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Abstract: Vortex-induced oscillations offer a potential means to harness hydrokinetic energy even at
low current speeds. In this study, we consider a novel converter where a cylinder undergoes angular
oscillations with respect to a pivot point, in contrast to most previous configurations, where the
cylinder undergoes flow-induced oscillations transversely to the incident free stream. We formulate
a theoretical model to deal with the coupling of the hydrodynamics and the structural dynamics,
and we numerically solve the resulting nonlinear equation of cylinder motion in order to assess the
performance of the energy converter. The hydrodynamical model utilizes a novel approach where
the fluid forces acting on the oscillating cylinder are split into components acting along and normal to
the instantaneous relative velocity between the moving cylinder and the free stream. Contour plots
illustrate the effects of the main design parameters (in dimensionless form) on the angular response
of the cylinder and the energy efficiency of the converter. Peak efficiencies of approximately 20% can
be attained by optimal selection of the main design parameters. Guidelines on the sizing of actual
converters are discussed.

Keywords: energy harnessing; energy converter; flow-induced oscillations; vortex-induced vibration;
flow–structure interaction; hydrodynamics; vortex shedding; cylinder wake

1. Introduction

Driven by the need to increase the percentage of renewable sources in the energy-production
mix during the last decade, much research has focused on the development and advancement in
science, technology, and engineering of wave, wind, and current energy converters, primarily in
offshore installations [1–4]. Conventional devices harnessing the kinetic energy of water currents are
usually based on propeller-like turbines, which require relatively high current speeds of above 1 m/s.
Unlike conventional turbines that operate with a single degree of freedom to rotate around a horizontal
or vertical axis, a novel concept is to develop hydrokinetic energy converters based on flow-induced
oscillatory motions of their power-generating elements. These oscillatory motions have two degrees
of freedom, which allows for a more versatile operation; such converters can be designed to exploit
high-amplitude and/or high-frequency oscillations to generate significant power, even at currents
speeds as low as 0.1 m/s, with minimal disruption of the environment. Thus, novel energy converters
based on oscillating structures may, at least in principle, avoid some of the limitations of conventional
technologies and expand the availability of resource fields.

The concept of exploiting flow-induced oscillatory motions of bluff bodies for energy harnessing
has received considerable attention in recent years. Various aspects and pertinent phenomena have
been investigated in several studies with a view to assess the performance and optimize the design of
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hydrokinetic energy converters [5–21]. Probably, the best-known concept is the VIVACE converter,
which was developed by the Marine Renewable Energy Laboratory (MRELab) in the University of
Michigan [5,6]. Its operation relies on the fundamental phenomenon of vortex-induced vibration;
when an elastically-mounted cylinder is placed normal to a cross-flow, it can respond to periodic
fluid forcing induced by vortices regularly shed in its after-body wake if the excitation frequency is
close to the natural vibration frequency of the structure [22–24]. Vortex-induced vibration has been
known for a long time and is mostly unwanted, as it compromises the integrity of equipment, such
as the heat-exchanger tubes, oil risers, offshore platforms, transmission cables, cable-stayed bridges,
tall chimneys, etc. due to fatigue of the structural components. On the other hand, vortex-induced
vibration may be purposefully enhanced in hydrokinetic energy converters where electricity can be
produced, e.g., by electromagnetic induction through the oscillating components.

More recently, a hydrokinetic energy converter has been proposed which is essentially
a modification of the original configuration of the VIVACE converter; in the new design, the cylinder
is attached to a supporting arm so that it can undergo vortex-induced angular oscillations with
respect to a pivot point [25]. In this new configuration, the length of the cylinder-supporting arm
offers an additional design parameter to control the system’s response and, thereby, the efficiency
of hydrokinetic energy conversion. This device has been shown to have potential benefits [25].
However, its performance depends on several design parameters, including the dimensions of the
oscillating cylinder and its mass moment of inertia, arm length, damping, stiffness, and current speed,
whose influences have not been studied in detail and are thus unknown. The objective of the present
study is to make a preliminary assessment of the effects of these design parameters on the performance
of the hydrokinetic energy converter through the development of a time-domain model to cope with
the flow–structure interaction. Based on this preliminary study, a suitable prototype of the converter
can be designed and put to test.

