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Abstract: This paper refers to the issue that mainly appears in distribution grids, where renewable
energy sources (RES) are widely installed. In such grids, one of the main problems is the coordination
of energy production time with demand time, especially if photovoltaic energy sources are present.
To face this problem, battery energy storage units (ESU) can be installed. In recent years, more and
more attention has been paid to optimizing the use of ESU. This paper contains a simple description
of available solutions for the application of ESU as well as an original proposal for selecting the
optimal location and control of ESU. The ESU selection method is based on the use of a genetic
algorithm and the ESU control method utilizes the fuzzy logic. The combination of the aforementioned
methods/algorithms of ESU application is named an integrated algorithm. The performance of the
proposed algorithm was validated by multivariate computer simulations with the use of the real
low-voltage grid model. The DIgSILENT PowerFactory environment was employed to develop the
simulation model of the integrated algorithm. The proposal was utilized to improve the voltage level
in the distribution grid and to install the optimal number of ESU. Based on daily load variations
for selected load profiles, it was shown that after the ESU application the voltage deviations in the
analyzed network were significantly limited. Moreover, the analysis proves that both the location of
ESU in the grid and the control of their active and reactive power are important from the point of
view of reducing overall costs.

Keywords: energy storage units; genetic algorithm; fuzzy logic; low-voltage grid analysis

1. Introduction

Distribution grid operators face numerous challenges. One of them is installing renewable energy
sources (RES) deep inside the distribution grid, which in recent years has been the cause of problems
with failure to meet the required voltage value [1]. Solar panels (which are an example of RES) appear
more and more among prosumers as micro-sources. The greatest production of power by photovoltaic
(PV) sources often occurs during the period of low load of the grid. This phenomenon is the cause of
voltage problems, especially in low-voltage (LV) grids. In consequence, the power produced by RES
cannot be fed into the grid from time to time due to the voltage value that exceeds the permissible
upper limit in the connection node.

In order to eliminate the above-mentioned problems, the grids can be rebuilt. It can be done by the
increase of the cross-sectional area of the low-voltage power lines conductors—such a method reduces
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the unit resistance of the line and, hence, reduces values of the voltage drop/deviation in the grid.
Another method is decreasing the length of the low-voltage power lines—it decreases their impedance.
However, this method requires the use of more transformer substations in order to localize them as
close as possible to the prosumers. In [2] the search for optimal radial topology is presented that
minimizes the total length of the distribution lines and improves load balancing. However, this solution
is time-consuming, expensive, and does not rule out the occurrence of further problems related to
the installation of more RES. The paper [3] shows the possibility of using an auxiliary voltage source
installed in series in the power line. However, this solution can be used only for a certain group of
cases due to the limited possibility of controlling the voltage level. Another solution is the use of
energy storage units (ESU) that manage the flow of active and reactive power in the power grid [4].

ESU, through the possibility of storing energy in them, can contribute to the elimination of the
negative impact of stochastic variability of power generated by RES [5–7]. As a consequence, they can
reduce voltage problems by balancing the active and reactive power production and demand, as well
as decrease the grid load peaks, while reducing power losses and eliminating overload of transmission
elements [8,9]. However, the cost associated with the installation of ESU remains high. Therefore, it is
rational to focus on their effective utilization, i.e., meeting the set goals at the lowest possible cost
of installation. The factor influencing the effective use of ESU is the appropriate selection of their
rated power, capacity, and location in the grid [10]. Another important element of the optimization is
proper control of stored energy, which allows for the efficient operation of ESU through appropriate
management of the generated/consumed active and reactive power [11].

