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Abstract: In this study, reverse electrodialysis power generation using an anisotropic anodic aluminum
oxide membrane with nanopores of two different pore diameters is proposed and experimentally
investigated for the first time. A number of experiments were carried out for various combinations
of concentrations to show that the anisotropic anodic aluminum oxide membrane is superior to the
conventional isotropic membrane. As a result, the highest power density that was measured from
the anisotropic membrane was 15.0 mW/m2, and it was 7.2 times higher than that from the isotropic
membrane. The reasons why the anisotropic membrane is superior to the isotropic membrane are
explained in detail. The experiments on the anisotropic membranes with various active layer lengths
and pore diameters were also conducted for exploring the effects of these engineering parameters on
the power generation performance. As a result, it was shown that the length of the active layer is a
more important engineering parameter than the pore diameter of the active layer. Additionally, it
was also shown that a low concentration solution should be brought into contact with the active layer
side of the membrane whenever an anisotropic membrane is used for reverse electrodialysis.

Keywords: power generation; reverse electrodialysis; anisotropic nanoporous membrane

1. Introduction

Recently, nanoporous membranes have received significant attention for their electrical power
generation by salinity gradient energy, which is available from the difference in salt concentrations
between two aqueous solutions. Nanopores in various nanoporous membranes have ion selectivity
when they are filled with an aqueous solution, so that one kind of ions (i.e., cations or anions) can
pass better than the other kind. For example, silica nanopores preferably pass cations and not anions,
whereas alumina nanopores pass anions better than cations [1,2]. As shown in Figure 1, when the
concentration of the aqueous solution on one side of a nanopore is higher than that on the other,
a natural flow of cations and anions occurs. Ions move from the side with high concentration to the low
concentration side by diffusion. Owing to the ion selectivity of nanopores, flow rates of cations and
anions are not equal, and as a result, an electric current flows in a nanopore. Therefore, electrical power
can be obtained from this electrical current by placing electrodes in solutions. This electrical power
harvesting from the difference in ion concentrations by using ion-selective nanopores in nanoporous
membranes is termed reverse electrodialysis.

Power generation from reverse electrodialysis is simple and does not require any moving structures.
Moreover, it is environmentally friendly and allows obtaining instant power with only two solutions
with different ion concentrations. Thus, reverse electrodialysis has a potential to be used as a power
source for various small and disposable systems [3,4]. Many researchers have investigated power
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generation from reverse electrodialysis using a number of ion selective membranes. These studies
are well summarized in the review paper by Mei and Tang [1]. Guo et al. fabricated an ion selective
polyimide membrane with a single nanopore by using ion-track-etch and conducted experimental
investigation on the power generation of this membrane [5]. They showed that about 26 pW of power
could be produced from the membrane. Kim et al. fabricated silica nanochannels of various heights by
a fabrication process compatible with the standard CMOS process and used those nanochannels for
power generation experiments [6]. As a result, they obtained the highest power density of 7.7 W/m2

from the silica nanochannels. Ji et al. fabricated and investigated charged lamellar nanochannels
cascaded in graphene oxide membranes for reverse electrodialysis [7]. As a result, they obtained the
highest power density of 0.77 W/m2. Siria et al. fabricated and investigated boron nitride nanotubes for
reverse electrodialysis [8]. They showed their nanotubes have a potential to achieve the power density
of 4 kW/m2. Feng et al. investigated reverse electrodialysis in single-layer molybdenum disulfide
(MoS2) nanopores [9]. They found their MoS2 nanopores have a potential to reach the power density
of 106 W/m2.
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Figure 1. Reverse electrodialysis in an anisotropic nanoporous anodic aluminum oxide membrane.