2. Physical and Mathematical Models

2.1. Physical System

Figure 1 depicts a three-dimensional schematic of the hydrokinetic energy converter considered
in the present study. The system consists of a cylindrical rod, or simply the ‘cylinder’, which is attached
from its top to a supporting arm. The supporting arm can rotate about a fixed pivot bar (pivot point) so
that the main cylinder can perform one-degree-of-freedom rotational oscillations about the pivot bar
while the supporting arm maintains the cylinder in an upright position. The cylindrical rod is placed
perpendicular to a fluid stream with a uniform velocity profile, i.e., the cylinder is considered to be
sufficiently far from obstructing solid boundaries. Elastic springs are attached to the supporting arm
on one end and to a fixed frame on the other end. The springs provide restoring forces that keep the
cylinder at a neutral position with the supporting arm parallel to the incident fluid stream. There are
two possible configurations where the pivot point can be positioned either downstream or upstream
of the main cylinder. For economy of presentation, we consider in this study only the case where
the pivot point is located downstream, since this configuration yields higher efficiencies, as shown
in previous experiments [25]. Unsteady hydrodynamic forces due to periodic vortex shedding can
induce rotational oscillations of the main cylinder about the pivot point. For a long cylinder with no
free-end effects, we assume that the flow and the fluid forces are homogeneous along the cylinder axis,
so that it suffices to consider a two-dimensional segment for the analysis of the cylinder motion. In the
following, pertinent structural dynamics and hydrodynamics models are developed in order to study
the hydrokinetic to mechanical energy conversion.
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Figure 1. Schematic of the hydrokinetic energy converter under study.

2.2. Kinematics

We start with some equations describing the kinematics of the problem, which are essential
in order to formulate the hydrodynamical model, which is based on the relative velocity between
the cylinder and the free stream. Figure 2 presents the two-dimensional geometrical model of the
problem under consideration. In this configuration, the pivot point is located downstream of the
cylinder. The supporting arm has length r and the main cylinder has diameter D. At a random
time, the supporting arm forms an angle θ with respect to the free stream of speed U∞ while
the main cylinder moves with linear velocity Uc, arbitrarily taken towards the top. The angle
is considered positive in the clockwise direction. The linear velocity of the cylinder is Uc = rθ̇,
where θ̇ is the angular velocity (the overdot denotes a derivative with respect to time). The relative
velocity between the moving cylinder and the free stream is the vector difference ~Urel = ~Uc − ~U∞,
where the angle between ~U∞ and ~Uc is α + β = π/2 + θ. Thus, the magnitude of the relative velocity
is Urel =

√
U2

∞ + U2
c + 2U∞Uc cos(α + β). Substituting Uc = rθ̇ and cos(α + β) = − sin θ results in

Urel = U∞

√
1 +

(
rθ̇

U∞

)2

− 2
rθ̇

U∞
sin θ. (1)

Vector diagramm for hydrokinetic energy
converter

December 29, 2019
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Figure 2. Two-dimensional representation of the cylinder kinematics under study.

The angle β between ~Urel and ~Uc will be needed in order to project the resolved hydrodynamic
forces acting along and normal to the relative velocity vector into the direction of cylinder motion.
Using the definitions of internal and external products between vectors, we can express the cosine and
sine of β as
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cos β =
~Urel · ~Uc

‖~Uc‖‖~Urel‖
=

Uc + U∞ sin θ

Urel
, (2a)

sin β =
~Urel × ~Uc

‖~Uc‖‖~Urel‖~ez
=

U∞ cos θ

Urel
. (2b)

Above,~ez is the unit vector along the the axis of the cylinder. Finally, we can express the above
equations as functions of the angular displacement θ and the angular velocity θ̇ as

cos β =
rθ̇ + U∞ sin θ√

U2
∞ + 2rθ̇U∞ sin θ +

(
rθ̇
)2

, (3a)

sin β =
U∞ cos θ√

U2
∞ + 2rθ̇U∞ sin θ +

(
rθ̇
)2

. (3b)

2.3. Structural Dynamics

The main cylinder is assumed to undergo angular oscillations, θ(t), due to the action of periodic
hydrodynamic forcing. The two-dimensional motion of the cylinder is governed by the balance of
angular momentum about the pivot point,

Ir θ̈ + c θ̇ + k θ = rFθ , (4)

where Ir is the mass moment of inertia about the pivot point, c is the equivalent structural damping
factor, k is the stiffness of the torsional spring, r is the length of the supporting arm, and Fθ(t) is the
projection of the total hydrodynamic force in the direction of the instantaneous linear velocity of
the cylinder. Note that the linear springs have been replaced by an equivalent torsional spring that
provides a restoring force, as shown in Figure 2. It is assumed here that the mechanical restoring
force from the springs varies linearly with angular displacement of the supporting arm, and that the
structural damping is proportional to the velocity of the arm. By introducing the natural undamped
frequency of the system, fN = (1/2π)

