a reliable evaluation. Therefore, the errors and the R2 values, i.e., the correlation between the true and
the estimated values, must examine the reliability of the developed model.

Figure 5. Prediction accuracy of the proposed DNN model: (a) liquid holdup and (b) pressure gradient.
A total of 40 experimental data points, not from within the training and validation data sets, were used
to evaluate the prediction performances.

Table 4. Prediction accuracy of liquid holdups and pressure gradients with the testing dataset (40 data).

Parameter RMSE MAPE (%) R2

Liquid holdup 0.0056 8.07868 0.8855
Pressure gradient 261.6052 23.7609 0.9802

Figure 6 depicts the percentage errors (Equation (8)) with the values estimated from the DNN.
The largest percentage error was 67.23%, for the case of annular flow, with a 0.12 (relatively a small value)
liquid holdup, while that of the pressure gradient was 167.0%, observed for slug flow, with 48 Pa/m
(a small value). Given the definition of MAPE (Equation (9)), the smaller the value of the denominator,
the more the error tends to increase. Five outliers, with percentage errors of 50% or more, influenced
the MAPE; the number of outliers when predicting liquid holdups was 1 and that for pressure gradients
was 4. All singular values were in the zone where the true values were small. Therefore, Figure 6
proves that the developed model could accurately estimate both the liquid holdup and the pressure
gradient, except for the outliers.
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Figure 6. Scatter plot of the percentage errors using the testing dataset: (a) liquid holdup and (b)
pressure gradient.

A notable result is that the DNN-based model can be applicable to reliably estimate the flow
characteristics without time-consuming numerical simulations and user interactions, even though the
flow patterns are various in horizontal pipes. The factors influencing the liquid holdup or pressure
gradient can be different and thereby the separate model composed of different input parameters
can improve the prediction performances. This study discusses the characteristics of gas–liquid
multiphase flows that are easily identified using only five simple input parameters. Obtaining enough
experimental data to improve the DNN workflow is challenging; the time-consuming work and the
complexity of the experimental designs limit the ability to obtain big data suitable for training neural
networks and for improving the predictability under various experimental conditions. This paper is
limited for the case of horizontal flow and a few flow patterns. If the training and testing data with
different flow patterns is enough, a more quantitative analysis would be available that is related to the
effects of flow patterns on the prediction accuracy. Constructing the standard forms of neural networks,
e.g., determination of the optimum activation functions and elements of the neural networks, is still
challenging to obtain to improve the robustness of the deep learning. Enhancement of the neural
network requires the intensive examinations of various activation functions and details of designing
neural networks to yield more reliable predictions.

4. Conclusions

This study developed a noble machine learning approach based on a deep neural network to
evaluate the liquid holdup and pressure gradient of a gas–liquid two-phase flow in a horizontal pipe.
The optimal design of two hidden layers in the neural network was obtained from the comparison
of the processing time and training accuracy. Experimental results with different flow patterns in
a horizontal pipe examined the reliability of the proposed DNN-based surrogate model: the mean
absolute percentage errors were 8.08% for the liquid holdup and 23.76% for the pressure gradient,
while the R2 values were 0.89 for the liquid holdup and 0.98 for the pressure gradient. This study
developed the data-driven surrogate model to accurately estimate both the liquid holdup and pressure
gradient without time-consuming numerical simulations.
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