Moreover, since the amount of energy generated by reverse electrodialysis increases in proportion
to the number of nanopores, many studies have been conducted on how membranes with dense
nanopores increase power production. Ouyang et al. fabricated a nanofluidic crystal packed with silica
nanoparticles in a micropore and measured power generation from it [10]. It was shown that nanofluidic
crystals can achieve power generation of 1.17 nW. Choi et al. suggested and experimentally investigated
a nanofluidic reverse electrodialysis platform in which crystallized nanoparticles are geometrically
controlled [11]. It was shown that their nanofluidic platform can achieve power generation of 320 pW.
Kim et al. used a nanoporous anodic aluminum oxide membrane with a membrane diameter of 47 mm,
membrane thickness of 60 µm, and nominal pore radius of 10 nm. Such a membrane produced 542 nW
of power [2].

Nanoporous anodic aluminum oxide membrane can be fabricated by electrochemical oxidation
of an aluminum membrane [12,13]. It has attracted close attention because it is suitable for power
generation by reverse electrodialysis. Nanoporous anodic aluminum oxide membranes are suitable
for reverse electrodialysis being characterized by a highly homogeneous and dense structure with
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straight and parallel nanopores. Today, researchers have focused mainly on isotropic anodic aluminum
oxide membranes with nanopores of a uniform diameter (Figure 2a). However, as previous studies
demonstrate [14,15], isotropic membranes with a small nanopore diameter exhibit excessively high
electric resistance and generate a negligible amount of electric current. On the contrary, nanopores
with a large diameter cause excessively low ion selectivity, equal cation and anion flow rates, and as
a result, no electric current is produced. Evidently, isotropic nanoporous anodic aluminum oxide
membranes have inherent limitations for power maximization.
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Figure 2. Schematic diagrams of nanoporous anodic aluminum oxide membranes for reverse electrodialysis:
(a) isotropic membrane; (b) anisotropic membrane.

In this study, we propose reverse electrodialysis power generation using an anisotropic anodic
aluminum oxide membrane with the nanopores of two different pore diameters (Figures 1 and 2b).
In an anisotropic membrane, the active layer consists of nanopores with a small diameter, causing
sufficient ion selectivity, and a very short length, causing lower electrical resistance. The support layer
consists of nanopores with a large diameter, causing very low electrical resistance, and provides a
structural support for the thin and fragile active layer. In short, it is expected that the anisotropic
anodic aluminum oxide membrane can provide high power generation due to high ion selectivity and
low resistance. Systematic studies on the anisotropic aluminum oxide membrane have not been yet
conducted. Hence, a proof-of-concept experiment is required to showcase that the anisotropic anodic
aluminum oxide membrane is superior to the isotropic membrane.

In this study, power generation from a concentration gradient by reverse electrodialysis
in anisotropic nanoporous anodic aluminum oxide membranes was experimentally investigated.
The experiments were carried out for various combinations of concentrations. The experimental results
were also obtained for the isotropic membranes with the same combinations of concentrations and
were compared to those for the anisotropic membranes. Experiments on the anisotropic membranes
with various active layer lengths and pore diameters were conducted to reveal the effects of these
engineering parameters on the power generation performance. In addition, the anisotropic membranes
have directionality in installation, and the effects of the installation direction on power generation were
also scrutinized.

