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Abstract: In the parking lots of public commercial areas, such as shopping malls, hospitals, and scenic
spots, the parking spaces with electric vehicle (EV) charging facilities are often occupied by ordinary
cars. How to regulate the parking order in the parking lot is a key issue in the operation and
management of the parking facilities. In this paper, a method of assessing parking fees for vehicles
parked at the charging facilities is proposed based on an economic penalty strategy, including
fixed-penalty and dynamic-penalty strategies. First, a traffic flow model of the parking lot in public
area is established. Then, a price and consumption model of parking fees and parking lot utilization
is established, along with different penalty strategies. Finally, taking the parking lot of a shopping
mall as an example, the penalty strategies are optimized through particle swarm optimization (PSO)
algorithm. The simulation results show that the method proposed can help to improve the utilization
of EV charging facilities in parking lots and guide the orderly parking and charging of EVs at the
same time.

Keywords: electric vehicles charging; public area orderly parking and charging; economic penalty
model; price and consumption model

1. Introduction

As is shown in Figure 1 [1], China’s megacity electric vehicles (EVs) industry has achieved rapid
development under the dual incentives of government policy and financial subsidy in recent years.
The government encourages and guides residents to purchase and use electric vehicles (EVs) through
a variety of traffic administration policies, such as easing the purchasing permission and license plate
restrictions. As a result, the number of electric vehicles in Beijing has seen a spurt of growth in the
past two years. The sales of EVs in China accounted for half of all EV sales worldwide in 2017 [2].
According to forecasts, the number of electric vehicles in China will reach 5 million in 2020 and will
exceed 50 million in 2030 [3]. In the meantime, the construction of related charging facilities and
power network facilities showed a state of lagging development, which is difficult to meet the rapidly
increasing charging demand. In order to alleviate the contradiction between rising demand for charging
and insufficient supply of charging facilities, the government has promulgated relevant policies to
promote the growth of charging facilities [4]. As Beijing’s “Opinions on Further Strengthening the
Construction and Management of Electric Vehicle Charging Infrastructure” launched in April 2019
clearly states that the number of charging facilities allocated to office buildings should not be less than
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one-fourth of the planned parking spaces, newly built residential areas must have a one to one parking
lot charging pile which is a device installed on parking spaces to charge EVs [5].
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Beijing’s mall parking lots were equipped with charging facilities in 2018, but some problems 
were exposed. The ideal parking condition is that the EVs with charging needs are parked in the 
parking lot with the charging post, while the other cars are parked in the ordinary parking spaces. 
However, it was very common to observe that ordinary cars were parked in a parking space with a 
charging post. When the parking spot with the charging post is full, EVs cannot be charged, resulting 
in charging piles in the parking lot. In order to provide convenience for EV users in their daily use, 
their charging demand should be satisfied as much as possible. Therefore, to make the charging 
completion rate as high as possible, the EV charging management strategy needs to be designed in 
different situations. 

With the development of EV industry, the convenience of EVs has been promoted [6–9], where 
EV charging strategies and location of charging stations have been addressed. In the EV parking 
charging scenario, the researches mainly focus on two aspects: charging efficiency and pricing policy. 
At present, many charging station operators choose to use the business model of energy transfer sales; 
but once fully charged, they do not encourage the drivers to move the vehicle out of the charging 
facility. Charging station operators are looking for ways to improve their operational efficiency. 
Learning from parking research [10], the introduction of time-based fees can help improve the 
efficiency of charging station capacity. As we all know, the charging rules of the parking lot will affect 
the charging decision of EV users [11]. Direct implementation of time-based fees may not be the best 
solution because it may interfere with the “parking charge” system; the advantages of EVs over other 
alternative fuel vehicles (AFVs) is that they can be charged while they are parked. There are big 
differences in the way EV drivers use public charging infrastructure. It depends on the location (for 
example, home or work) and the time of day [12]. In addition to these spatiotemperal differences, the 
parking and charging methods of drivers are also different [13]. Such differences may also affect the 
way time-based costs affect EV driver behavior. Tanguy et al. [14] proposed the concept of vehicle-
to-building collaborative charging and used linear programming models to optimize parking 
charges. At present, some scholars have studied the implementation of vehicle-to-grid (V2G)and 
vehicle-to-building (V2B) in the fields of electronics [15], optimization [16,17], charge control [18], 
demand-side response [19], and uncertainty [20]. However, there are few papers that have analyzed 
the coupling between photovoltaic resources and electric vehicles in public buildings [21–25]. Due to 
strict restrictions on private parking and charging resources in residential areas of typical European 
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Beijing’s mall parking lots were equipped with charging facilities in 2018, but some problems were
exposed. The ideal parking condition is that the EVs with charging needs are parked in the parking
lot with the charging post, while the other cars are parked in the ordinary parking spaces. However,
it was very common to observe that ordinary cars were parked in a parking space with a charging post.
When the parking spot with the charging post is full, EVs cannot be charged, resulting in charging
piles in the parking lot. In order to provide convenience for EV users in their daily use, their charging
demand should be satisfied as much as possible. Therefore, to make the charging completion rate as
high as possible, the EV charging management strategy needs to be designed in different situations.