√
k/Ir, and the ratio of structural damping to the critical

damping, ζ = c/2
√

kIr, we can rewrite the equation of cylinder motion as

Ir θ̈ + 4π Irζ fN θ̇ + 4π2 Ir f 2
Nθ = rFθ . (5)

The mass moment of inertia of a cylinder rotating about a pivot point can be calculated using
the parallel axis theorem, Ir = Ic + mr2, where Ic is the mass moment of inertia of the same
body rotating about a parallel axis passing through the center of mass and m is the body mass.
For a long homogeneous cylinder, Ic =

1
8 mD2 and, therefore, Ir = m

(
r2 + 1

8 D2
)

. The left-hand side
of Equation (5) is an ordinary (linear) differential equation of second order. The non-linearity of the
problem rests on the right-hand side of Equation (5), which represents the hydrodynamic forcing.

2.4. Hydrodynamics

The hydrodynamic force per unit spanwise length, F, exerted on the cylinder is decomposed into
components, denoted FR and FL, respectively along and normal to the instantaneous relative velocity
between the oscillating cylinder and the free stream, as shown in Figure 3. It should be noted that at an
arbitrary instant, F generally forms an angle with respect to the free stream. According to this model,
the longitudinal component FR always resists the cylinder motion, whereas the normal component FL acts as
an excitation source due to lift in vortex-induced vibration. This hydrodynamical model has been previously
tested for the simpler case of rectilinear oscillations of an elastically-mounted circular cylinder transverse to
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a free stream, i.e., the classical problem of vortex-induced vibration [26,27]. It has also been experimentally
verified that FR always does negative work on the cylinder, whereas FL primarily does positive work [28].

U∞

θ

Uc

−U∞

Urel

α

β

FR

FL

F

FRθ

FLθ

U∞

L

θ

Uc

−U∞

Urel

α

pivot upstream

2

Figure 3. Vector diagram of the hydrodynamic forces acting on a cylinder that performs angular
oscillations about the pivot point.

The reaction force incorporates fluid damping due to drag and fluid inertia due to added mass,
which can be modeled by the well-known Morison’s equation [29], i.e.,

FR(t) = 1
4 ρπD2CAU̇rel +

1
2 ρDCDU2

rel, (6)

where ρ is the density of the fluid, and CA and CD are the added mass (inertia) and drag coefficients,
respectively. The novelty here is that Morison’s equation is used to model the reaction force acting in
the direction of the instantaneous relative velocity between the vibrating cylinder and the free stream.
A velocity-squared-dependent quasi-steady drag force is applicable for separated flows dominated by
the convection of vorticity in the wake [30]. The above reaction force introduces strongly non-linear
terms in the total force, as will be seen further below. It should also be noted that FR depends on the
motion of the cylinder; thus, it is time-dependent.

The excitation force is modeled as a periodic function of time

FL(t) =
1
2

ρU2
∞DCL sin (2π fvst), (7)

where CL is the lift coefficient and fvs is the vortex shedding frequency. That is, vortices that regularly
shed in the wake at the shedding frequency induce a periodic force on the cylinder. A major
complication in vortex-induced vibration is that the actual vortex shedding frequency depends not only
on the Reynolds number as for a fixed cylinder, but also on the frequency of cylinder motion. A large
number of studies have been devoted to examining vortex synchronization for cylinders undergoing
both forced and free oscillation; e.g., see the review in [23]. Many studies have shown that the frequency
of vortex shedding varies between 1

2 fv0 < fvs < fv0, where fv0 is the vortex shedding frequency from
a fixed cylinder at the same Reynolds number, often referred to as the Strouhal frequency. In the
following, we will assume that the vortex shedding frequency remains within the above range.