2. Materials and Methods

Four kinds of anisotropic aluminum oxide membranes (AAO|AM-013-002-B20, InRedox Inc.,
Longmont, CO, USA) were used in this study. One type of an isotropic aluminum oxide membrane was
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also tested in order to compare the performances of the anisotropic and isotropic membranes. Table 1
presents the membrane dimensions. All membranes had a support layer of the same length and pore
diameter. The anisotropic aluminum oxide membrane had a very thin active layer added to the support
layer. The active layer length and pore diameter were examined using several membranes with different
active layer lengths and pore diameters. Figure 3 presents cross section SEM (Scanning Electron
Microscope) images of the anisotropic aluminum oxide membrane used in this study. As demonstrated,
the actual anisotropic aluminum oxide membrane is not as simple as it is shown in Figures 1 and 2b.
In Figure 3a, it is visible that the support layer nanopores with a large pore diameter are connected
to the active layer nanopores with a small diameter. In the case of the isotropic membrane, there is
no active layer, and the cross-section SEM image is similar to Figure 3b. A schematic diagram of
the experimental setup is shown in Figure 4. The membrane was sandwiched between two silicone
rubber plates with round holes of a 2.5-mm radius. Two Ag/AgCl mesh electrodes were constructed
by applying Ag/AgCl ink on silver meshes. Then, each electrode was placed on the plate. Next,
two acrylic structures were attached to the silicone rubber plates to create reservoirs on both sides
of the membrane. The reservoirs were filled with a NaCl solution with ten different combinations
of concentrations (Table 2). The reservoirs on the active layer side and the support layer side of the
anisotropic membrane were filled with low and high concentration solutions, respectively (except
for special cases). During the experiments, both solutions were stirred thoroughly by stirrers so that
both solutions were well mixed. Finally, the output currents from the membrane were measured for
various input voltages using an Electrometer (Source Meter, Keithley Instruments Inc., Solon, OH,
USA). The current was measured each time after a <1% change in the current occurred for 2 min. Each
measurement was repeated four times to ensure the reliability of data. The surrounding temperature
was 25 ± 1 ◦C.

Table 1. Dimensions of the nanoporous aluminum oxide membranes used in the study.

Type
Active Layer Support Layer

Pore Diameter (Da) Pore Length (La) Pore Diameter (Ds) Pore Length (Ls)

Anisotropic membrane 2 nm 1 µm 100 nm 50 µm

Anisotropic membrane 2 nm 2 µm 100 nm 50 µm

Anisotropic membrane 5 nm 1 µm 100 nm 50 µm

Anisotropic membrane 10 nm 1 µm 100 nm 50 µm

Isotropic membrane − 0 µm 100 nm 50 µm
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Table 2. Combinations of ion concentrations used in the study.

Concentrations of Brine NaCl Solution (cH)

0.001 M 0.01 M 0.1 M 0.5 M

Concentrations of dilute NaCl
solution (cL)

0.0001 M O O O O

0.001 M O O O

0.01 M O O

0.1 M O

3. Results and Discussion

It is well known that electricity generation by reverse electrodialysis from the experimental setup
can be represented by an electric circuit (Figure 5a), and the following equation should be satisfied.

V = Vapp + Eredox = Edi f f − IR (1)

where V is the voltage generated in the membrane, Vapp is the applied voltage, Ediff is the diffusion
potential of the membrane, Eredox is the voltage generated by the reactions at the electrodes due
to the difference in solution concentrations between two reservoirs, R is the electrical resistance of
the membrane, and I is the generated current. As Figure 5 shows, the membrane, where reverse
electrodialysis occurs, is equivalent to a series of connections of the electrical voltage source Ediff and
the electrical resistance R. The value of Eredox can be obtained from the following equation, which is
well known in the field of electrochemistry:

Eredox =
RT
zF

ln
(
γcH cH

γcL cL

)
(2)

where R, T, z, F, and γ are the gas constant, temperature, charge number, Faraday constant, and mean
activity coefficient, respectively. Thus, by using Equations (1) and (2), the voltage V generated in the
membrane can be calculated from the voltage Vapp applied to the electrodes by the electrometer. The
diffusion potential Ediff also satisfies the following equation:

Edi f f = (2t− − 1)
RT
zF

ln
(
γcH cH

γcL cL

)
(3)
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where t− is the transference number for the anions and indicates the ion selectivity of the membrane. If
the t− value of the membrane is 1, the membrane passes only the anions and not the cations. When t−
equals 0.5, the membrane passes equally the cations and anions, so that no voltage is generated at the
membrane, as shown in Equation (3). Therefore, the higher the t− number, the greater the diffusion
potential Ediff, the voltage V, and the generated power. Equation (3) is useful for understanding various
trends of the diffusion potential.
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Figure 6 shows a typical voltage–current curve of the anisotropic membrane as measured in the
experimental setup. As the voltage increases, the current decreases linearly. In this voltage-current
curve, the diffusion potential Ediff can be calculated by using the voltage at the point where the
current equals zero. The slope of the voltage–current curve is related to the electrical resistance R
of the membrane, and the electrical resistance can be obtained from the absolute value of the slope.
As depicted in Figure 6, electrical resistance is constant regardless of the amount of the current flowing.
This arises because the concentration profile inside the nanopores is almost independent of the electrical
potential under small electric fields [16–18]; electrical resistance was also constant regardless of the
amount of current flowing. Therefore, the characteristics of voltage–current curve shown in Figure 6
are similar to those presented in the previous studies.Energies 2020, 13, x FOR PEER REVIEW 7 of 15 
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Figure 6. Typical voltage–current curve of the anisotropic nanoporous anodic aluminum oxide
membrane (Da = 2 nm, La = 2 µm, cH = 0.5 M, cL = 0.01 M).

To understand better the power generation characteristics of the membranes, the applied voltage
Vapp and the redox potential Eredox (Figure 5a) can be simplified by considering them equivalent to
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the load resistance Rload (Figure 5b). Then, the load resistance Rload and power generation P in the
membrane can be determined as follows:

Rload =
Vapp + Eredox

I
=

V
I

, P = VI (4)

Figure 7 shows a typical power–resistance curve of the anisotropic membrane measured in the
experimental setup. The power reaches its maximum when the load resistance is equal to membrane
resistance (Rload = R). Maximum power generation Pmax is calculated from Equations (1) and (4)
as follows:

Pmax =
E2

di f f

4R
(5)

Therefore, Pmax increases with an increase in the diffusion potential Ediff and a decrease in the
electric resistance R.

Reverse electrodialysis power generation aims to maximize power generation using the least
amount of a membrane material. Therefore, the power density Pmax/A, where A is the membrane area,
has to be maximized. As shown in Equation (5), the maximum power density Pmax/A increases with an
increase in the diffusion potential Ediff and a decrease in the area specific membrane resistance RA.
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Figure 7. Typical power generation–electrical load curve of the anisotropic nanoporous anodic
aluminum oxide membrane (Da = 2 nm, La = 2 µm, cH = 0.5 M, cL = 0.01 M).

Especially, the area specific resistance is the resistance per unit membrane area. It can be obtained
by multiplying the resistance and the membrane area. Contrary to the resistance, which depends
on the size of the membrane, the area specific resistance is independent to the size of the membrane.
Therefore, it is considered as one of the membrane properties, and it is widely used for characterizing
the electrical resistance of the membrane, as shown [19,20].

The main purpose of this study is to show the anisotropic membrane is superior to the isotropic
membrane. Therefore, it is important to compare the power densities of the anisotropic membrane
and the isotropic membrane, because the power density is the most important performance index.
In addition, the power density strongly depends on the dilute solution concentration and the brine
solution concentration. Therefore, it is needed to compare the power densities for various combinations
of concentrations. In addition, as shown in Equation (5), the power density is the function of the
diffusion potential and the area specific resistance. Therefore, for understanding various results on the
power density, it is also needed to compare the diffusion potentials and the area specific resistances of
the anisotropic membrane and the isotropic membrane for various combinations of concentration.
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Therefore, in Figure 8, comparisons of power densities Pmax/A, diffusion potentials Ediff, and
area specific resistances RA of the anisotropic membrane and the isotropic membrane for various
combinations of brine solution concentrations cH and dilute solution concentrations cL are presented.
As mentioned in the Section 2, four kinds of anisotropic membranes were experimentally investigated.
However, in Figure 8, only the results for the anisotropic membrane with active layer pore diameter
Da of 2 nm and active layer pore length La of 2 µm are presented, because this anisotropic membrane
shows highest power density.