With the development of EV industry, the convenience of EVs has been promoted [6–9], where
EV charging strategies and location of charging stations have been addressed. In the EV parking
charging scenario, the researches mainly focus on two aspects: charging efficiency and pricing policy.
At present, many charging station operators choose to use the business model of energy transfer sales;
but once fully charged, they do not encourage the drivers to move the vehicle out of the charging
facility. Charging station operators are looking for ways to improve their operational efficiency.
Learning from parking research [10], the introduction of time-based fees can help improve the efficiency
of charging station capacity. As we all know, the charging rules of the parking lot will affect the
charging decision of EV users [11]. Direct implementation of time-based fees may not be the best
solution because it may interfere with the “parking charge” system; the advantages of EVs over other
alternative fuel vehicles (AFVs) is that they can be charged while they are parked. There are big
differences in the way EV drivers use public charging infrastructure. It depends on the location (for
example, home or work) and the time of day [12]. In addition to these spatiotemperal differences,
the parking and charging methods of drivers are also different [13]. Such differences may also affect
the way time-based costs affect EV driver behavior. Tanguy et al. [14] proposed the concept of
vehicle-to-building collaborative charging and used linear programming models to optimize parking
charges. At present, some scholars have studied the implementation of vehicle-to-grid (V2G)and
vehicle-to-building (V2B) in the fields of electronics [15], optimization [16,17], charge control [18],
demand-side response [19], and uncertainty [20]. However, there are few papers that have analyzed the
coupling between photovoltaic resources and electric vehicles in public buildings [21–25]. Due to strict
restrictions on private parking and charging resources in residential areas of typical European cities,
Schurmann, Timpner, and Wolf [26] proposed the EV protocol and integrated the protocol with the
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International Standards Organization (ISO) 15,118 standard. By using this method, it helps to reduce
operating costs and improve the utilization of charging stations or EV power equipment. Lokesh
and Min optimized the selection of EV charging stations through a real-time information sharing
framework between EVs and charging stations, aiming to reduce average waiting time and improve
customer service indicators.

It is also one of the research interests to schedule and plan the charging of EVs through price
strategy [27]. Chang et al. [28] proposed a co-billing strategy based on the use of time-based billing
services. By analyzing the driver’s price response model, an optimal particle swarm optimization model
for charging load and time-of-use price was established. The results show that the load distribution
results are obviously better than the average load distribution. Xu et al. [29] conducted a case study
in Guangdong Province, China, and proposed a mathematical model of a new layered framework
that coordinates plug-in EV charging on multiple time scales (i.e., early and real-time). Common
optimization of provincial, municipal and charging station-level charging strategies not only reduces
the cost of charging but also meets the customer’s charging requirements, which is very effective in
reducing system peak demand and controlling charging costs. Qi et al. [30] proposed a distributed
layered charging strategy and compared several different charging strategies by the Lagrangian
relaxation method. It concludes that the proposed charging strategy is superior to other strategies.

