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Abstract: The flow of a multicomponent fluid through a pipeline system of arbitrary configuration is
considered. The problem consists in determining the component composition of the fluid for each
pipeline of the system based on the values of the concentration of the components throughout the
entire set of measuring points, provided that there are no phase transitions. To solve the problem,
mathematical models have been developed that, in principle, are suitable for pipeline systems
of various functional purposes, the presentation is concretized and carried out in relation to gas
transmission systems. The models are stochastic in nature due to measurement errors, which
are considered random variables. The solution of the problem is reduced to the optimization of
a quadratic function with constraints in the form of equalities and inequalities. The considered
mixing processes do not depend on the regime parameters of the fluid flow. The processes are
irreversible and non-equilibrium. A criterion is introduced that characterizes the degree of closeness
of a multicomponent mixture to an equilibrium state. The criterion is analogous to entropy in
thermodynamic processes. A numerical example of calculating the distribution of a three-component
mixture is given. The example illustrates the feasibility of the proposed computational procedures
and gives an idea of the distribution of the component composition and the change in «entropy»
along the directions of pumping of the gas supply system.

Keywords: multi-component flows; gas transmission systems; non-equilibrium processes;
mathematical models; maximum likelihood method; calorific value; entropy

1. Introduction

Gas enters the Unified Gas Supply System (UGSS) of the Russian Federation from different
sources and differs in its composition, although methane remains the main component. The share from
Russian fields ranges from 90% to 98%. By way of example, let us consider composition analysis of gas
transported via a gas line in the North of Siberia (gas composition in molar fractions, %: methane 93.2;
ethane 4.1; propane 1.30; i-butane 0.19; n-butane 0.18; neo-pentane 0.00l3; i-pentane 0.030; n-pentane
0.02l; hexane 0.0084; carbon dioxide 0.32; nitrogen 0.59; oxygen—less than 0.005; helium—0.0096;
hydrogen 0.0018; water vapour—0).

In addition to gas and gas condensate fields, UGSS supply sources include oil fields (associated
gas), gas processing plants, underground storage facilities, and import supplies. From plants, oil
fields, underground storages in depleted oil fields there arrives rich gas with a greater share of heavy
hydrocarbons and, therefore, higher calorific value. In the process of transportation, the concentrations
change with the mixing of fluids at the junction points of the pipelines. Composition and calorific
value of gas transported via the UGSS are measured by samples taken at gas metering stations
(GMS). These indicators can be measured periodically using gas cylinders or continuously if the
necessary equipment is available at the measuring installation [1–3]. Along the length of each pipeline,
the concentrations/calorific values do not change, so it is natural to associate them with a given pipeline
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regardless of where the measuring point is. The problem is to estimate the concentration values for
each pipeline based on the set of measurements. Any measurements are fraught with random errors
and, therefore, the measured concentrations must be random values, so the concentration estimation
models must be stochastic.

In the process of operational control, such parameters of the mode as pressure, flow rate,
temperature are measured, and their changes and distribution in the directions of pumping are
monitored. However, the calorific value turns out to be a not less important parameter, and tracking
its distribution throughout the system should also be included in the number of dispatching tasks.
Furthermore, in pipeline systems, emergency situations occur, accompanied by the injection of
substances that reduce the quality of the transported product. Tracking the spread of the “pollutant” is
also one of the problems of monitoring the component composition.

The paper considers a large-scale gas transmission system (GTS) and sets the task of finding for it
the most reasonable ways to estimate the component composition (CC) for each direction of pumping.
The component composition uniquely determines the calorific value of the gas. Caloric content can be
calculated either knowing the CC, or setting this problem as the main one and solving it using the
same methods as the CC calculation.

Here is an incomplete list of problems for the solution of which it is necessary to know the
distribution of the CC of the fluid through the directions of pumping.

(a) Settlements between suppliers and consumers are based on energy measurements and with
regard to supplied gas calorific value. Differences in consumer requirements to gas calorific value
make suppliers interested in calorific value management, which can be achieved by optimizing
gas system flows.

(b) Necessity of the UGSS metrological support enhancement. With the gradual depletion of reserves
in the Nadym-Purtaz region, deeper deposits will be developed, which will increase methane
homologues quantity in the total amount of hydrocarbons produced. The problem of rational
distribution of rich gas will become more important. It will be necessary to increase the accuracy
of determining CC/caloric value of gas supplied to consumers. The economic significance of
the models considered in the paper will grow. Such models will be required to compare UGSS
metrological equipment development and modernization options.

(c) The problem of placement of gas chemical complexes. Hydrocarbons of the methane homologous
series are a more valuable raw material for gas chemistry than methane. It is economically feasible
to separate them from natural gas for use in gas chemistry. The choice of gas chemical facilities
location presents a serious problem and amounts to two options: whether to place the complexes
in proximity to gas fields or to industrial centers. Each of the options has its pros and cons.
An analysis of the gas component distribution within the UGSS is indispensable for making the
right decision. To make the right decision, it is necessary to analyze the component composition
of gas through the UGSS pipelines.

(d) Calculation of dew point temperature for water and hydrocarbons. Failure to comply with
regulatory requirements for their parameters is fraught with an increase in the risk of hydrate
and condensate formation, and for export deliveries it entails penalties. In our opinion, the ideas
of evaluating the component composition will also be suitable for solving these problems, but
under complicating circumstances: the need to consider the phase space with the inclusion of
pressure and temperature.

(e) Provide some modification to account for technological specifics, and herein the proposed
methods are also applicable to other pipeline systems: oil trunk transportation (compounding
oils from different fields, monitoring the content of hydrogen sulfide), water supply (compliance
with water quality standards), etc.

Thus, studying the CC distributions of natural gases is very important in practice. The significance
of the problem was also noted by Tevyashev et al. [4]. A formalized model and methods for its solution
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for two-component mixtures were first proposed by Sukharev, Kislenko et al. [2,3]. As shown above,
the tasks of determining the CC arise both in operational control and in planning the development
of the UGSS. Papers [5,6] should be considered the first steps in the study of the problems. In this
article, the following steps have been taken in the same direction. First, not two-component, but
three-component mixtures are considered. This led not only to an increase in the number of sought
variables. The non-equilibrium and irreversibility of mixing processes lead to the introduction into
the model of a large number of constraints in the form of inequalities. Some of them turn out to be
“needless”, that is, they are automatically executed even in solutions when they are not entered into
the model. In problems for two-component mixtures, the significance of non-equilibrium constraints
was not manifested. In the flows of three-component mixtures (a) the number of unknowns increases
(compared to two-component ones), (b) one has to deal with situations where unknowns differ by
orders of magnitude, (c) among the non-equilibrium constraints, significant constraints appear as
a rule.