The location of ESU in the distribution grid is a problem considered in many publications.
The following methods are used to select the location of ESU. Analytical methods (AM) are often
applied but they do not use advanced optimization tools—they operate very well when the optimization
does not contain many variables. Most often, due to the problem complexity, which may be to find the
location of the energy storage unit in the grid, the analytical methods are only used for determining the
size of the technical parameters of ESU, not the location [12–15]. This is because in the optimization
process of a complex issue (such as optimization of the location of ESU in the grid) the analytical
method will achieve a solution for the local optimum, not reaching the global optimum. Mathematical
programming (MP) uses mathematical models, in particular optimization models, to facilitate decision
making. This method allows to find the optimal solution for simplified models. In order to indicate the
location and selection parameters of ESU in the power grid, the following cases of the mathematical
programming are used. Linear programming (LP) is the most effective method of searching for
the global maximum, where the model and constraints are linear. The LP method is used in [16],
where the number and size of the ESU are optimized by using the criterion of keeping the voltage
in the right range at nodes in the power grid. In [17], in the optimization process, the cost criterion
is used, the components of which are defined linearly. Mix-integer linear programming is used for
selecting the size and location of energy storage units in [18,19]. Semidefine programming (SDP) is
one of the convex optimization methods (the function defined by the user which will be minimized or
maximized) to the intersection of the cone of positive semidefined matrices with the affine space, i.e.,
spectrum. SDP is used in [20] for the appropriate placement of ESU in the grid for specific ESU costs.
Another example of this method use is published in [21]. In [22], mix-integer semidefine programming
is used. Programming the second-order cone programming (SOCP) is a convex optimization in
which a linear function is minimized at the intersection of an affine linear manifold with the product
second-order Cartesian cones. This method is used in [23] in order to find the location and size of ESU
where the target is ensuring the required voltage level in the power grid, reduction of losses and costs
related to the purchase of external energy networks, with the lowest possible investment outlay for
ESU. Examples of the application of the SOCP method can be found in [24,25]. Dynamic programming
(DP) is simplifying a complicated problem by breaking it down into simpler partial problems in relation
to several parameters. If subordinate problems can be recursively implemented in bigger problems,
also using dynamic programming methods, then there is a dependency between the value of the parent
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problem and the values of the subproblems. This method is used in [26] to minimize the grid operation
costs as well as investment costs for ESU. In the field of the mathematical optimization, stochastic
programming (SP) is a framework for modeling the optimization problems that come with uncertainty.
The goal is to find a solution that is possible for all or nearly all possible data cases and maximizes the
functions of decision and random variables. The SP method is used to determine the location and size
of ESU in the power grid, what is presented in [27]. Another method of searching for the appropriate
location of ESU in the power grid is an exhaustive search (ES), which is generally used in discrete
problem cases. A proper solution is sought in the entire field of solutions. Unfortunately, the search
is time consuming because every combination has to be checked. This method applies only in cases
where the domain solutions to the problem are small. The exhaustive search is presented in [28] in
the process of selection of the smallest possible ESU to obtain the required voltage in the grid. Lately,
heuristic methods (HM) have also been used to search for the location of ESU. HM use the imitation of
phenomena occurring in nature, i.e., adaptation of the population to the environment, finding food by
swarms of individuals in order to find the optimal solution. They do not guarantee finding a global
optimal solution, but allow to get a faster solution close to the optimal one in the entire searched space.
Moreover, the risk of ‘stopping’ the method on local optimum does not exist here, as in the case of
analytical methods. Heuristic methods are used for related issues with the location of ESU in the grid
as well. Among them, the following can be distinguished: genetic algorithms (GA) applied in [29–31],
nondominated genetic algorithm (NSGA II) for multicriteria optimization used in [32]; particle swarm
optimization (PSO) analyzed in [33]; artificial bee colony (ABC) considered in [34]; bat algorithm
(BA) used in [35,36] as well as simulated annealing (SA) probabilistic technique of approximating the
global optimum of a given function. The latter is often used when the search space is discrete [37].
These algorithms are sometimes a symbiosis of various heuristic methods, e.g., in [38] the method using
genetic algorithms with the particle swarm method. Clustering methods (CM) are utilized very rarely
for optimization of the location of ESU. The CM are applied to select the location of ESU [39], in which
they are used for identifying groups of similar objects in multidimensional data sets. They complement
other methods by narrowing down the field of research. The search assumed the installation of only
one energy storage unit—the method allows to determine the approximate solution in which a given
location criterion and knowledge about the available grid operation are considered. The following
general principles/criteria can be included to reach the voltage at the required level [40]: location of
ESU in nodes where there is the lowest voltage level, location of ESU in nodes that are far from the
point of the mains supply (high impedance of the power line), location of ESU in nodes to which large
loads are connected. Another criterion is maximizing energy production from renewable sources—it
requires the location of the ESU at a short distance in the sense of impedance values, from the power
source. In some cases, to decrease the current in the overloaded power line (especially during the
peak load), the use of ESU at the end of the transmission element (in the context of power flow) is
considered. The expert method and other methods mentioned above for voltage improvement may
be based on the voltage sensitivity matrix specified for individual nodes in the grid [41,42]. In the
process of ESU selection, the matrix of losses in individual grid elements is also used, which provides
information on the features of the analyzed grid [43].

Regarding the ESU operation control, the following methods are distinguished: simple controller
(SC), which is most often based on using the PID controller. The PID controller operates in a loop
(feedback), where the error value is calculated. The purpose of the regulation is to minimize the error
value by proper feeding of the signal to the input of the regulated object. In [44,45] the voltage deviation
in a network node is minimized. In [46] the authors use the PID control of the ESU cooperating with
the wind farm to minimize power fluctuations output of wind farms as well as for grid frequency
control. The simple controller operates quite well where there is one control object. On the other
hand, if the error value is influenced not only by one object (in this case a lot of ESU in the power grid
influence the voltage level), the control process is extended in time. Another method is to use a fuzzy
controller (FC). It imitates human skills to solve complex problems in a simple way. Fuzzy control is
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an alternative to classic control, especially where absolute precision is not required, but the simplicity
of the solutions and speed of operation are key factors. Examples of the application of fuzzy regulation
for ESU control is given in [47,48]. The next method is the use of artificial neural network controller
(ANNC). ANNC is made up of elements called neurons, programmed to form a response to the external
excitation signal. The neuron is the basic network building block. Its name comes from its biological
counterpart, but in this case, the neuron is modeled by a small segment of computer code, called a
perceptron. Several neurons stay connected together in a network that learns during the training
process how to respond to the excitation signal. It is an iterative process—it involves giving a signal
and comparing the response with the reference to make a correction. The advantage of this solution
is the possibility of an ongoing ‘learning’ controller in the context of the decisions made, even if the
working environment changes. An example of the use of neural networks for control of ESU for
cooperation with RES is presented in [47]. The use of ANNC in the ESU control process turns out to be
particularly useful when, for example, load profiles change, but the disadvantage of the solution is
the time needed by the controller to ‘learn’. It is possible to apply the mathematical programming
method—such a method is used in [49]. Stochastic dynamic programming is applied to mitigate
fluctuations in the power generated by the wind farm taking into account the ageing process of the
ESU depending on the number of cycles performed and the depth of discharge. It is a technique of
modeling and solving decision-making problems under conditions of uncertainty. Stochastic dynamic
programming, closely related to stochastic programming and programming dynamic, represents the
investigated problem in the form of the Bellman equation. The aim is to develop a policy to define the
optimal performance in the face of uncertainty. The control of the ESU can also be implemented using
heuristic methods, i.e., in [50] the control of the network operation is realized using nondominated
sorting genetic algorithm.