However, very few researchers have noticed the mechanism on how the charging affects the
decision making of moving vehicles after a full charge, and there is no clear charging model for
increasing the utilization of parking spaces. The problem of random parking in public areas still exists.
Facing the increasing number of EVs, the parking spaces of EVs in parking lots have not been fully
utilized. The objective of this paper is the orderly parking of EVs for charging in a commercial parking
lot by optimizing the utilization of the parking space. Based on the relationship between parking fee
and parking need, a parking strategy based on fixed-penalty model and dynamic-penalty model is
developed, and the simulation of orderly parking management with a mixture of parking space for
ordinary cars and charging space for EVs is made. The scenario diagram of the scheduling system for
a typical parking lot is shown in Figure 2.
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2. Orderly Operation Modeling of Charging Facilities in Parking Lot

2.1. Traffic Flow Model in Public Commercial Area

In shopping malls, hospitals, scenic areas, and other public commercial areas, the arrival of each
car can be regarded as an independent random event, and the mall traffic from the beginning of
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business to the end of the business period is viewed smoothly. Peaks also appear to be relatively flat,
so the number of cars arriving at a parking lot in a public area can be considered as a random variable
subject to Poisson distribution with probability distribution defined by:

P(X = k) =
λk

k!
e−λ, (1)

where X = k means that there are k cars arriving in the parking lot per hour, and λ means the average
number of vehicles arriving in the parking lot. When the average daily traffic data of parking lots
in public areas can be obtained, the Poisson distribution parameter λ can be calculated by setting a
reasonable time interval to get the traffic distribution model of parking lots in public areas. According
to the National Household Travel Survey’s data, people’s travel probability density is a normal
distribution [31]. Combined with the data on a certain shopping mall’s passenger flow in Beijing from
AutoNavi Map APP(AutoNavi Map APP is a mobile navigation software issued by China AutoNavi
Software Co., Ltd.), when the unit time is one hour, the flow of people in the mall presents a form of a
superposition of two normal distributions with different peaks over time. The peak times of the two
normal distributions occur at 12:00 noon and 18:30, respectively, and the peak probability density of
the latter is larger than that of the former, which means that the number of people arriving at the mall
around 18:30 is the largest in a day. Thus, the time distribution of traffic flow in a mall parking lot can
be modeled as:

f1(x;µ1, σ1) =
1

σ1
√

2π
exp

− (x− µ1)
2

2σ2
1

, (2)

f2(x;µ1, σ2) =
1

σ2
√

2π
exp

− (x− µ2)
2

2σ2
2

, (3)

fM(x) = 0.4 f1(x;µ1, σ1) + 0.6 f2(x;µ2, σ2), (4)

s.t. 0 < x ≤ 24. (5)

The shopping mall’s passenger flow data in Beijing in the AutoNavi map (bar graph) and the
traffic flow probability density in the shopping mall (by line) approximated by formulas (2)–(5) is
shown in Figure 3.Energies 2020, 13, 6155 5 of 23 
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Among them, f1(x;µ1, σ1) is the density function with the first small peak; the maximum appears
at 12:00, and we can make µ1 = 12. At noon, traffic flow curve is relatively stable, and σ1 can be 2.
The second density function f2(x;µ2, σ2) has the second small peak, and the maximum appears in
18:30; therefore, µ2 = 18.5. Traffic in evening hours is heavier than in the noontime, and σ2 is taken as
1. Combining the two densisty functions, fM(x) is the distribution of traffic flow in shopping malls in
one day, which is the superposition of two normal distributions at noon and evening. The time that
cars stay in the parking lot of a shopping mall varies from half an hour to several hours, which can be
regarded as evenly distributed.