To overcome the obstacles that arise, we propose various methods. They are tested in computational
experiments. In particular: (a) the nested solutions method—a subject-oriented iterative procedure
that allows one to gradually introduce significant non-equilibrium constraints into the model, thereby
reducing the dimension of mathematical programming problems at the stages of an iterative procedure;
(b) a new approach to solving problems by non-standard introduction of unknowns (differing by orders
of magnitude), eliminating (or at least smoothing out) the problem of the appearance of unknowns
differing by orders; (c) instead of concentrations, which often turn out to be small quantities of different
orders, the unknowns are the jet intensities—quantities that usually differ from each other by no
more than an order of magnitude; (d) a criterion for the information content of metrological support,
which makes it possible to judge the possibilities of assessing the CC and/or the caloric content of
the fluid, depending on the number of measurement points and their location in the pipeline system;
(e) quantitative characteristic of the degree of non-equilibrium of the mixing process (this is an analogue
of entropy in classical thermodynamics, however, unlike the latter, it is not defined on a continuum,
but on a discrete set–cuts of the pipeline system graph).

When determining the component composition/calorific value, it is assumed that the total flow rate
of the fluid for each direction of pumping is known, that is, the flow distribution of the fluid—a mixture
of gases–is calculated in advance and serves as initial information for determining the flow rates of
each component. The inclusion of the flow distribution of the fluid in the initial information essentially
means the decomposition of the problem. At the highest level of the hierarchy is the calculation
of fluid flow rates by pumping directions. This calculation is carried out by standard methods
with a detailed account of technology (structure, operating parameters: pressure and temperature,
technical condition of equipment, etc.). An exact knowledge of the distribution of the component
composition is not required in this case. The study of the component composition is the next level of
the hierarchy, the subject of this work. Decomposition is also possible because the processes associated
with phase transitions are not considered. Phase transitions during the operation of gas supply systems
are manifested in the form of condensate–water or hydrocarbons–and hydrate formation. In our
opinion, the construction of models for the distribution of CC/calorific value taking into account phase
transitions is a matter for the near future. However, decomposition as implemented below will not be
valid. When assessing the distribution of the CC, it is necessary to take into account the parameters
of the gas flow, at least the temperature, as well as the models of condensate precipitation [7–9]. It is
very likely that the results obtained in the field of thermodynamics of mixtures [10] can be useful
here. Models of distribution of CC/calorific value, along with the developed apparatus of multimodal
techniques [11,12], should, in our opinion, be used in the development of computer technologies for
monitoring and control of large pipeline systems at the highest level of the hierarchy.

The rest of the manuscript is organized as follows. Section 2 describes the research methods
used in the work. In particular, the specific features of irreversible and non-equilibrium processes of
gas components mixing during their transportation are discussed (Section 2.1). The mathematical
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formulization of the problem is presented in two versions: in the first, the unknown quantities
are the flow rates of the components (Section 2.2); in the second, the intensity of the “jets”
(Section 2.5). The conditions for the non-equilibrium of the mixing processes are derived (Section 2.3).
The computational aspects of the procedures for estimating the CC of the fluid are discussed (Sections 2.4
and 2.5). Section 3 (results) provides an example of calculating a system whose graph contains 11 nodes
and 13 arcs (transporting directions). An indicator of non-equilibrium of mixing processes is introduced
and illustrated by an example. Section 4 contains a discussion of the results.

2. Methods

2.1. Non-Equilibrium Mixing Processes (Technological Aspect)

Successful solution of this task depends largely on how well the computational model is constructed.
When calculating large gas supply systems, they often resort to network reduction and replace several
parallel gas pipelines with a single arc of the calculation scheme. For this reason, when describing the
model, the term transportation direction is more justified, than a gas pipeline, since an element of the
calculation scheme can correspond to a pipeline system, and not to a single pipeline. When solving the
task of gas mixture flow distribution through the system, the network reduction procedure should
be carried out with caution. Questions arise when fluids with different concentrations are mixed at a
junction point of the calculation scheme. Can we assume that the concentrations of components in all
pipelines diverging from this junction point are equal? Concentration equality would take place if
mixing processes were equilibrium ones. In fact, generally speaking, they do not possess the quality
of equilibrium. The gas flow rates through pipelines of GTS are quite large and, as observations
on large-scale systems show, complete mixing is observed only with a small load in the pipelines.
The concentration values along the output lines depend on the local configuration of pipelines at the
junctions. It is not possible to take into account such technological details in the aggregated scheme,
since the geometric dimensions of the pipeline junction are incomparably smaller than the lengths
of the pipelines. (Note that for this reason, attempts to build models of the CC distribution, taking
into account the regime parameters of the flow, primarily pressure, are doomed to failure. The only
acceptable way is the way we have chosen to take into account all simultaneous measurements of
CC). So, to calculate the concentrations, the design scheme should be disaggregated so that the model
makes it possible to reflect the difference in concentrations in the arcs emerging from the connection
node. Suppose, for example, that two pipelines or two systems of parallel pipelines (pipeline corridors)
converge at the junction, and the output is a multi-pipe corridor. Is it possible to represent this corridor
as one arc in the aggregated scheme? If gases of different composition enter through the input lines,
and it is known from observations of real regimes that the concentrations on the output lines differ,
then this is impossible.

The mixing of components occurs for two reasons: due to diffusion and flow turbulence. The latter
reason is decisive at the flow rates characteristic of GTS operation. Observations of the GTS regimes show
that the processes of mixing natural gas components are isothermal. These processes are irreversible
and non-equilibrium. Complete mixing is usually not achieved, which should be considered an
experimentally established fact.

Irreversible non-equilibrium processes are studied by thermodynamics, physical chemistry,
kinetic theory of gases. Irreversible non-equilibrium processes often take place during the production,
transportation and processing of natural gas [13,14]. The range of these processes is expanding due
to the emergence of new technologies. In this regard, we indicate several recent publications in the
field of pipeline gas transportation. In [15] the problems of transporting a mixture of natural gas with
hydrogen are considered, and in [16], those of transporting natural gas mixed with nitrogen.

Gas flow mixing schemes are traditionally considered in theoretical and technical
thermodynamics [17–19]. However, usually the main attention is paid to the study of pressure
and temperature of mixing flows. Evaluation of working capacity additional loss caused by irreversible
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heat transfer between the mixing gases or by failure to use difference in flow pressures turns out to be
especially important.

The kinetic theory of gases and, in many respects, physical chemistry work not with continual
models, but with discrete models operating with the movement of molecules and the atomic structure
of matter. They use the apparatus of quantum chemistry, statistical mechanics, and analytical
dynamics [20].

In thermodynamics and in scientific disciplines that have arisen on its basis, a powerful apparatus
has been developed for describing irreversible and non-equilibrium processes. The physical processes
of fluid mixing in industrial pipeline systems considered in this paper are also irreversible and
non-equilibrium, but their study does not require the use of this apparatus. First of all, this because
the mixing processes are not accompanied by a change in the parameters of the regime: temperature
and pressure—and phase transitions. But, nevertheless, to characterize the mixing processes we have
proposed an indicator—an analogue of thermodynamic entropy (see Section 4).