The above-mentioned works and papers did not involve the integrated optimization of the
location of ESU and the optimization of the parameters of energy storage controllers based on a specific
configuration. The goal of the authors is to create an algorithm that optimizes not only the location of
ESU but also the operation of ESU in various configurations, taking into account the control of active
and reactive power to be generated by ESU. The proposed solution is universal and precise for the
application in the process of selection and control of the ESU, in order to obtain the desired voltage
levels in low-voltage power grids. With the foregoing in mind, the optimization referred to the ESU
are based mainly on the genetic algorithm implemented in PowerFactory software [51,52]. The paper
also includes the development of a multiparameter energy storage controller. The controller is based
on fuzzy logic, the parameters of which are matched for each location configuration. An evolutionary
algorithm is used to select the appropriate parameters of the controller.

2. Materials and Methods

2.1. Description of the Proposed Algorithm for Selection of ESU Location

The selection of the location of ESU is based on the maximization of the objective (fitness) function
f (further described by the (5)). In the genetic algorithm, the best-adapted individuals achieve the
highest values of the objective function. Optimization is performed based on daily load variations,
where the change is modeled with a dt = 15-min time step, hence number of steps (analysis period) is
equal to T = 96 (per 24 h).

The population P was assumed to consist of kmax individuals (k is the number of successive
individuals in the population; for all symbols see Appendix A). Each individual consists of one
chromosome with n-genes. The representing matrix of the P population is described as follows:

P =


i1,1 . . . i1,n
. . . . . . . . .

ik_max,1 . . . ik_max,n

 (1)
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The gene i, where i = 1 . . . n corresponds to a specific grid node in which it is possible to install
an energy storage unit. Values that can be assigned to genes are natural numbers and correspond
to a defined type of ESU. The objective function f is calculated for each individual from the whole
population—the group of results Ft are described by:

Ft =


f1
. . .

fk_max

 (2)

Selection of ESU is carried out using the so-called roulette method that results in a random
selection of individuals taking into account the value of their objective function. Individuals with the
highest function of adaptation have the best chance of contributing to the creation of a new generations.
New individuals are created using genetic operators, such as crossing and mutation. In each step
the new generation is verified, i.e., individuals are discarded after sorting with the lowest degree
of adaptation.

The degree of an individual’s adaptation is determined by the value of the function F. It can be
represented as the sum of the Ft calculated after each power flow, for discrete time t = < 1, T >:

F =
T∑

t=1

Ft (3)

The condition for stopping the algorithm is reaching the maximum generation number dmax.
The best individual, whose objective function achieved the highest value of f max, is selected from all
populations occurring throughout the reproductive period:

fmax= max


f1,1 . . . fk_max,1
. . . . . . . . .

f1,d_max . . . fk_max ,d_max

 (4)

After selecting the best individual, gene values in its chromosome are assigned as the final solution.
A flow chart of the operation of the described genetic algorithm used for selecting the location of ESU
in the grid is shown in Figure 1.

2.2. The Objective Function

The practice related to the operation of the distribution grid shows that currently in medium-voltage
(MV) and low-voltage (LV) grids the main problems are related to failure to meet the required voltage
value and problems with overloading transmission elements. The requirements related to voltage are
included as components of the objective function in further consideration. An additional component
of the objective function is to reduce active power losses in the grid. These requirements should be met
with the lowest possible cost associated with the installation of ESU. The goal of the optimization is
maximizing the value of the objective function described by the following formula:

f = C− p2 −

T∑
t=1

(p1 + p3 + p4) (5)

where:

p1—component responsible for the cost of failure to meet the required level of voltage in the grid (€),
p2—component responsible for the cost of installing ESU in the grid (€),
p3—component responsible for power losses in the grid (€),
p4—component responsible for the cost of overloading the elements of the grid (€),
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C—constant used to take positive value of f.
Energies 2020, 13, x FOR PEER REVIEW 6 of 28 

 

 

Figure 1. A diagram of the genetic algorithm used to select the location of energy storage units (ESU) 

in the distribution grid (for symbols see Appendix A). 

2.2. The Objective Function 

The practice related to the operation of the distribution grid shows that currently in 

medium-voltage (MV) and low-voltage (LV) grids the main problems are related to failure to meet 

the required voltage value and problems with overloading transmission elements. The requirements 

related to voltage are included as components of the objective function in further consideration. An 

additional component of the objective function is to reduce active power losses in the grid. These 

requirements should be met with the lowest possible cost associated with the installation of ESU. 

The goal of the optimization is maximizing the value of the objective function described by the 

following formula: 

𝑓 = 𝐶 − 𝑝2 − ∑(𝑝1 + 𝑝3 + 𝑝4)

𝑇

𝑡=1

 (5) 

where: 

p1—component responsible for the cost of failure to meet the required level of voltage in the grid (€), 

p2—component responsible for the cost of installing ESU in the grid (€), 

p3—component responsible for power losses in the grid (€), 

t = t+1

Defining nodes where ESU 

installation is possible

Randomly creating the first population

 d = 1

Calculating the function Ft 

for each individual of the population

t = 1

Updating fmax

Setting the best configuration

STOP

Selection

Crossing, mutation

Creating a new population

d = d + 1

START

Yes

No

Yes

No

t > T

d > dmax

F = Ft 

T

t = 1

Figure 1. A diagram of the genetic algorithm used to select the location of energy storage units (ESU)
in the distribution grid (for symbols see Appendix A).