2.5. Flow–Structure Interaction

The next step is to introduce the resolved hydrodynamic forces from Equations (6) and (7) into the
equation of cylinder motion (5). Note that~FR is collinear with ~Urel while~FL is normal to ~Urel. Thus, we project
~FR and~FL into the direction of ~Uc to obtain~FRθ and~FLθ, respectively. From Figure 3, we see that

Fθ = FLθ − FRθ = FL sin β− FR cos β, (8)
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where β is the angle between ~Urel and ~Uc. Substitution of the cosine and sine of β from (3a) and (3b),
respectively, and of FR and FL from (6) and (7), respectively, into Fθ and of the result into the equation
of cylinder motion (5), after some lengthy manipulations, leads to[

Ir +
1
4

ρπD2r2CA
U2

∞

U2
rel

(
rθ̇

U∞
− sin θ

)2]
θ̈+[

c +
1
4

ρπD2r2CA
U2

∞

U2
rel

(
θ̇ sin θ − rθ̇2

U∞

)
cos θ +

1
2

ρDr2CDUrel

]
θ̇+

kθ − 1
2

ρDrCDUrelU∞ sin θ =

1
2

ρU2
∞Dr

U∞

Urel
cos θCL sin (2π fvst) .

(9)

With the aid of the above equation, we can examine the actions of the different terms. The terms
inside the square bracket on the first line represent the total inertia of the system. Similarly, the terms
on the second line represent the total damping of the system, and the terms on the third line represent
the total stiffness of the system. The term on the fourth line, i.e., on the right-hand side of the equation,
represents the excitation function. It can be seen that the hydrodynamics modify the properties of the
structural system. Terms involving CA contribute to both the inertia and damping of the system. In fact,
fluid inertia introduces strong non-linearity in the equation of motion, as the corresponding terms
involve the squared angular velocity. Terms involving CD contribute to the damping and stiffness
of the system. It is interesting to note that the CA term on the second line of Equation (9) introduces
small negative damping on the average (instantaneously takes both positive and negative values).
However, the CD term on the second line of Equation (9) is solely positive and dominates the fluid
damping. It should also be noted that for small angles, sin θ ≈ θ and the term on the third line of
Equation (9) can be expressed as

(
k− 1

2 ρDLCDUrelU∞

)
θ; thus, fluid damping due to drag lowers the

total stiffness of the system.
The equation of cylinder motion (9) can be cast in the following non-dimensional form[

m∗
(

1 +
1

8L∗2

)
+

(
L∗ θ̇∗

U∗
− sin θ∗

)2

U∗−2
rel CA

]
θ̈∗+[

4πm∗ζ
(

1 +
1

8L∗2

)
+

(
θ̇∗ sin θ∗ − L∗ θ̇∗2

U∗

)
cos θ∗U∗−2

rel CA +
2
π

U∗U∗relCD

]
θ̇∗+

4π2m∗
(

1 +
1

8L∗2

)
θ∗ − 2

π

U∗2

L∗
U∗relCD sin θ∗ =

2
π

U∗2

L∗
cos θ∗

U∗rel
CL sin

(
2πS f U∗τ

)
,

(10)

where time is normalized with the undamped natural oscillation period of the system, i.e., τ = t/TN =

fNt, i.e., the dependent variables become θ∗ = θ/(1 radian), θ̇∗ = θ̇/ fN , and θ̈∗ = θ̈/ f 2
N .

The relative velocity is normalized with the free-stream velocity, U∗rel = Urel/U∞. The resulting
equation of motion (10) includes the following dimensionless parameters:

non-dimensional arm length, L∗ =
r
D

,

mass ratio, m∗ =
m

1
4 πρD2

,

damping ratio, ζ =
c

2
√

kIr
,

reduced velocity, U∗ =
U∞

fN D
.

Equation (10) is highly non-linear. Thus, for the purposes of the present study, we numerically
solved the equation of cylinder motion using the MATLAB ODE Suite, which provides a powerful
yet easy to implement tool for numerical solution of ordinary differential equation initial value
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problems [31]. The solution of Equation (10) requires as input the hydrodynamic parameters, CA, CD,
CL, and S f , where S f = fvsD/U∞, which is the actual Strouhal frequency of vortex shedding driving
the motion of the cylinder.