2.2. Task Formalization

We will represent the structure of the pipeline system in the form of directed graph G = (V, E),
where V is a set of nodes, and E is a set of arcs. The arc in the aggregated scheme corresponds to
transportation direction. By m we denote the number of nodes, and by n the number of arcs. (We use the
terminology of the classical monographs of Christofides and Berge on graph theory [21,22]). The nodes
are divided into 3 groups: inflows Vin, outflows Vout, junctions V joint (in Figure 1 Vin = {1, 2, 3, 4},
Vout = {9, 11}, V joint = {5, 6, 7, 8, 10}). We assume that the inflows and outflows are connected to
the graph by a single arc, outgoing for inflows (in Figure 1 1 ≡ (1, 2), 2 ≡ (2, 6), 3 ≡ (3, 5), 4 ≡ (4, 5))
and incoming for outflows (in Figure 1 11 ≡ (8, 9), 13 ≡ (10,11)). A vector ξ is set on the graph
G. It represents mass flow rates of fluid consisting of several miscible components (in Figure 1
ξ = ‖170, 90, . . . , 65, 135‖T. This means that the flow distribution is calculated, as is customary in the
practice of GTS operation, and the results of the calculation serve as the initial data for determining
the CC for each direction of pumping. Naturally, the calculation is carried out taking into account
the technical state of the system and the relationship between the regime parameters (pressure and
temperature) of the gas flow. Since flow ξ is initially known, all arcs (i, j) ∈ E can be orientated along
the flow, which means ξi j ≥ 0. To simplify the notation, we assume that the number of components is 3;
all formulas can obviously be rewritten for the case of an arbitrary number of components. M = I, II, III
is component number, ξi j is flow rate of fluid, and ηM

ij is component M flow rate along the arc (i, j).

By definition, ξi j =
III∑

M=I
ηi j. Values ξi j satisfy material balance equations in all joint nodes xk

∑
xi∈Γ−1(xk)

ξik−
∑

x j∈Γ(xk)
ξkj = 0, xk ∈ V joint. (1)

Hereinafter, Γ(xk) is a set of nodes into which arcs come from xk, Γ−1(xk) is a set of nodes from
which arcs come into xk (Figure 2). Flow rates of each component of the mixture is also a vector
ηM = ‖ηM

ij ‖, (i, j) ∈ E, M = I, II, III, components of that vector must satisfy of material balance
conditions analogous to Equation (1)∑

x j∈Γ(xk)

ηM
kj −

∑
xi∈Γ−1(xk)

ηM
ik = 0, xk ∈ V joint, M = I, II, III. (2)

The challenge is to find vectors ηM, M = I, II, III. Instead of values ηM
ij , mass concentrations rM

ij
can be considered using the relation (in practice, mass, molar, and volumetric concentrations are used,
without difficulty they can be mutually converted. In this paper, mass concentrations are used, since
for them material balance equations are most naturally written).
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ηM
ij = rM

ij ξi j, (i, j) ∈ E, M = I, II, III. (3)
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The solution to the problem considered in the paper, like any other problem of operational
control, should be based on operational information: current measurements of the parameters of the
technological process. The actual location of the GMS at the UGSS has been determined by historically
significant factors, but not by the requirements for a reasonable assessment of the distribution of
gas CC along transportation directions. In order to increase the degree of reliability of information
on distribution of calorific value and/or makeup of gas in the system, the total of measurements at
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UGSS facilities should be accounted for. This approach makes allowance for interdependence of the
measured operating parameters and requires special methods, adequate mathematical and computer
models to be implemented.

In the process of transportation, the concentrations change with the mixing of fluids, at the
junction points of the pipelines. Along the length of each pipeline, the concentration does not change,
so it is natural to associate it with the pipeline, regardless of where the measuring point is located.
The problem is to estimate the concentration values for each pipeline based on the set of measurements.
Measurements are erroneous, which means that the measured concentration value is a random value.
At some known points of the system (GMS locations) the fluid composition is measured. Issues of
metrological data uncertainty and measurement errors at GTS are treated in [23–25].

The source of information for solving this problem is a set of composition measurements, that is,
concentration measurements r∗i j. The measured points are assigned to the arcs of the graph (this can be
done since the concentration of each component at the beginning and end of any pipeline is the same);
for the set of such arcs, we introduce the notation E∗ (in Figure 1 E∗ = {1, 2, 3, 4, 5, 7, 9, 10, 12}). We will
also use an asterisk for the measured concentrations. The measurement result consists of the true (but

unknown) value and the measurement error
(
rM

ij

)∗
= rM

ij + δrM
ij , (i, j) ∈ E∗, M = I, II, III. In the theory

of errors, measurement results are considered to be normally distributed quantities:

δrM
ij ∈ N

(
0,

(
σ2

i j

)M
)
, M = I, II, III. (4)

Symbol X ∈ N
(
a, σ2

)
means that random variable X has a normal distribution with the mathematical

expectation a and the dispersion σ2. Dispersions σ2
i j characterize the device (or measurement method)

error on the arc (i, j) ∈ E. Error δηM
ij in determining the flow rate of component M also has a

normal distribution δηM
ij ∈ N

(
0, ξ2

i j

(
σ2

i j

)M
)
, M = I, II, III. According to the problem statement, it is

required to find such component flow distribution that is most consistent with the entire set of
concentration measurements.

The problem under consideration in a certain sense resembles the well-known problem of
“unaccounted gas” [26–29]. This problem requires, on the basis of operating parameter measurements,
to determine gas balance more precisely (injections in the system, deliveries to consumers, own use),
find imbalance reasons, obtain estimates of the flow rates in the directions of pumping, which are most
consistent with the current measurements and the dynamics of their change over the past period.

In the stochastic formulation of the problem, it is customary to speak not of determining
unknown quantities ri j, but of their estimation. Mathematical statistics for point estimation of an
unknown parameter recommends use of the maximum likelihood method (MLM). The estimation of
maximum likelihood is the value of the argument at which the likelihood function takes its maximum.
The likelihood function in our case is the probability of the totality of all measured values. MLM brings
us to the problem of quadratic function conditional minimization [6]:

III∑
M=I

∑
(i, j)∈E∗

((
η∗Mij − η

M
ij

)
/ξi jσ

M
ij

)2
→ min. (5)

In fact, not flow rates are measured, but component concentrations. However, using Equation (3),
“measurements” η∗Mij can be defined through concentration measurements r∗Mij , since values ξi j are
given. The minimum of criterion (5) should be sought provided abidance by constraints in the form of
equalities and inequalities. Of greatest interest are the restrictions in the form of inequalities arising
from mixing process non-equilibrium conditions. These issues are discussed in the next section.
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2.3. Conditions for Non-Equilibrium of Mixing Process

The processes of mixing natural gas components are non-equilibrium (see Section 2.1). The laws
of conservation of mass impose restrictions on the concentrations of the components on the output
lines of the joint nodes. The obvious limitations are inequalities:

rin ≤ rout ≤ rout ≤ rin. (6)

The subscript in refers to the input lines, the subscript out index refers to the output lines, the bar
at the top indicates the maximum concentration, the bar at the bottom means the minimum one. Using
the notation in Figure 2b, the variables included in inequalities (6) for each component are written in the
form rM

in (xk) = min
xi∈Γ−1(xk)

(
rM

ik

)
, rM

in = max
xi∈Γ−1(xk)

(
rM

ik

)
, rM

out(xk) = min
xi∈Γ(xk)

(
rM

ki

)
,rM

in = max
xi∈Γ(xk)

(
rM

ki

)
, M = I, II, III.