The value of the objective function (5) is negatively influenced. The costs related to failure to
keep the required voltage level in the grid and the related costs with the installation of ESU have to
be reduced.

Component of the objective function responsible for the voltage level is described by the formula:

p1 =
N∑

n=1

WUT (6)

where:

WUT—cost related to failure to keep the required voltage level in node n,
N—number of nodes in the grid.
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For example, in the Polish national power system, costs related to failure to meet the corresponding
voltage level are divided into three groups. The first group—when the voltage value is within the
required range of VminA and VmaxA, the additional cost is zero. The second group—when the voltage
falls in the range <VminB; VminA> or <VmaxA; VmaxB>, the costs are described by the Formulas (7) and (8):

WUT =


(

∆V
∆V∗

)2
·At·Ct, where V ε 〈VminB, VminA〉〈VmaxA, VmaxB〉

At·Ct + brT·tr , where V ε 〈0, VminB〉〈VmaxB, ∞〉
(7)

∆V∗ =
VminA −VminB

Vn
(8)

where:

∆V—voltage deviation from the nominal value,
At—energy (MWh) consumed in a given node during the analyzed period,
Ct—average price of electric energy. The average price from 2016 was used for the calculations:
39.80 (€/MWh) [53],
brt—additional fee for failure to meet the required voltage level. In 2016, the fee was: 2.33 (€/h) [53],
tr—duration of voltage failure.

Formulas (7) and (8) are also used when voltage VminB or VmaxB is exceeded [53,54] (the third group).
The cost of ESU is related to the selection of their appropriate type. Table 1 presents the assumed

costs of ESU considered in the further LV grid analysis. The presented parameters of ESU were derived
from the Fronius offer in the year 2019. Current parameters of ESU can be found in [55].

Table 1. Technical parameters and the cost of ESU used in the analysis of LV grids.

Tray No. Power (kW) Capacity (kWh) Cost (€)

1 4.0 7.5 7679.07
2 4.8 9.0 8730.23
3 5.6 10.5 9689.53
4 6.4 12.0 10,644.20
5 8.2 13.5 11,551.20
6 9.0 14.0 12,411.60

The cost of installing ESU is composed of the choice of rated power and capacity of ESU and
places of their installation. As the analysis of the grid operation covers 1 day, the cost of installing the
ESU in a given node is divided by the total expected period (in days) of the ESU operation (average
estimated total time for modern lithium-ion batteries operation is approx. 10 years, i.e., tp = 365 * 10).
The total cost (described by the formula (9)) of installing ESU in the grid includes the sum of the costs
of all equipment designed for ESU in N nodes:

p2 =
N∑

n=1

(
K + Wn

tp

)
(9)

where:

Wn—cost of installing the ESU in node n,
K—cost of a given type of ESU,
tp—expected period of the ESU operation (in days).
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Active power losses ∆P in the power grid multiplied by the electric power price Ct and time t can
be directly related to costs. The energy losses are cumulative in a grid consisting of L transmission elements:

p3 =
L∑

l=1

∆Pl·Ct·dt (10)

where:

∆Pl—active power losses in the grid element li,
L—number of grid elements,
dt—15-min time step.

Exceeding the permissible long-term temperature for a given type of power cable insulation
reduces the designed insulation durability according to exponential dependence described by the
Arrhenius curve [56]. This relationship is contained in the p4 component, which is described by
formulas (11) and (12) and applies to cable lines:

p4 =
L∑

l=1

a (11)

a =


[
CTP·lc·

(
1−127768e−8.715

Loi
100% ·

)]
·ti

T
0, where (Loi < 100%)

, where (Loi > 100%) (12)

where:

CTP—unit price of a given type of a cable (€/km),
L—number of grid elements,
lc—cable length (km),
Loi—load in the i-th element of the grid (%),
T—number of time steps (T = 96),
ti—number of steps (in analysis period) when the i-th element of the grid is overloaded,
a—auxiliary variable.

2.3. The Controller of the ESU

A controller was developed for the proper supply of active and reactive power from the ESU.
The scheme of the energy storage control system is shown in Figure 2.

The main criterion for ESU control is the value of voltage Vw_n at the point of common coupling
(PCC)—node n in Figure 2. It is also possible to measure the voltage on any grid node. In order to
ensure the continuity of control, it is necessary to maintain an appropriate level of the battery state of
charge (SoC). For this purpose, the designed control system measures the value and direction of the
current I in the power line. On the basis of the actual voltage level Vw_n, the SoC of the battery, and the
anticipated gradient of the power demand (current level of the load daily variation—see Section 3) a
decision was made about charging or discharging the ESU. Power line load values are converted to
relative units taking into account the assumed daily load profile. The output signals of the energy
storage controller are reference active power Pref and reference reactive power Qref. After receiving
information about the desired power values Pref and Qref, the ESU shall adapt their output power to
the PESU and QESU accordingly. The model of the controller was developed in the Power Factory flow
software, using the internal DPL programming language.
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Figure 2. The schematic diagram of the proposed energy storage control system.