2.2. Parking Space Probability Model

Unlike ordinary products, parking spaces are a commodity of great price elasticity. Pricing for
different parking lots can vary widely. To determine the probability of a car being parked at random in
a parking lot and the probability that an EV will be moved out after it is fully charged, we use the
cost of the car owner being penalized. First, in a parking lot with a parking penalty, we define the
probability that ordinary car owners and EV owners park their cars in the two parking spaces as:

Po2EV =

co2o

co2o + co2EV
×

NEV

NEV + No
co2o

co2o + co2EV
×

NEV

NEV + No
+

co2EV

co2o + co2EV
×

No

NEV + No

, (6)
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co2EV

co2o + co2EV
×

No

NEV + No
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co2o + co2EV
×

NEV
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×
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×

No

NEV + No
cEV2o
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×

NEV

NEV + No
+

cEV2EV

cEV2o + cEV2EV
×
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, (8)

PEV2EV =

cEV2o

cEV2o + cEV2EV
×

NEV

NEV + No
cEV2o

cEV2o + cEV2EV
×

NEV

NEV + No
+

cEV2EV

cEV2o + cEV2EV
×

No

NEV + No

, (9)

where Po2EV is the probability of parking an ordinary car in a charging space, Po2o is the probability of
parking an ordinary car in an ordinary parking space, PEV2o is the probability of parking an EV in an
ordinary parking space, PEV2EV is the probability of parking an EV in a charging space, co2o is the cost
of an ordinary car parked in an ordinary parking space, co2EV is the cost of ordinary cars parked in a
charging space, cEV2o is the cost of an EV parked in an ordinary parking space, cEV2EV is the cost of an
EV parked in a charging space, No is the number of ordinary parking spaces in the mall parking lot,
and NEV is the number of charging spaces in the mall parking lot.

The cost of parking fee can be calculated as:

c∗ =
∫ Tleave

Tarrivals

p∗(t)dt, (10)

where c∗ is the cost of total parking fee under different parking models, p∗(t) stands for parking fees
per unit of time in this model, Tarrival is the arrival time of the car, and Tleave is the leave time of the car.

Then, we define the probability of an EV moving out after fully charged as:

Pm =
cp − cu

cp − cu + cm
, (11)
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where Pm is the probability of moving out, and Cm is the cost of moving a car from the charging
space to other appropriate parking space. It is worth noting that Cm, the cost of moving a car, is often
different from person to person. For the sake of convenience, we define it as a constant representing
most people. Cp is the cost of penalty, and Cn is the cost without penalty.

As before, the cost of parking fee can be calculated as:

c∗ =
∫ Tleave

Tpresent

p∗(t)dt. (12)

what is different is that Tpresent is current moment.

2.3. Parking Response Willingness Model

According to a large number of social survey data obtained from consumer psychological price
stimulation of EV owners, the consumers will respond by the stimulus that has an acceptable range,
generally 3–5 times as the price difference. When the stimulus intensity is within the acceptable range,
users will basically choose to accept or reject it according to their own preference. When the penalty
rate is too high, EV users are less inclined to park in this parking spaces due to fear of high penalties.
Therefore, the probability of whether EV users choose to park in the parking lot with penalty can be
expressed as:

Pwp = exp((−F(t) + 12t/60)), (13)

where F(t) is the parking fee that users should pay when they accept penalty, and Pwp is the probability
that the user facing the penalty amount to evaluate whether to enter the parking lot.

If the penalty is too low, it is close to the state of no penalty. All car users will choose to enter the
parking lot and park at will, resulting in no charging piles for EVs to charge, and the utilization of
charging parking spaces is reduced. Otherwise, if the penalty fee is too high, EV owners are worried
about the higher overhead costs caused by not moving the vehicle after the charging is over, which
will cause the owners to be unwilling to choose here for charging. To optimize the penalty factor that
the users can accept, and find the maximum utilization rate within the range that the user can accept
the penalty, we use a heuristic optimization algorithm, particle swarm optimization (PSO), which is a
population based stochastic optimization technique developed by Eberhart and Kennedy in 1995 [32].