Inequalities (6) are directly proved using algebraic calculations. Let us consider the joint node of
pipelines with 2 input and 2 output lines (Figure 2b). Fluid flow rates at the input lines are ξ1,in, ξ2,in.
Suppose that the flow through the 1st line is divided into 2 parts: ξ1,in = α1ξ1,in + (1− α1)ξ1,in.
The first of them went through the 1st output line, the second through the 2nd output line. In the
same way the flow is divided in the second output line. Thus, the fluid flow rates at the output
lines equal ξ1,out = α1ξ1,in + α2ξ2,in ξ2,out = (1− α1)ξ1,in + (1− α2)ξ2,in accordingly. Consider any
component of the mixture. Its concentration in the 1st input line is denoted r1, and that in the
2nd input line r2. In our reasoning, one component stands out; all other mixture components
play the role of the second component with respective concentrations 1− r1, 1− r2 in the incoming
lines, so ξ1,in = r1ξ1,in + (1− r1)ξ1,in, ξ2,in = r2ξ2,in + (1− r2)ξ2,in. Fluid flow rate on the 1st outlet
line will consist of 2 summands, each one corresponding to one of the two components ξ1,out =

[α1r1ξ1,in + α2r2ξ2,in] + [α1(1− r1)ξ1,in + α2(1− r2)ξ2,in]. The selected component concentration in the
1st output line equals:

r1,out = (α1r1ξ1,in + α2r2ξ2,in)/(α1ξ1,in + α2ξ2,in) (7)

If, for example, r1 < r2, that is rin = r1, then from relation (7) we directly obtain rin = r1 < r1,out.
In the same way, inequality r1,out ≤ rin and similar inequalities for r2,out are proved. Relations (6) are
proved for the arbitrarily chosen mixture component; therefore, its record can be generalized as:

rM
in ≤ rM

out ≤ rM
out ≤ rM

in , M = I, II, III. (8)

This reasoning carried out for the special case of two incoming and two outgoing lines can be
applied to a joint node with an arbitrary number of incoming and outgoing lines. The general outline of
the proof is preserved. Let us mentally divide the incoming flow along each line into jets, and we obtain
an analogue of relation (7) for each outgoing line. Hence the required result follows. Relations (8)
are necessary, but not sufficient. They establish inequalities for the extreme (maximum and minimum)
output concentrations. But they do not account for relations of the mixing component quantities at
the input and output of the node. Indeed, consider again a certain component and imagine that its
maximum concentration on the output lines is equal to the maximum concentration on the input lines
rout = rin. For these lines, according to the physics of the process, the flow rate of the fluid in the outlet
line cannot exceed the flow rate of the fluid in the inlet line ξ out ≤ ξin. Similar ratios should hold for
two, three, etc. output lines.

Let us write down these relations for the general case. The main result is presented by relations (13).
The general outline of the reasoning is the same as in the particular case (Figure 2b), but the details of
the proof are omitted due to the cumbersomeness. We take a node, denote the number of input lines
by Nin, and the number of output lines by Nout. For analysis, it is not enough to consider only lines
with maximum and minimum concentrations. Arranging in decreasing order concentrations in the
input lines and in the output lines, we obtain two non- increasing sequences:
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r(1)in ≥ r(2)in ≥ . . . ≥ r(Nin)
in . (9)

r(1)out ≥ r(2)out ≥ . . . ≥ r(Nout)
out . (10)

The superscript in parentheses indicates the rank of the corresponding number in the sequence.
It is obvious that r(1)in = rin, r(Nin)

in = rin and r(1)out = rout, r(Nout)
out = rout. Using the elements of sequence

(9), we construct a line of “limit concentrations”. This will be a piecewise smooth curve r(x) = rin(x):

r(x) =



r(1)in provided 0 ≤ x ≤ ξ(1)in

r(1)in ξ
(1)
in +r(2)in

(
x−ξ(1)in

)
x provided ξ(1)in < x ≤ ξ(1)in + ξ

(2)
in

. . .

r
(Nin−1)
in

∑Nin−1
j=1 ξ

( j)
in +r

(Nin)
in

(
x−

∑Nin−1
j=1 ξ

( j)
in

)
x provided

∑Nin−1
j=1 ξ

( j)
in < x ≤

∑Nin
j=1 ξ

( j)
in

(11)

Let us proceed to give an interpretation of the point with coordinates [x; r(x)] and take by way
of example a point lying in the 3rd half-segment of its definition ξ(1)in + ξ

(2)
in < x ≤ ξ(1)in + ξ

(2)
in + ξ

(3)
in .

The inlet flow rate maximum concentration equal to x is obtained if we sum the total gas supply
through the inlet lines with concentrations r(1)in and r(2)in and with partial supply through the line with

concentration r(3)in , provided flow rate x−
(
ξ
(1)
in + ξ

(2)
in

)
. The maximum concentration for flow rate x is

equal to (1/x)
[
r(1)in ξ

(1)
in + r(2)in ξ

(2)
in + r(3)in

(
x− ξ(1)in − ξ

(2)
in

)]
.

The distribution of flow rates and concentrations in the output lines will be acceptable if all points
with coordinates:

[
ξ
(1)
out; r(1)out

]
,

ξ(1)out + ξ
(2)
out;

r(1)outξ
(1)
out + r(2)outξ

(2)
out

ξ
(1)
out + ξ

(2)
out

, . . . ,
∑Nout

j=1
ξ
( j)
out;

∑Nout
j=1 r( j)

outξ
( j)
out∑Nout

j=1 ξ
( j)
out

 (12)

lie no higher than curve (11). The first of these points corresponds to the output line with maximum
concentration r(1)out, the 2nd one to two output lines with concentrations r(1)out and r(2)out, etc. The last

point with abscissa ξΣ =
∑Nout

j=1 ξ
( j)
out and ordinate ρ always lies on the curve r(x). Here ρ is the system

average value of the considered component. If the remaining points are no higher than r(x), then the
concentration distribution (10) is acceptable. If for ordinates of points in the aggregate (9) we introduce

the notation y(1) = r(1)out, y(2) =
r(1)outξ

(1)
out+r(2)outξ

(2)
out

ξ
(1)
out+ξ

(2)
out

, . . . , y(Nout) =

∑Nout
j=1 r( j)

outξ
( j)
out∑Nout

j=1 ξ
( j)
out

, then the admissibility condition

is written in the form:

y(1) ≤ r
(
ξ
(1)
out

)
, y(2) ≤ r

(
ξ
(1)
out + ξ

(2)
out

)
, . . . , y(Nout) ≤ r

Nout∑
j=1

ξ
( j)
out

. (13)

This condition (13) is necessary and sufficient for non-equilibrium process feasibility. It should be
noted that the verification procedure (9)–(13) must be carried out for each fluid component.