A controller based on fuzzy logic is used to control the ESU. A diagram of the fuzzy controller
operation is presented in Figure 3. The input data is fuzzified according to the characteristics described
in Figure 4. Then the data is subjected to further analysis which is carried out using the Defined Rules
Base in the Inference Block. After the inference process, the fuzzy values of µP and µQ must undergo
the defuzzification process. It is the process that maps fuzzy values of µP and µQ to a crisp set of
values of Pref and Qref. Only such values of active and reactive power setpoints Pref and Qref can be
sent as a set signal to the energy storage unit.
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Figure 3. The scheme of a fuzzy controller for the ESU.

The membership functions for individual input variables take the following shapes and values:

• µV—membership function for the voltage Vi in the connection node of the ESU. The membership
function for the ‘too high’ voltage fuzzy values is shown in Figure 4a, whereas the membership
function for the fuzzy voltage values ‘too low’ is shown in Figure 4b. The values of Vmin, V’min,
V’max, and Vmax may be the same as VminB, VminA, VmaxA, and VmaxB, respectively, included in (7).

• µSoC—membership function for the state of charge of a given SoC ESU; it was assumed that the
ESU as an electrochemical battery can operate in the range from 20% to 80% [57] of its capacity
(SoCmin = 0.2, SoCmax = 0.8). Membership function for the fuzzy values of the charge state of a
specific reservoir as ‘charged’ is shown in Figure 4c; the membership function for the state loading
of a specific ‘discharged’ reservoir is shown in Figure 4d.
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• µI—membership function which defines ability of the power grid/line to charge or discharge the
ESU; the ability of the power grid/line to discharge the ESU is with subscript ‘discharge ability’
(Figure 4e) and the ability of the power grid/line to charge the ESU is with subscript ‘charge
ability’ (Figure 4f). The range of I1, I2, I1’, I2’ values is from -1 to 1, because the value of the
current is in a relative unit related to the maximum value of the current. The values of I1, I2, I1’,
I2’ are determined in the process of parameters optimization on the basis of given load profiles,
as described further in the paper.Energies 2020, 13, x FOR PEER REVIEW 10 of 28 
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Figure 4. The membership functions for individual input. (a) Voltage value is determined as ‘too low’;
(b) voltage value is determined as ‘too high’; (c) SoC of the ESU is determined as ‘charged’; (d) SoC of the
ESU is determined as ‘discharged’; (e) power line has ‘discharge ability’; (f) power line has ‘charge ability’.

Membership functions for reference active power Pref and reference reactive power Qref are
depicted in Figure 5.
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Figure 5. The membership functions for individual output variables: (a) to deliver active power to the
grid; (b) to get active power from the grid; (c) to deliver reactive power to the grid; (d) to get reactive
power from the grid.

A decision block consists of a rule base and an inference machine. The rule base describes the
relationship between the individual input variables and translates them into appropriate output
decision drivers. The rule base for the energy storage controller is as follows:

1. IF the voltage is ‘too low’ and the ESU is ‘charged’, THEN ‘deliver the active power to the grid’.
2. IF the voltage is ‘too low’ and the ESU is ‘discharged’, THEN ‘deliver reactive power to the grid’.
3. IF the voltage is ‘too high’ and the ESU is ‘discharged’, THEN ‘get active power from the grid’.
4. IF the voltage is ‘too high’ and the ESU is ‘charged’, THEN ‘get reactive power from the grid’.
5. IF the voltage is NOT ‘too high’ AND the ESU is ‘charged’ AND the value of the current in the

line indicates ‘discharge ability’, THEN ‘deliver active power to the grid’.
6. IF the voltage is NOT ‘too low’ AND the ESU is ‘discharged’ AND the value of the current in the

line indicates ‘charge ability’, THEN ‘get active power from the grid’.

The inference machine operates on the principle of the Mamdani fuzzy implication for rules 1 ÷ 4,
which is determined for example in rule 1 by the formula (13). The Mamdani fuzzy implication was
chosen because the values of both membership functions (µV and µSoC) are equally important in the
decision of ESU operation (charging/discharging):

µvmin→SoCcharged(Vi, SoC) = min
[
µvmin(Vi), µSoCcharged(SoC)

]
(13)

Two kinds of implication are used in rules 5 and 6. In the first step, the Mamdani implication
is used for membership function of µV and µSoC. Then the Larsen implication, described by the
formula (14), is used for the result from the first step and for membership function of µI:

µvmin→SoCcharged(Vi, SoC) = µvmin(Vi) ·µSoCcharged(SoC) (14)
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The first maximum method, counted from the axis P = 0, Q = 0, is used in the defuzzification
process. The crisp value of Pref and Qref is the result of achieving the maximum of the membership
functions µP and µQ, respectively (Figure 6), for the smallest absolute value of P and Q.
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Figure 6. The function of the defuzzification of (a) active power values; (b) reactive power values; Sn is
the rated apparent power of the converter of the ESU.

The controller is parameterized by the appropriate selection of values for the size occurring in the
formulas of membership functions (change of parameters of fuzzy numbers) or to change the reference
parameters (set of fuzzy numbers). In this case, to specify relevant parameters of membership function,
the following cases are considered:

• for the membership functions µSoC_charged and µSoC_discharged, appropriate values of SoC1 and
SoC1

′ constants are selected, respectively,
• for the membership functions µI_max and µI_min, appropriate values of I1, I2 and I1’, I2’ constants

are selected,
• for the membership functions µV_min and µV_max, the values are determined as a function of

voltage recommended levels for a given grid.