2.4. Penalty Strategy Model

The fee for shopping mall parking is divided into two parts, charging cost and parking fee. If an
EV is charged, it will be charged for charging and parking. If there is no penalty, the fee only includes
parking fees. Ordinary cars only have parking fees. Charging fees of the EVs are uniformly charged
by the grid company. Parking lot can be set with different parking fees. In establishing a parking
model, we consider 4 different parking-fee models shown in Figure 4, namely non-penalty model,
fixed-penalty model, linear dynamic-penalty model, and non-linear dynamic-penalty model. In the
United States, as the number of illegal driving increases, motorists will face more fines. This stepped
penalty model is divided into two types: stepped incremental pricing model and stepped decreasing
pricing model [33]. The greater the intensity of the penalty, the less likely the driver to break the law.
Inspired by the literature [33], a new penalty model is proposed based on time-increasing penalty
for the parking violation. The goal of the penalty model is to improve the utilization of charging
space. This goal is achieved by setting a fine that increases over time to increase the driver’s illegal
parking cost, thereby reducing illegal parking behavior. The level of the penalty amount determines
whether the driver will park illegally, but an excessive penalty amount will reduce the parking rate of
all parking spaces in the parking lot. Therefore, four different parking fee models are proposed to take
into account the tolerance and acceptance of the penalties of the majority of drivers. Fixed-penalty is
based on the parking fee based on a fixed amount of penalty per hour. The maximum enforcement is
to give users no buffer reminder time. Once parking violations occur, they will face higher penalty
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fees from the beginning. The amount of parking fees for dynamic-penalty gradually increases with
the illegal parking time. When the illegal parking is within the specified time period, the parking fee
slowly increases, and the user is given a buffer time to remind him that, when the illegal parking time
exceeds the specified time period, the penalty amount will increase to the maximum intensity.
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2.4.1. Non-Penalty Model

To set up a control group, the conventional charging strategy is used as non-penalty model. That is,
if an ordinary car is parked on an EV charging space, or an EV is parked on a charging space without
charging, there is no penalty. The numerical expression of the parking fee of non-penalty model is:

Fnp = 12t (t ≥ 0), (14)

where t is the illegal parking time, and 12 is the parking fee paid per hour.

2.4.2. Fixed-Penalty Model

Under this model, the ordinary cars parked in the charging spaces and the EVs that occupy the
charging spaces without charging will be penalized by a fixed penalty, that is, parking fees will be
several times more than the normal parking fees. The numerical expression of the parking fee of
fixed-penalty model is, for example,

Fsp = Qst + 12t (t ≥ 0), (15)

where t is the illegal parking time, and Qs is the fixed-penalty factor.

2.4.3. Dynamic-Penalty Model

Under this model, the vehicle that occupies the charging space under the non-charging condition
is penalized by increasing rate. For linear dynamic-penalty model, the parking fee increases linearly
from normal to several times within half an hour and then stays at the maximum limit. The numerical
expression of the linear dynamic-penalty model is, for example,

Fldp =

{
Qdlt2+12t (0 ≤ t ≤ 0.5)
Qdl(t− 0.5) + 0.25Qdl+12t (t > 0.5)

, (16)
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where t is the illegal parking time, and Qdl is the linear dynamic-penalty factor. The numerical
expression of the non-linear dynamic-penalty model is, for example,

Fnldp =



Qdn1t2+12t, (0 ≤ t ≤ 0.25)

0.5Qdn1(t− 0.25) +
1

16
Qdn1 +12t, (0.25 < t ≤ 0.5)

Qdn2(t− 0.5)2 + 0.5Qdn1(t− 0.5)+
3

16
Qdn1+12t, (0.5 < t ≤ 0.75)

0.5(Qdn1 + Qdn2)(t− 0.75)+
(5Qdn1 + Qdn2)

16
+12t, (t > 0.75)

, (17)

where t is the illegal parking time, and Qdn1, Qdn2 are the non-linear dynamic-penalty factors.

3. Optimization Model

3.1. Objective Functiaon

The purpose of the optimization is to increase the utilization of charging parking spaces; thus,
the objective function is defined as:

max
{
ft(x)

}
= max

{
η =

Nc

Nn

}
, (18)

where η is the utilization of charging parking spaces, Nc is the total number of EVs that have been
charged, and Nn is the total number of EVs that need charging.

Constraints to be satisfied are:

s.t.