Now we can fully formulate the problem of estimation of CC gas mixture distribution in the
directions of aggregated scheme transportation, listing all the restrictions that should be accounted for
in the optimization problem with criterion function (5).

Constraints in the form of equalities include balance conditions in the joint nodes for
each component: ∑

x j∈Γ(xk)

ηM
kj −

∑
xi∈Γ−1(xk)

ηM
ik = 0, xk ∈ V joint, M = I, II, III. (14)
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Conditions of equality of the fluid flow rate on each arc to the sum of all components flow rates
on the arc:

III∑
M=I

ηM
ij = ξi j, (i, j) ∈ E. (15)

Moving to concentrations, we write down this equation in the form:

III∑
M=I

rM
ij = 1, (i, j) ∈ E. (16)

Limitations in the form of inequalities include: condition (13) of a non-equilibrium process
feasibility, which must be satisfied for each fluid component M = I, II, III; non-negativity of all
concentrations of the problem:

rM
ik ≥ 0, (i, k) ∈ E, M = I, II, III. (17)

Thus, determination of fluid composition per transportation direction is reduced to optimization
problem (5) under constraints (14), (15) in the form of equalities and constraints (13), (17) in the form
of inequalities.

2.4. Assessment of the Information Content of the Gas Transmission System (GTS) Metrological Equipment

Before proceeding with solution of the task of estimating concentrations rM
ik , it is necessary to

find out what can be obtained from the available totality of measurements r∗Mik , (i, k) ∈ E∗, M = I, II, III.
Estimates obtained by solving the problem of conditional minimization will be marked with the caret,
for example, concentration estimates we shall notate as r̂M

ik . The estimation quality depends on the
quantity and location of the instruments, instruments accuracy class and the frequency of instruments
polling sessions. With an insufficient number of measurements it is impossible to obtain all estimates of
all concentrations r̂M

ik , (i, k) ∈ E. To demonstrate the possibilities of metrological support of the system,
let us consider the flow of a two-component mixture on the simplest system - a tee with one input line
and two output lines (Figure 2a). By n∗, min, mout, m joint we denote the number of measuring points,
sources, outflow and joint nodes, respectively.

In the beginning we analyze the simplified problem (5), (14). It is a quadratic program
with n unknowns and m joint linear constraints. Different cases may arise depending on values
n∗, min, mout, m joint. For a three-way piece (Figure 2a) n = 3, m joint = 1 there can be 3 options
of measured parameters, respectively n* = 3, 2, 1. In option 1 (concentrations are measured in
each pipeline) to estimate unknowns ri j, we resort to the problem of minimizing quadratic function
of 3 variables with one linear constraint. Using the constraint, we express one of the unknown
quantities ri j in terms of the other two. The resulting problem of unconditional extremum of 2
variable quadratic function can be reduced to a system of 2 linear equations with the same number
of unknowns. Solving this problem, we obtain estimates r̂i j of unknowns ri j which use the results of
all 3 measurements. The estimates r̂i j are better substantiated than each value direct measurements
r∗i j. In option 2, the concentration is measured only in 2 lines (for example, r∗k1, r∗k2 in Figure 2a). Now
n = 3, n∗ = 2, m joint = 1, we have the problem of minimizing quadratic functions of 2 variables rk1, rk2,
provided one linear constraint. The maximum of the likelihood function is found directly, and the
estimates are equal to measurements r̂k1 = r∗k1, r̂k2 = r∗k2. The constraint is used to find an estimate of
the missing unknown concentration along the arc entering the node xk. In option 3, only one value is
measured, for instance r∗k1 (Figure 2a). The maximum likelihood method allows one to obtain only a
trivial result—an estimate of the concentration along that arc r̂k1 = r∗k1.

The same kind of reasoning is carried out in the general case for any ratio of quantities n, n∗, m joint.
It helps to reveal what results can in principle be obtained with the existing system of measuring gas
composition. Concentration estimates cannot always be obtained and not for all graph edges. It all
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depends on the number and location of measuring points. For the graph of arbitrary configuration, of
greatest importance is the value d = m joint − (n− n∗). When d > 0, sought estimates can be refined by
accounting for mutual influence of all the measurements. If d = 0, then the measurement results directly
are concentration estimates. If d < 0, then the constraints in the form of equalities are insufficient to
estimate all unmeasured concentrations ri j. In the case d ≤ 0 graph G can contain subgraphs that meet
the condition d > 0. (Subgraph Gl(Xl, El) of the graph G(X, E) is a graph for which Xl ⊂ X and for each
graph node xk ∈ Xl, Γl(xk) = Γ(xk)∩Xl, [21,22]). Consequently, sufficient measurements are made on
the arcs of these subgraphs to refine concentration estimates. An algorithmic procedure for identifying
such subgraphs has been developed. Estimates are obtained as linear functions of measurements
r̂i j =

∑
(k,l)∈E∗

[
ai j

0 + ai j
klr
∗

kl

]
, (i, j) ∈ E.

The quality of the estimates is characterized by their dispersion. Under assumption (4),
dispersion of the estimates resulting from the maximum likelihood method is calculated as

Dr̂i j =
∑

(k,l)∈E∗

[(
ai j

kl

)2
Dr∗kl

]
, (i, j) ∈ E.

2.5. Computational Aspects

The considered problem of the distribution of the CC of multicomponent fluids is thus reduced
to a mathematical programming problem with constraints in the form of equalities and inequalities.
The number of unknowns and constraints in a task can be large. When solving it numerically, pitfalls
can be encountered, the manifestation of which will be the flatness or, conversely, the ravine of the
target function. The idea of the presence or absence of these phenomena, negative from a computational
point of view, can be obtained by conducting a computational experiment. We conducted experiments,
and found non-standard computational techniques and algorithms, which we consider to be proof of
the efficiency of the developed technique.

A. Two Approaches to Formalizing the Problem

The first approach (unknown variables–flow rates or concentration of components,
see Sections 2.2–2.5): the sought variables are concentrations rM

ij . If in relations (5), (14) and 15),

instead of component flow rates ηM
ij , using relations (3), we substitute their expressions in terms of

concentrations rM
ij , then we will obtain a formalization of the problem of determining gas composition

in variables rM
ij (component concentrations on the arcs of calculated graph) or the problem of optimizing

quadratic function with constraints in the form of equalities and inequalities. Since the fluid flow
rates ξi j are considered known, we can act differently, taking values η∗Mij = ξi jr∗Mij as initial information
for calculation.