The evolutionary algorithm was used in order to select the appropriate values of the SoC1 and
SoC1’constants as well as I1, I2, I1’, and I2’. The operation of the evolutionary algorithm that was used
for the appropriate selection of parameters of energy storage regulators is based on a similar principle
as the operation of the genetic algorithm for selecting the location of ESU in the grid. The difference is
in the fact that the previously discussed genetic algorithm operated on integers, and the evolutionary
algorithm works with real numbers. The latter algorithm was also created in PowerFactory software.
Optimization of the parameters of energy storage controllers is carried out using the daily load
variations (similar to the genetic algorithm used for location) and assumes minimizing the voltage
deviation in all nodes in the grid during the period under study. The minimization of the voltage
deviation ∆Vi from the permissible values Vmin and Vmax is a function. The objective function M of
the evolutionary algorithm is described by the formulas (15) and (16):

M = min

 T∑
t=1

 N∑
i=1

∆Vi


 (15)

∆Vi =


∆Vi = (Vmin −Vi), where (Vi < Vmin)

∆Vi = (Vi −Vmax), where (Vi > Vmax)

∆Vi = 0, where (Vi > Vmin) ∧ (Vi < Vmax)

(16)

where:

Vi—voltage value in node i,
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Vmax—the maximum permissible voltage in the grid,
Vmin—minimum permissible voltage in the grid,
∆Vi—voltage deviation from the permissible value in node i,
T—number of time steps (T = 96),
M—value of the objective function to optimize the selection of parameters for the energy
storage controller,
N—number of nodes in the grid.

The flow chart of the algorithm related to the selection of the location and parameters of the ESU
and their controller parameters for individual ESU is shown in Figure 7 and is called an integrated
algorithm. In the integrated algorithm the selection of optimal controller parameters is part of the
optimization of the location selection of ESU. The configuration of ESU in the grid is assigned to the
parameter values of ESU controllers determined for the objective function M that has reached the
minimum value of Mmin. The result of the integrated optimization is the choice of the configuration of
ESU in the power grid for which the value of the objective function f will reach the highest value f max.
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3. Results

3.1. Description of Analyzed Example Grid for the Integrated Algorithm Validation

A real LV grid area consisting of 19 nodes was selected for the analysis. The structure of the grid
is presented in Figure 8. The power generation in nodes within the range (3 ÷ 40) kW was modeled.
The analyzed grid contains RES (PV sources) which make a relatively high variation of the voltage
level. The sources are located at end of the circuit, at six consumers (Lo 521, Lo 524, Lo 525, Lo 527,
Lo 528, Lo 530). Two exemplary load profiles (A and B) were assumed in the analysis. Daily variations
of power in particular nodes, for the aforementioned profiles, are presented in Figure 9.
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In order to stabilize the voltage level in the grid, it was proposed to use ESU currently available on
the market (Table 1). Using the developed localization algorithm, the analysis included all components
of the objective function f described by the formula (5). It was assumed that the installation of ESU is
possible in each node of the power grid.

The first component of the objective function of the location selection algorithm and parameters
selection was based on minimizing the costs associated with failure to maintain an appropriate
voltage level in the grid. The values of VminA and VminB were determined in accordance with the
requirements specified in [54] and adopted as follows: VminA = 0.9Vref (Vref—reference value of
voltage), VminB = 0.8Vref. The value of VminB = 0.8Vref determines the lower limit at which there is still
the possibility of using electric power by consumers. According to [54], the upper values of VmaxA and
VmaxB should be, respectively: VmaxA = 1.1Vref, VmaxB = 1.2Vref. However, due to the existence of RES,
the values of VmaxA and VmaxB were assumed in the simulation on a level narrower than indicated
in [54] and they are, respectively: VmaxA = 1.08Vref, VmaxB = 1.1Vref. The purpose of setting such
values is to provide prosumers with the ability to inject power into grids from renewable sources.
In case of reaching the value of voltage equal to 1.1Vref in the node, the automatic disconnection of the
PV installation from the power grid occurs and disables the injection of power to the grid. From the
prosumer point of view (in terms of the possibility to inject to the grid the power from PV sources),
the voltage in the grid equal to 1.1Vref has the same unfavorable feature as 1.2Vref.
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Figure 9. Daily variations of the power in the analyzed LV grid (without ESU); (a) nodes 502, 503, 507,
(b) nodes 508, 510, 511, (c) nodes 512, 513, 514, (d) nodes 516, 517, 518, (e) nodes 519, 521, 524, (f) nodes
525, 527, 528; (A)—profile A, (B)—profile B.

3.2. Simulation Results

The results of the simulations (selecting the location and parameters of energy storage controllers)
for two assumed load profiles are included in the following tables and figures:

• profile A—Tables 2 and 3 as well as Figures 10–15,
• profile B—Tables 4 and 5 as well as Figures 16–21.

Table 2. The result of selecting the location and parameters of ESU for the analyzed LV grid (load profile A).

Node No. 522 526 528 529 530

Power (kW) 4.8 4.8 8.2 6.4 6.4
Capacity (kWh) 9.0 9.0 13.5 12.0 12.0
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Table 3. Controller parameters for the individual ESU (load profile A).

Node No. 522 526 528 529 530

SoC1 0.641 0.685 0.614 0.577 0.522
SoC1′ 0.683 0.700 0.663 0.682 0.651

I1 0.716 −0.853 −0.308 −0.685 −0.392
I2 0.856 −0.808 −0.299 −0.169 0.105
I1′ 0.899 0.452 0.667 0.054 0.441
I2′ 0.890 0.474 0.745 0.406 0.560

Table 4. The result of selecting the location and parameters of ESU for the analyzed LV grid (load profile B).