2.6. Power Extraction Efficiency

The instantaneous power P(t) delivered to the energy converter can be calculated from the product
of the driving force times the velocity of the cylinder, P(t) = Fθ(t)Uc(t) = Fθ(t) rθ̇(t). The term Fθr
can be obtained from the left-hand side of the equation of motion (5) so that

P(t) =
(

θ̈ + 4πζ fN θ̇ + 4π2 f 2
Nθ
)

Ir θ̇. (11)

The average power over many cycles of motion is a practical metric to quantify the performance of
the energy converter. Assuming that the motion of the cylinder is periodic with period T, the average
power can be calculated from the following integral

〈P〉 = 1
T

∫
T

P(t)dt =
1
T

∫
T

(
θ̈(t) + 4πζ fN θ̇(t) + 4π2 f 2

Nθ(t)
)

Ir θ̇(t)dt. (12)

The first and third term in the integral make a zero net contribution, so that only the second
term contributes to the net power. Typically, the average power delivered to the energy converter is
normalized by the power of the fluid stream within the frontal area of the cylinder [7], which yields
the following efficiency metric:

η =
〈P〉

1
2 ρDU3

∞
=

2π2m∗ζ
U∗3

(
L∗2 +

1
8

)
1

T∗

∫
T∗

θ̇∗2(τ)dτ. (13)

In order to compute the efficiency of the hydrokinetic energy converter, the time series θ̇∗(τ)
appearing in the integral can be obtained from the numerical solution of Equation (10).

3. Results

In this section, we present results from simulations with the non-linear model developed in the
previous section (Equation 10) in order to assess the effect of the basic mechanical parameters of the
hydrokinetic energy converter on its efficiency (Equation 13). In particular, we consider variations of the
dimensionless arm length L∗, mass ratio m∗, damping ratio ζ, and reduced velocity U∗. A normalized
time step of δτ = 5× 10−4/U∗St was employed for the integration of Equation (10) for more than
200 cycles of oscillation, for which the resulting motion typically (but not always) settled to a steady
periodic oscillation about the neutral position at zero angle.

The values of the hydrodynamic parameters employed in the present study, which are required as
input parameters for the solution of the equation of cylinder motion, Equation (10), are listed in Table 1.
These values were selected on the basis of the following considerations. The added mass coefficient takes
the theoretical value for inviscid potential flow about a circular cylinder, as discussed in [32]. The drag and
lift coefficients are higher than their corresponding values for a non-oscillation cylinder in the same range of
Reynolds numbers due to vortex synchronization in the wake of oscillating cylinders [22,23]. The Strouhal
number is assumed to have a constant value lower than the corresponding value for a non-oscillation
cylinder, as discussed earlier; the selected value is typical around peak amplitude for cylinders undergoing
vortex-induced vibration transversely to a free stream [23]. The above choices of the hydrodynamical
parameters should be considered appropriate for smooth cylinders placed in uniform free streams at
Reynolds numbers for which the boundary layer on the cylinder is laminar and transition to turbulence
occurs in the shear layers after flow separation, that is, Re ≈ 103− 5× 105.
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Table 1. Hydrodynamic parameters employed in the present study.

CA CD CL S f

1.00 1.35 1.50 0.155

Sets of simulations were carried out where the reduced velocity U∗ is varied at set values of
L∗, m∗, and ζ. Due to the large size of the test matrix, initially, we present results in the form of
contours in the 2D parameter space of U∗ and each one of {L∗, m∗, ζ} for some representative values
of the other two parameters from the set. The cylinder response is characterized by the amplitude
of angular deflection, denoted θo, and the amplitude of displacement transversely to the free stream,
A∗ = L∗θo. It should be noted that θ0 is dimensionless, since the equation of motion has been solved
for the dimensionless angular displacement θ∗, which corresponds to angles in radians normalized
with 1 radian. The efficiency of hydrokinetic energy conversion is characterized by the efficiency η.

3.1. Effect of Arm Length

Figure 4 shows contours of θo, A∗, and η as functions U∗ and L∗ at fixed values of m∗ = 5 and
ζ = 0.01. It can be observed that θo strongly depends on both U∗ and L∗. At a fixed L∗ value, θo

attains a peak level that corresponds to U∗ ≈ St−1 with the precise value being slightly dependent on
L∗, i.e., U∗ at peak shifts to slightly higher values with L∗. This may be attributable to the decrease
in the total stiffness of the system due to the drag term