As shown in Figure 8a, the highest power density that was measured from the anisotropic
membrane is 15.0 mW/m2. This value was measured when the brine solution concentration was
0.5 M, and the dilute solution concentration was 0.01 M. On the other hand, the highest power density
that was measured from the isotropic membrane is 2.1 mW/m2 at the brine solution concentration of
0.5 M and the dilute solution concentration of 0.01 M. As a result, the highest power density of the
anisotropic membrane is 7.2 times higher than that of the isotropic membrane. This power density
from the anisotropic membrane is also much greater than the power density of 7 mW/m2 from another
anodic aluminum oxide isotropic membrane presented in the previous study [2]. Therefore, for reverse
electrodialysis, the anisotropic membrane is much superior to the isotropic membrane.
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Why is there a very large difference in power densities between two membranes? As shown in
Figure 8b, at cH of 0.5 M and cL of 0.01 M, the diffusion potentials of the anisotropic membrane and
the isotropic membrane are 53 mV and 18 mV, respectively. The presence of the active layer increases
the diffusion potential by factor of 2.9. On the other hand, as shown in Figure 8c, the area specific
resistances of the anisotropic membrane and the isotropic membrane are 0.047 Ωm2 and 0.039 Ωm2,
respectively. The presence of the active layer increases the area specific resistance by a factor of 1.2.
As shown in Equation (5), the power density is proportional to the square of the diffusion potential
and is inversely proportional to the area specific resistance. As a result, the positive effect of the active
layer on the power density caused by an increase in the diffusion potential is much greater than the
negative effect caused by increase in the area specific resistance. Therefore, the power density of the
anisotropic membrane is much greater than that of the isotropic membrane.

According to Equation (3), the transference number for the anions t can be calculated from the
diffusion potential, the brine solution concentration, and the dilute solution concentrations. At cH of 0.5
M and cL of 0.01 M, transference numbers for the anions of the anisotropic membrane and the isotropic
membrane are 0.79 and 0.60, respectively. Therefore, the ion selectivity is increased by the presence
of the active layer [6], and the transference number increases as the influence of the surface charges
of the nanopore on the ion transport phenomena grows larger compared to the influence of the bulk
ion concentration in the nanopore. As a result, the transfer number increases with the increase of the
Dukhin number, which is used to characterize the ratio of bulk to surface charge carriers. The Dukhin
number Du of the nanopore is given as [2]

Du =
4σ

DF(cH + cL)
(6)

Here, σ and D are the surface charge density and the pore diameter, respectively. As shown in
Equation (6), when cH and cL are fixed, the Dukhin number increases with a decrease in the pore
diameter. In the present study, the pore diameter of the active layer is much smaller than that of the
support layer. As a result, Dukhin number for the active layer is much larger than that of the support
layer, and the transference number of the active layer is larger than that of the support layer. Therefore,
the ion selectivity is increased by the presence of the active layer.

It is worth noting that the very thin active layer with the pore length of 2 µm causes the dramatic
change in the transference number from 0.60 to 0.79 at cH of 0.5 M and cL of 0.01 M [15,17], and the ion
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selectivity increases rapidly when the pore length is changed from 0 to several micrometers. On the
other hand, the ion selectivity increases very slowly when the pore length is changed from several
micrometers to several tens of micrometers [17]; it is because the ion selectivity strongly depends of
the pore length for the short nanopores where the Goldman approximation is not satisfied. On the
other hand, the ion selectivity is almost independent to the pore length for the long nanopores where
the Goldman approximation is satisfied. Therefore, the active layer with the pore length of several
micrometers can effectively increase the ion selectivity of the membrane. As a result, the diffusion
potential and the power density of the anisotropic membrane are much greater than those of the
isotropic membrane, respectively.