Node No. 520 521 524 525 526 527 528 529

Power (kW) 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.2
Capacity (kWh) 14.0 14.0 14.0 14.0 14.0 14.0 14.0 13.5

Table 5. Controllers parameters for individual ESU (load profile B).

Node No. 520 521 524 525 526 527 528 529

SoC1 0.511 0.592 0.468 0.300 0.491 0.300 0.606 0.300
SoC1′ 0.524 0.600 0.646 0.628 0.491 0.462 0.700 0.300

I1 0.288 −0.863 0.097 −0.034 0.069 0.758 0.154 −0.052
I2 0.334 0.393 0.521 0.003 0.118 0.896 0.672 −0.018
I1′ 0.711 0.812 0.527 0.013 0.142 0.924 0.743 0.007
I2′ 0.740 0.915 0.531 0.044 0.148 0.924 0.758 0.319
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Daily variations of voltage levels for specific nodes (mainly for those nodes where voltage problems
have been observed) are presented in Figures 10 and 11 as well as Figures 16 and 17. In Figures 13–15
and Figures 19–21 the power variations of selected ESU are shown: active and reactive as well as
the current state of charge of the ESU. The assumed loads in the example power line (L 522–526) are
presented in Figure 12 (for profile A) and Figure 18 (for profile B).

In the process of selecting the location, ESU were assigned to the nodes where there are voltage
problems related to power generation as well as power consumption. Their configuration allows to
optimize the costs related to the installation of devices in the grid, as well at the same time, it ensures
an acceptable voltage level at nodes in the analyzed grid. By selecting the appropriate parameters of
the controller for each ESU, the effect of ‘cooperation’ of the installed devices can be achieved. Not all
devices deliver and receive active power at the same time, and their operation is optimized to get as
much efficiency as possible. Additionally, it is possible to supply reactive power to the grid by ESU,
therefore, it maximizes their utilization.

Table 6 presents the share of individual factors in the total costs that are subject to optimization.
The results of the calculations are presented for three variants. Variant 1: without ESU in the grid,
variant 2: location and parameterization were carried out on the basis of load profile A, variant 3:
location and parameterization were carried out on the basis of load profile B.

Application of ESU in the analyzed grid results in the improved voltage profiles. As it is seen
in Figures 10, 11, 16 and 17, voltage variations are significantly limited after ESU application. In the
grid with ESU, the voltage is significantly closer to the reference value Vref, what gives comfortable
conditions for the operation of the current—using equipment of the consumers as well as enables to
inject the power from PV sources.

From the analysis of the results presented in Table 6, it can be concluded that in profiles A and B
the main factor (for the assumptions made in the simulation) generating the most costs is the failure to
meet required voltage value. Improving the voltage level and, thus, reducing costs can be obtained
by installing ESU in the power grid. It is worth paying attention to the fact that the higher the costs
associated with failure to meet the required voltage level, the more profitable installing ESU in the
grid is.

During the consideration of the location of ESU in power grids, particular attention should be
paid to the load profile. For the analyzed load profiles A and B, it turns out that the optimal locations of
ESU (Table 2 vs. Table 4) in the grid are different and the parameters of the energy storage controllers
are also different (Table 3 vs. Table 5).
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Table 6. Daily cost of grid operation: ‘without ESU’ and ‘with ESU’ for profiles A and B.

Profile Type Profile A Profile B

The Objective
Function

Components
Costs Without ESU

With ESU
(Optimization to

Profile A)

With ESU
(Optimization to

Profile B)
Without ESU

With ES
(Optimization to

Profile A)

With ESU
(Optimization to

Profile B)

p1

The cost related to
appropriate voltage in

grid (€)
26.64 0.07 0 67.52 37.86 4.76

p2

The cost of ESU for
tp = 10 (years) · 365
days = 3650 (€/day)

0 13.78 26.97 0 13.78 26.97

p3

The cost related to
power losses in the

grid (€)
8.21 7.42 3.71 9.61 8.18 7.99

p4

The cost related to
overload of elements

transmission (€)
0 0 0 0 0 0

Sum (€) 34.85 21.27 30.68 77.13 59.82 39.72

Savings (€/day) 13.58 4.17 17.31 37.41
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Changing the parameters of controllers depending on the adopted one load profile is not expensive.
Therefore, the parameters of the controllers should be appropriately adjusted each time, depending
on the expected load profile. This will allow for more efficient use of ESU. In turn, when choosing a
location of ESU, several load profiles should be analyzed. For example, when choosing a location for
ESU cooperating with PV sources, at least the profile with PV generation for a common working day
should be taken into account and a load profile on sunny weekend days.

Comparison of the results from Table 6 enables to say that if in a given node profile A exists,
the savings are higher for ESU optimization on the basis of profile A: € 13.58 (€ 34.85–€ 21.27) than
on the basis of profile B: € 4.17 (€ 34.85–€ 30.68). The same conclusion is valid if in a node profile B
exists—saving is € 37.41 (€ 77.13–€ 39.72) for the optimization according to profile B, and saving is
€ 17.31 (€ 77.13–€ 59.82) for the optimization according to profile A. The question of which location of
ESU should be used depends on the repeatability of the occurrence of a given load profile:

• If, for example, profile A would occur six times a week, and profile B once a week, then the weekly
use of the solution for profile A saves € 98.79 (6 × € 13.58 + 1 × € 17.31) per week, but savings for
assumed profile B would amount to € 62.43 (6 × € 4.17 + 1 × € 37.41).