(
k− 1

2 ρDLCDUrelU∞

)
θ, which increases in

proportion to L. The peak level of θo gradually decreases with increasing L∗, while a global maximum
of 1.26 is attained at the lowest L∗ value. The variation of the transverse amplitude A∗ as a function
of only U∗ also displays a peak at the same location as θo does, but, conversely to the variation of θo,
peak levels of A∗ increase with L∗, particularly in the range of low L∗ values; in the range of high L∗

values, A∗ is almost independent of L∗. The power efficiency η attains a global maximum value of
7.5% at (L∗, U∗) = (0.5, 5.6), where θo also displays a global maximum. However, it should be noted
that global maxima in θo and η do not coincide in general.
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Figure 4. Contours of θo and η as functions of L∗ and U∗ for m∗ = 5 and ζ = 0.01.
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In Figure 5, we present contours of θo, A∗, and η as functions U∗ and L∗ at fixed values of
m∗ = 50 and ζ = 0.01. Both θo and A∗ display similar variations to those in the previous case
with (m∗, ζ) = (5, 0.01), but their peak levels decreased by approximately half (cf. Figure 4).
Yet, the conversion efficiency η approximately doubled for (m∗, ζ) = (50, 0.01), reaching a global
maximum of 18.1% at (L∗, U∗) = (0.5, 6.4). In addition, the peak level of η as a function of U∗ at fixed
L∗ does not depend strongly on L∗ any more, unlike at m∗ = 5. However, the range of appreciable
response and high efficiency shrunk by approximately half, now limited in the range 5.5 < U∗ < 7.5 at
m∗ = 50 compared to 4 < U∗ < 10 at m∗ = 5.
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Figure 5. Contours of θo and η as functions of L∗ and U∗ for m∗ = 50 and ζ = 0.01.

Figure 6 shows contours of θo, A∗, and η as functions U∗ and L∗ at fixed values of m∗ = 5 and
ζ = 0.1, i.e., damping has now been increased. The contours are quite similar to those for ζ = 0.01,
but now, peak levels θo and A∗ have decreased, whereas peak levels of η have increased, reaching
a global maximum of 22.1% at (L∗, U∗) = (0.5, 5.6). , Finally, we can see in Figure 7 that using
high values of both mass and damping ratios of (m∗, ζ) = (50, 0.1) results in a reduction in both the
cylinder response and the efficiency of the converter comparatively to all previous cases with lower
m∗ or ζ values.
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Figure 6. Contours of θo and η as functions of L∗ and U∗ for m∗ = 5 and ζ = 0.1.
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Figure 7. Contours of θo and η as functions of L∗ and U∗ for m∗ = 50 and ζ = 0.1.

3.2. Effect of Mass Ratio

The results presented in the previous section show that the mass ratio m∗ has a marked effect
on the response and efficiency of the energy converter. In order to get a more detailed picture of the
influence of variations in m∗, we carried out series of simulations with varying m∗ at a constant value
of ζ and L∗. A value of L∗ = 0.8 was employed, as the above simulations have shown that the best
efficiencies are obtained at the lowest L∗ values. Figure 8 shows contours of θo and η as functions U∗

and m∗ at fixed values of L∗ = 0.8 and ζ = 0.01. It can be seen that θo strongly depends on both U∗

and L∗. At a fixed m∗ value, θo peaks at a specific U∗ value that depends on m∗. In the lower m∗ range,
the location of peak θo quickly shifts to higher U∗ values. Moreover, the U∗ range of significant θo

response is wide but shrinks with increasing m∗. We have observed that irregular oscillations about a
non-zero mean deflection angle appear in the higher U∗ range; for instance, at m∗ = 1.644, oscillations
about a mean deflection angle appear for U∗ > 7.2, which might be related to the shift in the location of
peak θo at low m∗ values. The efficiency attains a sharp peak as a function of U∗ and a global maximum
η of 18.8% is obtained at (m∗, U∗) = (74, 6.4). In addition, a local maximum η of 14.4% is obtained at
(m∗, U∗) = (19.7, 6.2). Note that axes in the η contours have been modified to better depict results in
the neighborhood of interest. Figure 9 shows corresponding results for L∗ = 0.8 and ζ = 0.1. It can be
observed that a maximum η of 19.5% is now obtained at (m∗, U∗) = (5.24, 5.8), i.e., the optimum m∗ in
terms of efficiency decreases as ζ increases while keeping L∗ and ζ fixed. This can be attributable to
competing indirect and direct effects; a nonlinear decrease in angular response θo and a linear increase
in power efficiency with m∗.
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Figure 8. Contours of θo and η as functions of U∗ and m∗ for L∗ = 0.8 and ζ = 0.01.
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3.3. Effect of Damping Ratio