Cari ∈ {0, 1}
NORi ∈ {0, 1}
EVSi ∈ {0, 1}
EVCi ∈ {0, 1}
Soci ∈ (0, 1]

, (19)

where Cari is the property of the i-th car, 0 means ordinary car, and 1 means EV; NORi is the status
of the i-th normal parking space, 0 means idle, and 1 means occupied; EVSi is the status of the i-th
charging parking space, 0 means idle, and 1 means occupied; EVCi is the charging state of the charging
parking space, 0 means not charging, and 1 means charging; Soci is the power of the i-th EV. In addition,
the following constraint should be satisfied to guarantee that, when the state of the i-th charging
parking space is charging, the state of the i-th charging parking space is occupied to charge an EV:

Cari × EVSi ≤ EVCi. (20)

3.2. Partical Swarm Optimization Algorithm

In the PSO algorithm, the search process starts from a set of problem solutions rather than from
a single individual. It has an implicit parallel search feature, thereby reducing the possibility of
falling into a local minimum. And, because of this parallelism, it is easy to implement on a parallel
computer to improve algorithm performance and efficiency. The particle swarm consists of particles,
and the position of each particle represents the potential solution of the optimization problem in the
D-dimensional search space.

The mathematical description of the PSO algorithm is as follows:
Each particle i contains a D-dimensional position vector Xi = (Xi1, Xi2, · · · · ··, XiD) and velocity

vector Vi = (Vi1, Vi2, · · · · ··, ViD). When the particle i searches the solution space, it saves the searched
best position experienced, Pi = (Pi1, Pi2, · · · · ··, PiD). At the beginning of each iteration, the particle
adjusts its velocity vector to adjust its position according to its own inertia and experience and the
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group’s best position experienced, Pg = (Pg1, Pg2, · · · · ··, PgD). The position and velocity of each particle
are updated as follows:

Vt+1
id

= $Vt
id
+ C1r1(Pt

id
−Xt

id
) + C2r2(Pt

gd
−Xt

id
), (21)

Xt+1
id

= Xt
id
+ Vt+1

id
, (22)

where C1 and C2 are constants, which are called acceleration factors; r1 and r2 are uniformly distributed
random numbers in [0, 1], and d is the dimension in D dimensional space; $ is the inertia weighting
factor. Equation (21) consists of three parts. The first part is the original velocity of the particle.
The larger the value, the more conducive to the global search. The smaller the value, the better the local
search ability and the ability to balance the global and local search. The second part is the particle’s
own thinking showing that the particle’s own experience is attracted to the current search tendency,
and it is randomly adjusted by C1r1, which is the use of the accumulated experience of the particle,
so that the particle has a sufficiently strong global search ability to avoid local minima. The third part
is the process in which particles learn from other particles’ experiences, indicating that the sharing of
information and social collaboration between particles is randomly adjusted by C2r2, and is directly
related to the position of Pg and the domain topology of the population. Under the combined action
of these three parts, the particles constantly adjust their speed and position according to their own
experience and use the information sharing mechanism, so as to effectively reach for the best position
to find the optimal solution.

The typical characteristics of shopping mall parking lots are large traffic volume, short stay time
and relatively even distribution. The flow chart of the simulation optimization process is shown in
Figure 5, where T is the simulation step length, that is, a simulation is performed every T minutes,
and the internal information of the parking lot is counted and recorded, N is the number of simulations,
NT is the total simulation time, and n is the number of EVs leaving at t + 1. For the three different
orderly charging models, the parking operation steps and the charging process update stage will be
different in different models. The parking process in penalty model is shown in Figure 6.

When a driver who needs to park enters the parking lot, he will choose a parking space or a
charging space according to the remaining EV power and parking lot penalty strategy. After being
fully charged, the driver will choose whether or not to move the vehicle to avoid parking penalty.
After repeated iterative simulations, the parking fee, charging fee and parking space utilization rate
under different decisions are finally obtained. The parking space utilization rate is used as the objective
function for optimization. During the optimization process, the charging standards will be adjusted to
observe its changes, and the changes in parking space utilization rates under different penalty models
will be compared, providing strategies for leading drivers to conduct standardized parking behaviors.

The PSO algorithm is used to solve the optimization problem (18)–(20). The specific process is
shown below:

Input parameters: the penalty factor of different penalty strategies, the cost of moving the car.
Objective function: the average expected value of parking lot utilization.

• Step1: Initialize the population, the particle length is [penalty factor, the cost of moving the car],
and the population size is 50.