• If profile A would occur five times a week, and profile B twice a week, then per week, using the
solution for profile A, it is possible to save € 102.52 (5 × € 13.58 + 2 × € 17.31), but savings for
assumed profile B would be € 95.67 (5 × € 4.17 + 2 × € 37.41).

• If profile A would occur four times a week, and profile B three times a week, then per week,
using the solution for profile A, it is possible to save € 106.25 (4 × € 13.58 + 3 × € 17.31), but savings
for assumed profile B would be € 128.91 (4 × € 4.17 + 3 × € 37.41).

• If profile A would occur less than four times a week, it is more advantageous to use the solution
for locations from profile B.

4. Conclusions

This study shows that the use of ESU improves power quality as well as the flexibility of the
distribution grid operation. It has also been shown that the location of ESU and the parameters of the
ESU controllers affect the cost of ESU application and utilization. In order to select the parameters
of ESU and their location in the power grid, a proprietary location algorithm based on a genetic
algorithm was used. The controller of the ESU was carried out on the basis of the fuzzy logic, and the
selection of parameters of ESU controllers was carried out with the use of an evolutionary algorithm.
The objective function used in the authors’ research was defined to limit total grid operation costs,
which include costs related to failure to meet appropriate voltage level in the grid, costs related to
the installation of ESU, costs of energy losses in the network across transmission elements, and costs
related to overloading these elements.

The proposal referring to the selection and control of ESU was validated, based on a real LV grid
model with quasidynamic daily load variations. In the analyzed grid, there were voltage problems
resulting from the high load of the grid and energy production from PV sources. The voltage deviations
were almost ±20% from the reference value Vref. After the ESU application, the voltage deviations are
limited to around ±10% from the value Vref. Thus, it was shown that the correct choice of the location
of ESU in the grid and the selection of the parameters of the controllers allow for ESU effective use,
especially enabling to reach the voltage significantly closer to the reference value. The time of the
calculation based on the proposed algorithm is short. The proposed integrated algorithm ensures
the complex selection and control of the ESU, with taking into account the costs of the investment.
Therefore, it can be a very useful universal tool, especially for power system operators, during
consideration of ESU application.
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Appendix A. Symbols

a—auxiliary variable
At—energy consumed in a given node during the analyzed period
brt—additional fee for failure to meet the required voltage level. In 2016, the fee was 2.33 (€/h)
C—constant used to take positive value of f
Ct—average price of electric energy. The assumed average price from 2016: 39.80 (€/MWh)
CTP—unit price of a given type of a cable
d—the number of successive generations in genetic algorithm
dmax—maximum generation number in genetic algorithm
dt—15-min time step
f—objective function
F(k,d)—matrix of the objective function in genetic algorithm
Ft—group of results of the objective function calculations
f max—the maximum value of the objective function
g—the number of successive generations in evolutionary algorithm
gmax—the number of the generations in evolutionary algorithm
i—i-th element (in general)
j—the number of the successive individual in the population in evolutionary algorithm
jmax—maximal numbers of individuals in the population in evolutionary algorithm
K—cost of a given type of ESU
k—the number of successive individuals in the population in evolutionary algorithm
kmax—the maximal number of individuals in the population in evolutionary algorithm
L—number of grid elements
lc—cable length
Loi—load in the i-th element of the grid
M—value of the objective function to optimize the selection of parameters for the ESU controller
Mmin(n,g)—minimal value in matrix of the objective function in evolutionary algorithm
µP—membership function for the active power of ESU
µQ—membership function for the reactive power of ESU
µV—membership function for the voltage Vi in the connection node of the ESU
µSoC—membership function for the state of charge of ESU
µI—membership function for the line current
n—the number of successive nodes
N—number of nodes in the grid
p1—component responsible for the cost of failure to meet the required level of voltage in the grid
p2—component responsible for the cost of installing ESU in the grid
p3—component responsible for power losses in the grid
p4—component responsible for the cost of overloading the elements of the grid
QESU—reactive output power of ESU
Qref—set/reference reactive power for ESU
PESU—active output power of ESU
Pref—set/reference active power for ESU
I—load current in the grid element (e.g., in a cable line)
I1—the first auxiliary variable defining the shape of the membership function of µI_discharge_ability
I2—the second auxiliary variable defining the shape of the membership function of µI_discharge_ability
I1′—the first auxiliary variable defining the shape of the membership function of µI_charge_ability
I2′—the second auxiliary variable defining the shape of the membership function of µI_charge_ability
SoC—state of charge of ESU
SoC1—auxiliary variable defining the shape of the membership function of µSoC_charged
SoC′1—auxiliary variable defining the shape of the membership function of µSoC_discharged
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T—number of time steps (T = 96)
t—discrete time
ti—–number of steps (in analysis period) when the i-th element of the grid is overloaded
tp—expected period of the ESU operation (in days)
tr—duration of voltage failure
Vi—voltage value in node i
Vmax—the maximum permissible voltage in the grid adopted in evolutionary algorithm
Vmin—minimum permissible voltage in the grid adopted in evolutionary algorithm
VminA—the first limit value of the minimum voltage in genetic algorithm
VminB—the second limit value of the minimum voltage in genetic algorithm
VmaxA—the first limit value of the maximum voltage in genetic algorithm
VmaxB—the second limit value of the maximum voltage in genetic algorithm
Wn—cost of installing the ESU in node n
WUT—cost related to failure to keep the required voltage level in node n
Vref—reference value of voltage
∆Pl—active power losses in the grid element li
∆V—voltage deviation from the nominal value
∆Vi—voltage deviation from the permissible value in i-th node
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