The second approach: the sought variables are coefficients α j
ik. We introduce new unknowns α j

ik,
presenting the fluid flow rates in the form

ξkj =
∑

i∈Γ−1(xk)

α
j
ikξik, xk ∈ V joint. (18)

Here, we used the notation in Figure 2b. The physical meaning of relation (18) is as follows.
We consider joint node xk ∈ V joint. Each flow through the incoming line (i, k) (with flow rate ξik) is

divided into “jets” α1
ikξik,α2

ikξik, . . . ,αN(k)
ik ξik; N(k) = mes Γ(xk), where α j

ik is the fraction of the flow rate
ξik entering the output line (k, j), mes Γ(xk) is the number of arcs outgoing from node xk. Obviously,
for α j

ik the following relations are true:

N(k)∑
j=1

α
j
ik = 1, xi ∈ Γ−1(xk); α

j
ik ≥ 0. (19)
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In accordance with relation (18), we obtain the distribution of the components in the outgoing lines:

ηM
kj =

∑
i∈Γ−1(xk)

α
j
ikη

j,M
ik ,M = I, II, III, xk ∈ V joint. (20)

An obvious fact is used in relations (19). Let us consider the fluid flow along any incoming line.
In the joint node, this flow is divided into parts (“jets”) along the outgoing lines (N(k) is the number of
the jets). Component composition of each of these parts will be the same, the fact on which formula (20)
is based. Thus, if values ηM

ik , M = I, II, III, are taken as unknowns, then the mathematical model does
not require inclusion of inequality type relations (13), following from the conditions of non-equilibrium
of the process. These relations will be performed automatically.

The technique of mentally dividing each stream entering the node into “jets” was used above
(see Section 2.3, Formula (7)). If values α j

ik are determined, then the known concentrations are used to
calculate the concentrations on all network arcs. This can be done beginning with concentrations in the
sources r∗Mij , xi ∈ Vin, x j ∈ Γ(xi), M = I, II, III. The concentrations are calculated sequentially in the
order determined by the following node numbering algorithm.

Algorithm. We number the sources (in random order) with the numbers 1, 2, . . . , Nin. By numbering
a node, we color it and all arcs outgoing from it. We assign the next number to the node, all incoming
arcs in which are colored. We continue the procedure until all nodes are numbered.

In the same way, all flow rates ηM
ij , (i, j) ∈ E, M = I, II, III can be expressed through a set of

quantities α j
ik, which we designate as vector α = ‖α

j
ik‖. In particular, we obtain measured values

η∗Mij = η∗Mij (α), (i, j) ∈ E∗, M = I, II, III. As a result, the problem is reduced to finding the minimum
of criterion function (5) subject to fulfillment of constraints (15) and (19). Note that the calculation
procedure automatically satisfies conditions ηM

ik ≥ 0, (i, k) ∈ E, M = I, II, III, and, most importantly,
conditions (13) of the mixing process non-equilibrium. The last statement is explained by the fact that
when deriving non-equilibrium conditions (13), the method of splitting the flow along each incoming
line into “jets” was used (see Section 2.3, derivation of formulae (7), (8)).

In the first and second approaches, either component flow rates ηM
ij or their concentrations rM

ij are
used. By virtue of relations (3), these variables are easily expressed through each other. However, the
choice of variables can influence the effectiveness of the calculation methods.

B. The First Approach. Calculation Procedure Specificity

Nested solutions method. In its complete form, the problem of mathematical programming (5)
with conditions (13)–(16) because of a large number of restrictions and significant difference in the
sought variable values can be computationally difficult. In this case, one can resort to the method of
finding solution to the problem disregarding some constraints. The obtained quasi-solution should
be further checked for compliance with previously ignored constraints. If it does comply, then it is
the desired result. If it fails to comply, then those of the ignored constraints that are not satisfied in
the quasi-solution are added to the conditions. For example, constraints (13) are rather cumbersome.
Instead of them, restrictions (8) can be introduced, that is, only part of restrictions (13). A quasi-solution
with constraints (8) can satisfy all constraints (13), then a solution to the problem is reached.

The computational experiment performed proved the method to be very effective, although, of
course, it is impossible to guarantee its success in any situation. The possibility of rejecting condition
(17) was also tested. In the experiments, after the quasi-solution was obtained, condition rM

ik ≥ 0 was
introduced only for those unknown concentrations that turned out to be negative in the quasi-solution.
In the solution obtained in this case, all constraints were satisfied.

The larger the dimension of the problem, the more efficient the application of the nested solution
method. The application of the method in computer systems for operational control is especially
justified. For operational control, it is characteristic that with the next arrival of information about
measurements from the GMS, a good initial approximation is usually known to solve the problem of
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determining the component composition. Therefore, first of all, it is necessary to take into account the
constraints in the form of inequalities, which are currently fulfilled as equality.

3. Results

Section 3 uses a double designation of arcs, for example, 1 and (1, 6) (see Figure 1), the 2nd way is
more convenient in those cases when it is necessary to emphasize the direction of the arc.

3.1. Example

To illustrate the technique developed, we will give an example of calculating CC distribution in a
three-component mixture flow in the graph shown in Figure 1. Structural graph G contains 13 arcs
(transportation directions), 11 nodes (of which 4 sources, 2 outflows, 5 joints). Measurement points are
located on 9 arcs. The criterion for the information content is d = m joint − (n− n∗) = 5− (13− 9) = 1.
Therefore, in this case the technique provides an opportunity to take into account mutual influence of
the measurements. The initial measurement data and optimization problem solution results are shown
in Table 1 and duplicated in Figure 1. The values of the estimates r̂M

ij of the component concentrations
shown in Figure 1, as well as in Table 1 are obtained by computer calculations and rounded to 3 decimal
places. Naturally, the estimates r̂M

ij were obtained for all arcs, including those without measuring

devices (arcs 6, 8, 11, 13, Figure 1). Due to rounding errors, relation (16) for estimates r̂M
ij may be

violated in the last digit. So, for the arc (1, 6) we have
III∑

M=I
r̂M

16 = 0.924 + 0.022 + 0.023 = 0.999.

Table 1. Composition measurements r∗Mij and estimates r̂M
ij (numerator—measurement,

denominator—calculation).