• Step2: Initialize the particle fitness, randomly generate the penalty factor and the cost of moving
the car, calculate the average parking lot utilization according to the particle state, and calculate
the optimal fitness of the population and the fitness of each particle.

• Step3: Update particle velocity.
• Step4: Update particle position.
• Step5: Update the particle individual optimal and global optimal.
• Step6: If the termination condition is met, return to the optimal particle position; otherwise,

loop to Step3.
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4. Numerical Case Studies

4.1. Problem Description

The effects of the penalty models are studied in the public parking lots in the Changping District
of Beijing. A total of 200 parking spaces were set up in a mall parking lot model, of which 20 parking
spaces were dedicated for charging parking spaces, and the remaining 180 parking spaces were ordinary.
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As the parking lot is located in a busy business district, the traffic flow is very heavy. The limited
charging parking spaces are often occupied by non-EVs, and even EVs are reluctant to leave after they
are fully charged. At present, there is a lack of management of charging facilities, and many EVs with
real charging needs cannot be served. Therefore, it becomes necessary to optimize the operation of
charging facilities.

4.2. Parameter Settings

The charging pile is configured for fast charging. The power for fast charging is 30 kW, and the
battery capacity for electric vehicles is 60 kWh. According to the characteristics of the parking lot in
the mall, the time for the car to stay in the parking lot is distributed evenly from 60 min to 150 min [34].
Assume that the mall opens at 9:00 am and closes at 10:00 pm and that the opening hours are 13 h.
During the period, the traffic distribution in the mall parking lot follows the Poisson distribution with
key parameters given in Table 1.

Table 1. Main model parameters.

Model Parameters Value

Number of ordinary parking spaces 180
Number of charging parking spaces 20

Charging pile rated power 30 kW
Electric vehicle battery capacity 60 kW

Workday traffic 1000
Workday traffic distribution X ∼ π(1.2821)

Weekend traffic 1200
Weekend traffic distribution X ∼ π(1.5385)

Parking time distribution U(60, 150)

The rapid development of EVs makes people pay more attention to the construction of charging
infrastructure. In order to promote the construction of charging facilities, many regions in China have
adopted policies related to financial subsidies. The specific billing strategies of each region are shown
in Table 2. As shown in Figure 7, the government, charging facility operators and consumers are
currently the three main players in China’s EV charging market. The electricity sales and purchase costs
of EVs are the most critical factors affecting the acceptable charging service fees. Besides, according to
the relevant provisions of the State Grid Beijing Electric Power, the charging service fee for all periods
is 0.8 Yuan/kWh, and the additional time-of-use charging fee is shown in Table 3.

Table 2. Charging service fees in some regions in China [35–37].

Regions Regionl Policies

Beijing
Shanghai

Operators set charging service fee on their own since April 2018
No more than 1.6 yuan/kWh. On a trial basis for one year

Tianjin Electric bus charge service fee: 06 yuan/kWh.
Other electric vehicle charge service fee: 1.0 yuan/kWh

Jinan
Wuhan

charging service fee: 0.60 yuan/kWh
charging service fee: 0.95 yuan/kWh

Hefei
Direct current (DC) fast charge pile service fee 0.90 yuan/kWh. The alternating current (AC)

charge pile service fee is 30% up and down in the quasi-price base of DC fast charge pile,
about 0.63 yuan/kWh
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Table 3. Time-of-use price for charging piles.

Period Price Schedule

Peak time 1.044 Yuan/kWh 10:00–15:00
18:00–21:00

Normal time 0.6950 Yuan/kWh
7:00–10:00

15:00–18:00
21:00–23:00

Valley time 0.3946 Yuan/kWh 23:00–7:00

Considering the penetration of EVs, the number of EVs is a random integer between 100 and
150. The percentage of initial charge for each EV is a random number between 30% and 80%. In the
simulation, we set the time unit to 1 min, and the total simulation time was set as 5 weeks. The basic
parking fee is 12 Yuan per hour, and the cost of parking fee will be rounded up in every ten minutes.