In this section, we focus on the effect of the damping ratio ζ on the cylinder response and energy
conversion efficiency guided by the results of the foregoing sections. For the first series of simulations, we
employ a value of m∗ = 75, which corresponds to the optimum m∗ in terms of efficiency at a low value of
the damping ratio of ζ = 0.01 (see Figure 8). Figure 10 shows contours of θo and η as functions of U∗ and ζ

for (L∗, m∗) = (0.8, 75). It can be seen that θo decreases with increasing damping ratio as might be expected.
However, η attains a global maximum of 19.0% at (U∗, ζ) = (6.4, 0.0083), which does not correspond to
the lowest value of the damping ratio. Nevertheless, the maximum efficiency is attained at a relatively low
value of the damping ratio, which is not practical for energy converters where high damping is required
in the electromechanical converter (conversion from mechanical to electrical energy). On the other hand,
employing a comparatively low value of m∗ = 5 yields appreciable response along with high efficiencies
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over a wide range of reduced velocities, as can be seen in Figure 11. A global maximum of η of 19.4% is
obtained at (ζ, U∗) = (0.10, 5.8) for (L∗, m∗) = (0.8, 5).
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Figure 10. Contours of θo and η as functions of U∗ and ζ for L∗ = 0.8 and m∗ = 75.
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Figure 11. Contours of θo and η as functions of U∗ and ζ for L∗ = 0.8 and m∗ = 5.

4. Discussion

In this section, the results from simulations regarding the performance of the kinetic-energy
harvester based on vortex-induced angular oscillations of a circular cylinder are discussed in a broader
context. It should be pointed out that the objective of this preliminary work is to assess the effect of the
main design parameters related to the conversion of the kinetic energy of a free stream to mechanical
energy of the oscillating cylinder (aerodynamic efficiency). The contours of the efficiency η as a
function of pairs of the parameters {L∗, m∗, ζ, U∗} show that high aerodynamic efficiencies up to 22.1%
can be achieved via appropriate selection of the main design parameters. The estimated aerodynamic
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efficiency is comparable to that of the original VIVACE based on purely transverse vortex-induced
oscillations of the cylinder, which can reach 33.2%. However, we expect that the actual efficiency of the
new converter will be higher than estimated here, as we have employed a conservative value for the
excitation lift coefficient CL. Previous experimental assessment of the novel energy harvester yielded a
maximum aerodynamic efficiency η of 31.4% [25]. It should be noted that η was not directly measured,
but estimated from motion results using a theoretical formula for a micro-electric generator. In that
experiment, a rigid cylinder made of polypropylene was tested in a water channel, which is estimated
to have a mass ratio of the order of 10. However, the actual values of mass and damping ratios were
not reported in [25]. Taking into account the working hypotheses and assumptions employed here,
our theoretical study yields comparable results and complements the previous experimental work on
the effects of mass and damping ratios, thereby providing useful guidance on the best design of the
hydrokinetic energy harvester.

The model results clearly indicate that the highest efficiencies are obtained at the smallest L∗ values.
Therefore, the swept frontal area of the proposed converter will be smaller by at least 10% (estimated
from A∗ contours in Figure 6) and the power density of the proposed converter will be increased
comparatively to the original VIVACE. The actual performance of the energy harvester might be
somewhat different because, for small arm lengths, the motion of the cylinder differs more from a
rectilinear oscillation than for large arm lengths. It is known that the frequency of vortex shedding is
related to the wake width behind the cylinder, which inevitably depends on the amplitude of transverse
oscillation of the cylinder [33]. Although the present hydrodynamic model takes into account only
the relative velocity between the moving cylinder and the free stream, it is implicitly assumed—in
the selection of the Strouhal number value—that vortex synchronization in the cylinder wake will be
similar to that in the case of oscillations of the cylinder purely transverse to the free stream. To our
knowledge, this has yet to be studied in the published literature. Nonetheless, we have found that the
trends in the contours of the aerodynamic efficiency remain similar for different values of the Strouhal
number and, hence, our findings might be expected to hold true in general.

At a given value of the mass ratio m∗, there is an optimal value of the damping ratio ζ.
Conversely, at a given ζ value, there corresponds an optimal m∗ value. This might suggest that
there exists an optimal value of the combined mass–damping parameter m∗ζ for which the efficiency is
maximized. For purely transverse vortex-induced vibrations, the best efficiencies have been obtained at
approximately constant m∗ζ values of 0.2 at Re = 3800 and 0.35 at Re = 104, according to a parametric
study in [19]. For our results presented in Figures 8–11, m∗ζ spans a range between a minimum value
of 0.005 to a maximum value of 18.75. Over this very wide range, the efficiency attains peak values
of approximately 19% at four points listed in Table 2. All four points fall within a comparatively
narrow range of m∗ζ values with an average value of 0.6. This strongly supports the suggestion of an
optimal m∗ζ value. The optimal value of combined mass–damping and the attained best efficiency in
the present study are both higher than in reference [19], which might be attributable to the different
configurations considered, i.e., angular vs. purely transverse oscillations.