Arc
№/(i, j)

Flow Rate,
MSCMD

Concentration of Components

M = I M = II M = III

1/(1, 6) 170 0.980/0.954 0.015/0.022 0.005/0.023
2/(2, 6) 90 0.900/0.895 0.070/0.082 0.030/0.023
3/(3, 5) 110 0.930/0.934 0.060/0.066 0.010/0.000
4/(4, 5) 180 0.910/0.919 0.050/0.043 0.040/0.038
5/(5, 6) 70 0.915/0.934 0.055/0.043 0.030/0.023
6/(6, 8) 140 —/0.934 —/0.043 —/0.023
7/(6, 10) 190 0.950/0.934 0.040/0.043 0.010/0.023
8/(5, 7) 110 —/0.924 —/0.047 —/0.029
9/(5, 7) 110 0.920/0.919 0.060/0.062 0.020/0.019
10/(7, 8) 155 0.910/0.920 0.080/0.058 0.010/0.022
11/(8, 9) 295 —/0.927 —/0.051 —/0.022

12/(7, 10) 65 0.930/0.924 0,050/0,047 0.020/0.029
13/(10, 11) 255 —/0.931 —/0.044 —/0.025

The difference between direct measurements r∗Mij and estimates r̂M
ij for the entire set of measurements, especially

for components with low concentrations, in some cases is very large. For example, r∗II
(7,8)

= 0.080, r̂II
(7,8)

= 0.058,

r∗III1,6 = 0.005, r̂III
1,6 = 0.023, r∗III

(3,5)
= 0.010, r̂III

(3,5)
= 0.000. Significant discrepancies in the values r∗Mij and r̂M

ij may
indicate non-fulfillment of relation (4), in the part that refers to the absence of systematic measurement errors.
The presence of significant discrepancies should be an incentive for the standardization of measuring instruments.

The distribution of flows ξ is included in the initial data. The flow rates of the fluid in the
directions of pumping ξ(1,6) = 170, ξ(2,6) = 90, . . . are balanced, and they are shown in Figure 1 and
duplicated in Table 1.

Despite the small size of the graph, it allows you to illustrate the characteristic features of the
problem of assessing the CC of the GTS pipelines. The sample data have been selected to illustrate
the methods.
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The concentration measurement data is deliberately selected in such a way as to simulate possible
errors. For example, the measurements of the concentration of component M = II on arcs emanating
from the sources are 0.015, 0.070, 0.060, 0.050, while the concentration M = II measurement on the
outgoing arc (7, 8) is 0.080. Naturally, such a situation is impossible for true concentration values due
to violation of the non-equilibrium conditions. Nevertheless, the solution of the problem has been
obtained, and the calculation results satisfy the conditions of non-equilibrium in both soft (8) and
harder (13) forms. This means that the algorithm made it possible to smooth out the measurement
errors without going beyond the limits, including (16) and (17).

Attention should be paid to the difference in the component composition of the fluid along parallel
lines 8 and 9 (arcs between nodes 5 and 7). Thus, r̂II

8 = 0.047, r̂II
9 = 0.062, r̂III

8 = 0.029, r̂III
9 = 0.019. This

once again indicates that the distribution of the component composition of the fluid is influenced by a
set of interrelationships of operating parameters throughout the GTS. Rough-and-ready, local methods
for solving the problem can lead to significant errors.

One of the purposes of this example is to test nested decision methods (see Section 1, Section 2.5B).
First, the optimization problem was solved without taking into account inequality constraints. In this
setting, the problem is reduced to a quadratic program with linear equality constraints. The resulting
solution contained 2 negative components and one violated inequality (8). Then, both inequalities from
(17) and the violated inequality from (8), which were not fulfilled at the first stage, were introduced
into the model. The solution to this corrected problem has satisfied all the constraints.

It is interesting to note that none of the constraints (13), which are not included in the number of
inequality constraints (8), were violated either at the 1st or at the 2nd stage of the solution. Apparently,
restrictions from (8) are infrequently violated, which indicates the usefulness of the proposed nested
solution method.

In this example, both approaches to the formalization of the problem A and B (Section 2.5) are
tested. They have been proven capable of working, both lead to virtually identical numerical results.

Comparison of approaches A and B can be, in our opinion, carried out only on the basis of a
computational experiment. However, it is clearly premature to draw conclusions based on the study
of only one example. Our assumption about the preferability of method B remains a hypothesis that
must be verified by a representative computational experiment.

3.2. Mixing Processes Non-Equilibrium Indicator

Initially, the study of irreversible and non-equilibrium processes was the subject of
thermodynamics [17–19]. Then, other branches of science that lie at the intersection of physics
and chemistry arose to study processes of this kind (see Section 2.1). In connection with the need to
determine the directionality of the physical (heat transfer) process the concept of entropy was introduced,
which underlies one of the cardinal laws of physical laws—the second law of thermodynamics. Entropy
is a physical quantity deduced from mathematical models of energy transfer processes. Entropy is
a monotonic function defined in such a way that in irreversible heat transfer processes it inevitably
increases. Currently, there are numerous options for extending the concept of entropy to processes
not associated with heat transfer. K. Shannon [30] introduced the concept of information entropy as a
measure of information, as a characteristic of the amount of information contained in a message. We
can say that entropy is a general name for the quantitative characteristics of a wide variety of processes,
primarily processes that are irreversible and characterised by non-equilibrium. For the processes of
gas mixing in industrial pipelines considered here, the quantitative indicator of non-equilibrium can
also be introduced.

To define it, we introduce the concept of an extended graph G′. G′ is obtained from the original
graph G by adding to it a fictitious source s′ and a fictitious outflow t′, as well as fictitious arcs
connecting s′ to the sources of graph G and outflows of the graph G to t′. Fictitious arcs are shown in
Figure 3 with a dotted line.
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Figure 3. Cuts of the extended graph G′.

In graph G′ cuts separating s′ from t′ are considered. A minimal set of arcs, the removal of which
splits the graph into 2 components of connectivity, of which one contains s′ and the other t′ is called
a cut (more precisely, a minimal cut) separating the source s′ from the outflow t′ [21,22]. The term
minimal cut means that when any arc is removed from the set, it ceases to be a cut.

Figure 3 shows 2 cuts Si, S j. The fluid flow rate distribution through the cut is determined
by population αkj = ξkj/ξΣ, (k, j) ∈ Si. Here ξΣ =

∑
(k, j)∈Si

ξkj is the total flow rate through the cut.

All flow rates ξΣ are obviously the same in any cut. Since
∑

(k, j)∈Si

αkj = 1 it can be argued that the set

αkj, rM
kj , (k, j) ∈ Si for each component M determines a discrete random variable specified in the cut Si.

The dispersion of this variable:

HM(Si) =
∑

(k, j)∈Si

(
rM

kj − rM

)2
αkj. (21)

characterizes the degree of component M scattering around the mean value rM, that is, degree of the
component flow proximity to the state of complete mixing. The function of the cut:

H(Si) =
III∑

M=I

HM(Si) (22)

characterizes the mixture proximity to the equilibrium state, the state of complete mixing. Here,
as before, it is assumed that the number of mixture components is III. According to established tradition,
entropy as a characteristic of irreversible processes can change in only one direction: it can increase.
Let us introduce the concept of “entropy” for the process of non-equilibrium mixing of multicomponent
gas mixtures moving through industrial pipeline systems, trying not to break this tradition. Let us
define the “entropy” of the cut Si using the formula:

entr(Si) = −H(Si) = −
III∑

M=I

HM(Si). (23)
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According to definition (23), the gas mixture “entropy” is the sum of the gas mixture component
“entropies”. In contrast to the overwhelming majority of other applications function entr(Si) is defined
not for a continuum set, but for a discrete set: the set of cuts of the extended graph G′ of pipeline system.