It is also worth noting that there is only a small difference in the area specific resistances between
the anisotropic membrane and the isotropic membrane at cH of 0.5 M and cL of 0.01 M. Generally, the
electrical resistance of the nanopore is proportional to the pore length and is inversely proportional
to the square of the pore diameter. Therefore, if the active layer length of the anisotropic membrane
is equal to the support layer length, the area specific resistance of the anisotropic membrane should
be much greater than that of the isotropic layer due to the presence of the active layer. In this case,
the power density of the anisotropic membrane is much smaller than that of the isotropic membrane.
However, in the present study, the active layer length is smaller than one-twentieth of the support
layer length. In this case, the presence of the active layer does not significantly increase the area specific
resistance of the anisotropic membrane. As a result, the power density of the anisotropic membrane
can be much greater than that of the isotropic membrane.

In addition, Figure 8 also indicates the following characteristics of the diffusion potential, area
specific resistance, and power density for the anisotropic membrane.

(a) As shown in Figure 8b, the diffusion potential increases with an increase in the brine solution
concentration cH and a decrease in the dilute solution concentration cL. This is explained by the
fact that the diffusion potential value is proportional to the logarithm of the ratio of the brine and
dilute solution concentrations (Equation (3)).

(b) In Figure 8b, the diffusion potentials for the same concentration ratio of 10 are marked by the red
circles. In general, as the concentration increases, the ion selectivity decreases, because Dukhin
number shown in Equation (6) decreases as the concentration increases. Therefore, the diffusion
potential decreases with an increase in the concentration under the fixed concentration ratio
(Equation (3)).

(c) As shown in Figure 8c, the area specific resistance decreases with an increase in the brine and
dilute solution concentrations. It is because the number densities of the cations and anions in
the nanopores increases proportionately to the concentration. Since the active layer, which has
higher resistance compared to the resistance of the support layer, is in contact with the dilute
solution, the resistance is more affected by changes in the dilute solution concentration than in
the brine solution concentration.

(d) As depicted in Figure 8a, the power density under the fixed dilute solution concentration increases
monotonically as the brine concentration increases. This is because the power density increases
with an increase in the diffusion potential and a decrease in the area specific resistance (Equation
(5)). On the other hand, under the fixed brine concentration, there is an optimal dilute solution
concentration that maximizes the power density. If the dilute solution concentration is excessively
high, the power density is low since the diffusion potential is negligible. If the dilute solution
concentration is excessively low, the power density is low too because the area specific resistance
is excessive.

The characteristics of the diffusion potential, area specific resistance, and power density for
the isotropic membrane shown in Figure 8 are similar to those for the anisotropic membranes,
as mentioned previously.
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In Figure 8a, it was found that the highest power density of the anisotropic membrane is 7.2 times
higher than that of the isotropic membrane at cH of 0.5 M and cL of 0.01 M. However, this does
not mean that the anisotropic membrane has greater power density than the isotropic membrane
regardless of the brine solution concentration and the dilute solution concentration. Therefore, it
is worth comparing power densities of the anisotropic membrane and the isotropic membrane for
various combinations of the concentrations. To clearly compare the power densities, the ratio of the
power density of the anisotropic membrane to that of the isotropic membrane was calculated for
various combinations of the concentrations from the results shown in Figure 8a and is presented in
Figure 9. As shown in the figure, the power density of the anisotropic membrane is higher than that of
the isotropic membrane for all combinations of concentrations. This is mainly because the diffusion
potential of the anisotropic membrane is much higher than that of the isotropic membrane regardless
of the concentrations. Nonetheless, an increase in resistance due to the presence of the active layer is
not significant.
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So far, it was successfully shown that the anisotropic membrane is better than the isotropic
membrane for reverse electrodialysis. However, to make better power generators with the anisotropic
membranes, it is important to investigate the effects of engineering parameters on the power generation
performance of the anisotropic membrane. Therefore, the influence of some engineering parameters
on the power generation performance was tested by comparing the anisotropic membranes with
two different active layer lengths and three different active layer pore diameters. Figure 10 shows a
comparison between the power densities, diffusion potentials, and area specific resistances for the
anisotropic membranes with two different active layer lengths and three different active layer pore
diameters. As shown in Figure 10a, the change in the power density caused by the change in the length
of the active layer is more than the change in the power density caused by the change in the nanopore
diameter of the active layer. Therefore, the length of the active layer is a more important engineering
parameter than the nanopore diameter of the active layer. The following facts were also recognized
from Figure 10:

(a) The effects of the dilute and brine solution concentrations on the power density, diffusion potential,
and area specific resistance of the anisotropic membrane are similar regardless of the length of
the active layer and the pore diameter the active layer.

(b) As shown in Figure 10b, the longer the length of the active layer, the higher the diffusion potential.
It is because the ion selectivity of the active layer increases as the active layer length increases,
as explained earlier. On the other hand, the diffusion potential tends to increase with a decrease
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in the nanopore diameter. It is because the ion selectivity of the active layer is greater when
the nanopore diameter of the active layer is smaller, due to higher Dukhin number shown in
Equation (6).

(c) As depicted in Figure 10c, the longer the length of the active layer with high electrical resistance,
the higher the electrical resistance. On the other hand, the larger the nanopore diameter of the
active layer, the larger the area specific resistance.

In the results so far, as mentioned in Section 2 and shown in Figures 1 and 2b, a low concentration
solution filled the reservoir on the active layer side of the membrane. However, with the anisotropic
membrane not being symmetrical, the results depended on the installation direction. In Figure 11,
the results for the first installation direction with a low concentration solution filling the reservoir on
the active layer side are compared with the results for the second installation direction with a high
concentration solution filling the reservoir on the active layer side. As shown in Figure 11, the first
installation direction has a larger diffusion potential, similar area specific resistance, and a larger power
density compared to the second configuration. This is mainly because the concentration of the solution
in the active layer is lower when a low concentration solution filled the reservoir on the active layer
side of the membrane. As a result, the Dukhin number is smaller, and the ion selectivity is greater
for this case. Therefore, whenever an anisotropic membrane is used for reverse electrodialysis, a low
concentration solution should be brought into contact with the active layer side of the membrane.
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4. Conclusions

In this study, power generation from concentration gradient by reverse electrodialysis in anisotropic
nanoporous anodic aluminum oxide membranes was experimentally investigated for the first time.
The experiments were carried out for various combinations of concentrations. The experimental results
showed that the power density of the anisotropic membrane was higher than that of the isotropic
membrane for all combinations of concentrations. The highest power density that was measured from
the anisotropic membrane was 15.0 mW/m2, and it was 7.2 times higher than that from the isotropic
membrane. It is because the positive effect of the active layer on the power density, caused by increase
in the diffusion potential, is much greater than the negative effect caused by increase in the area specific
resistance. The ion selectivity of the active layer increases rapidly when the pore length is changed
from 0 to several micrometers because the ion selectivity strongly depends on the pore length for the
short nanopores where the Goldman approximation is not satisfied. As a result, the diffusion potential
of the anisotropic membrane is much greater than that of the isotropic membrane. On the other hand,
there is only a small difference in the area specific resistances between the anisotropic membrane and
the isotropic membrane, because the active layer length is smaller than one-twentieth of the support
layer length. As a result, the power density of the anisotropic membrane is much greater than that of
the isotropic membrane. The experiments on the anisotropic membranes with various active layer
lengths and pore diameters were conducted. It was shown that the length of the active layer is a more
important engineering parameter than the nanopore diameter of the active layer. Additionally, it was
shown that a low concentration solution should be brought into contact with the active layer side of
the membrane whenever an anisotropic membrane is used for reverse electrodialysis.
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