Table 2. Best efficiency points of the novel hydro-kinetic energy converter for L∗ = 0.8.

m∗ ζ m∗ζ η

74 0.01 0.74 0.188
5.24 0.1 0.524 0.195
75 0.0083 0.6225 0.190
5 0.1 0.5 0.194
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In practice, the mechanical energy captured by the harvester will typically be converted into
electrical energy by a generator. For a first approximation, this conversion process can be modeled as
added damping in the system [6]. Thus, the total system damping is composed of

ζ = ζstruct + ζloss + ζgen, (14)

where ζstruct is the structural damping of the energy converter (kinetic-to-mechanical energy
conversion), ζloss is the damping associated with power losses in the bearings, belts, etc.
of the converter (transmission system), and ζgen is the damping associated with the electrical loads
(mechanical-to-electrical energy conversion). Only the ζgen part of the damping provides harnessed
energy. Therefore, a practical system requires relatively high values of ζgen combined with minimal
values of ζstruct and ζloss. It should be noted that the efficiencies reported here are based on the
total damping, i.e., in the efficiency computation using Equation (13) ζ should be replaced by ζgen.
Therefore, actual efficiencies will be slightly lower than reported. However, this is partly compensated
by the underestimation of efficiency due to the use of a conservative excitation coefficient.

Given the considerations regarding damping given in the foregoing paragraph, the total damping
of the system—including the electrical generator—has to be high, which necessitates the use of
relatively low m∗ values. As an example, taking m∗ = 5, a nearly optimized design will have a total
damping of ζ = 0.10. Interestingly, the latter value is close to the optimal one (ζ = 0.12) of the VIVACE
converter at its best efficiency point [6]. At lower mass ratios, e.g., m∗ < 3, the operation of the system
might be compromised, as we have noted that small amplitude oscillations about a non-zero mean
angle can be induced.

In turn, the total damping ratio of the system should correspond to the optimal one for the given
mass ratio (ζ ≈ 0.1 for low m∗ values). Since the damping ratio depends on the system damping c
(including damping in mounting structure, losses, and electric loads) as well as on the stiffness k of
the supporting springs, the actual values of c and k have to be jointly determined, taking into account
the fact that peak efficiencies are achieved within a narrow band of reduced velocities (U∗ ≈ 5.8).
These requirements result in the following relationship:

U∗ζ =
cπU∞

kD
⇒ k ≈ 5.4

U∞

D
c. (15)

Pairs of (c, k) values can be selected on the basis of the above relationship, taking into account the
practical limits of these mechanical parameters for the intended size of the equipment. This allows for
a versatile mechanical design of the converter without directly affecting the aerodynamic efficiency.

At Reynolds numbers lower than assumed here, i.e., Re < 103, the aerodynamic efficiency might
be expected to be limited by viscous effects. As a consequence, the minimum diameter of the cylinder
is determined by the minimum required Reynolds number for a specific fluid (air or water) at a given
wind or current speed. In practice, this factor does not pose a substantial constraint even at low speeds.
For example, the minimum diameter for a wind speed of 0.5 m/s is 3 cm and that for a water current
speed of 0.1 m/s is 1 cm. The weight (mass) of the oscillating structure is determined by the mass
ratio requirement discussed in the previous paragraph (m∗ ≈ 5). The requirement for low mass
ratios results in very lightweight structures in air, which makes the use of the proposed kinetic-energy
converter impractical in this case. Therefore, the use of the converter mostly aims to harness the
hydro-kinetic energy of water currents. Based on the above considerations, Table 3 shows calculations
of the power generated (per unit length of the cylinder) by the novel hydro-kinetic energy converter at
representative current speeds and cylinder diameters.
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Table 3. Estimated power output per unit span of the cylinder generated by the novel hydro-kinetic
energy converter.

U∞ (m/s) D (cm) m (kg/m) P (mW/m)

0.1 1 0.39 1
0.1 5 9.82 5
0.1 25 245.4 25
0.5 1 0.39 125
0.5 5 9.82 625
0.5 25 245.4 3125
1.0 1 0.39 1000
1.0 5 9.82 5000
1.0 25 245.4 25,000
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