Let us introduce a new concept. Each cut Si divides extended graph G′ into 2 parts, into 2
connected components, subgraphs G′s′(Si), G′t′(Si) containing a source and an outflow, respectively,
so that G′ = G′s′(Si) ∪G′t′(Si) ∪ Si. We can say that cut S j includes Si, and denote it as S j � Si if
G′s′(Si) ⊂ G′t′

(
S j

)
(see Figure 3). The necessary condition for the non-equilibrium of component M

flow distribution in graph G′ is written in the form HM(Si) > HM
(
S j

)
.

Let us call the maximum number of arcs in the chain from s′ to i as the distance from s′ to node i
and introduce a sequence of cuts Sk, k ≥ 1. Sk is a cut that divides extended graph G′ into 2 subgraphs,
one of which G′s′(Sk) contains all the nodes removed from s′ at a distance not exceeding k, and the
other subgraph G′t′(Sk) contains the remaining nodes of the graph. By construction, S j � Sk, if j > k.
We denote the distance from s′ to t′ through K and consider a sequence of cuts S1 ≺ S2 ≺ . . . ≺ SK.
The function (22) H(z) is defined for the set of cuts S1, S2, . . . , SK, that is, argument z can be considered
a real variable taking values 1, 2, . . . , K, or a real n-dimensional vector z ∈ Rn which values are

determined by the cuts S1, S2, . . . , SK. We can consider, for example, z jk =

{
1, if ( j, k) ∈ Si
0, if ( j, k) < Si

, ( j, k) ∈ E.

The above operation S j ≺ Si establishes a partial ordering relation in the set of cuts S1, S2, . . . , SK. Cuts
Si, S j in Figure 3 are related via ratio S j ≺ Si. The “entropy” in these cuts satisfies the inequality
entr(Si) ≤ entr

(
S j

)
.

Table 2 shows values of indicator entr(Si) and its additive components HM(Si) for 3 cuts of graph
G′ (Figure 4).

Table 2. Example. Indicator entr(Si) values for 3 cuts (Figure 4).

Cut Si Arcs of the Cut entr(Si) НI(Si) НII(Si) НIII(Si)

S1 1, 2, 3, 4 −1.0800 × 10−3 0.431 × 10−3 0.468 × 10−3 0.180 × 10−3

S2 6, 7, 10, 12 −0.0823 × 10−3 0.370 × 10−4 0.415 × 10−4 0.380 × 10−5

S3 11, 13 −0.0170 × 10−3 0.500 × 10−5 0.110 × 10−4 0.110 × 10−5Energies 2020, 13, x FOR PEER REVIEW 18 of 20 
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Figure 4. Example. The cuts S1, S2, S3 (see the Table 2).

The indicator of non-equilibrium allows us to gain a general picture of the distribution of CC/caloric
content in the GTS. This will help in solving the issues of adjusting the aggregated scheme in the
direction of refinement or dividing the graph into subgraphs G = Gu ∪Gv, for one of which Gu the
non-equilibrium of the mixing process is essential, and for the other Gv it is not essential. In this case,
it may be acceptable the switch from the study of CC distribution on G to study on Gu. “Entropy”
rapidly decreases with distance from sources and approaching sinks. So entr(S1) : entr(S2) = 13.1,
entr(S2) : entr(S3) = 4.84. This indicates a rapid approach of the process to the equilibrium state.
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In general, the example testifies to the efficiency of the methods, the efficiency of computational
procedures and the acceptability of the apparatus for practical calculations.

4. Conclusions

A technique is proposed that allows calculating the distribution of the component composition of
natural gas flows through gas transportation systems of arbitrary configuration. A mathematical model
has been developed that takes into account the irreversibility and non-equilibrium of mixing processes,
as well as the random nature (instruments errors) of the component concentration measurement.
Non-equilibrium conditions are derived for a mixture with an arbitrary number of components.
The model takes into account the entire set of measurements and their mode-technological relationships.
The possibility of two approaches to the numerical solution of the problem is established. The aim
of the research is achieved by solving a mathematical programming problem with constraints in the
form of equalities and inequalities. A subject-oriented computational procedure has been developed,
which allows one to obtain a result using standard software packages. The efficiency of the technique
is demonstrated by a numerical example of calculating the flow distribution of a three-component
mixture. A non-equilibrium indicator («entropy» of the mixing process) is introduced, which is defined
for a discrete set: the set of cuts of the computational graph.
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25. Cimerman, F.; Jarm, M.; Širok, B.; Blagojevič, B. Taking in Account Measuring Errors of Volume Conversion

Devices in Measuring of the Volume of Natural Gas. J. Mech. Eng. 2016, 62, 95–104. [CrossRef]
26. Bagajewicz, M.J.; Cabrera, E. Data reconciliation in gas pipeline systems. Ind. Eng. Chem. Res. 2003, 42,

5596–5606. [CrossRef]
27. Arpino, F.; Dell’Isola, M.; Ficco, G.; Vigo, P. Unaccounted for gas in natural gas transmission networks:

Prediction model and analysis of the solutions. J. Nat. Gas Sci. Eng. 2014, 17, 58–70. [CrossRef]
28. De Oliveira, E.C.; Frota, M.N.; de Oliveira Barreto, G. Use of data reconciliation: A strategy for improving

the accuracy in gas flow measurements. J. Nat. Gas Sci. Eng. 2015, 22, 313–320. [CrossRef]
29. Botev, L.; Johnson, P. Applications of statistical process control in the management of unaccounted for gas.

J. Nat. Gas Sci. Eng. 2020, 7, 103194. [CrossRef]
30. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en12030569
http://dx.doi.org/10.1177/1687814017713705
http://dx.doi.org/10.1016/j.flowmeasinst.2015.01.006
http://dx.doi.org/10.5545/sv-jme.2015.2948
http://dx.doi.org/10.1021/ie020774j
http://dx.doi.org/10.1016/j.jngse.2014.01.003
http://dx.doi.org/10.1016/j.jngse.2014.12.008
http://dx.doi.org/10.1016/j.jngse.2020.103194
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Non-Equilibrium Mixing Processes (Technological Aspect) 
	Task Formalization 
	Conditions for Non-Equilibrium of Mixing Process 
	Assessment of the Information Content of the Gas Transmission System (GTS) Metrological Equipment 
	Computational Aspects 

	Results 
	Example 
	Mixing Processes Non-Equilibrium Indicator 

	Conclusions 
	References