The optimal utilization of EV parking spaces is calculated by PSO. The parameters of PSO are
shown in Table 4. The learning factors C1 and C2 are used to, respectively, determine the influence
of their own experience and other particle’s experience on their speed. Generally speaking, a better
solution can be obtained when C1 and C2 are equal constants, and the value range is between 0 and 4.
In this article, the value of C1 and C2 is 1.49. In (21),$ is called the inertia weight factor, which can adjust
global optimization performance and local optimization performance [38]. As $ increases, the global
optimization performance of PSO is greater; as $ decreases, the local optimization performance of PSO
is better. According to the linearly decreasing rule in the search process, $ decreases in the range of
{0.4, 0.9}. The population size of the particles is N, and the particles lack the diversity for small N, so the
PSO will easily converge to local optimum. A large N can also lead to complicated and meaningless
calculations. In this article, the value of N is defined as 50 [39].
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Table 4. Particle swarm optimization (PSO) parameters.

Parameter Symbol Value

Learning factor C1 1.49
Learning factor C2 1.49
Population size N 50

Maximum number of iterations Kmax 100
Inertia weight $ 0.5

4.3. Result Analysis and Discussion

Using the same initial data of vehicle behavior, simulation experiments were separately carried
out using the non-penalty model, the fixed-penalty model and the dynamic-penalty model. The PSO
algorithm is used to optimize the penalty factor parameters of the penalty model, And the results are
shown in Table 5.

Table 5. Optimized penalty factor parameters.

Penalty Strategy Model Parameter

Fixed-penalty model Qs = 49
Linear dynamic-penalty model Qdl = 42

Non-linear dynamic-penalty model Qdn1 = 43, Qdn2 = 47

Five weeks of data are sampled to calculate the daily parking utilization rate. The average
utilization rate of the five weeks is used as the objective function. The optimization result is shown
in Figure 8. In the non-penalty model and the optimal penalty model, four indicators commonly
considered by shopping malls and car owners are compared, namely parking fees, charging fees,
toll space utilization rates, and the number of unserved EVs. The simulation results are shown in
Figures 9–12.
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been significantly improved. This shows that increasing the penalty factor will increase the 
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As can be seen from Figure 9, the parking fees in the non-penalty model are relatively balanced, 
with few fluctuations, and there are obvious differences on the workday and weekend. The daily 
average number of parking in the parking lot is 1000, and the average parking fee per vehicle is 24.5 
Yuan. Compared with the non-penalty model, the fixed-penalty parking model has basically the 
same change in parking fees, and the average parking fee has increased by less than 2 Yuan. The 
parking fees of the dynamic-penalty models are much higher than that of the non-penalty model and 
the fixed-penalty model, and they have no steady pattern to cost fluctuations. The reason is that in 
the dynamic-penalty model, there is a transitional nature in the penalty region, which reduces the 
driver’s willingness to move out. At the same time, it increases the probability of stopping at random 
within a short time. 
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As shown in Figure 8, after PSO iterative calculations, the parking utilization rates of the three
different penalty models have increased. The charging space utilization rate of the fixed-penalty model
is always better than that of the dynamic-penalty models, and the non-linear dynamic-penalty model is
slightly better than the linear dynamic-penalty model. With the increase of interactions, the utilization
rate of the fixed-penalty model stabilizes around 0.94, while the optimal utilization rate of the two
dynamic-penalty models stabilizes around 0.78. At the same time, by using the optimized penalty
factor parameters in Table 5, when the best parameters are selected, compared with the non-penalty
model (the utilization rate of electric vehicle parking spaces in the non-penalty model is about 0.42,
which can be obtained from the data in Table 6), the utilization rate of the penalty model has been
significantly improved. This shows that increasing the penalty factor will increase the probability of
car maneuvering, thereby increasing the utilization of charging spaces.
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Figure 10 shows that the charging cost in the non-penalty model is basically maintained in the 
range of 2000 to 4000 yuan, and the difference between weekend and working days is not significant. 
The charging cost of the fixed-penalty model is much higher than that of the non-penalty model. The 
average daily charging cost reaches 6000 yuan, which means that more EVs are charged in this model. 
The charge for dynamic-penalty model is between non-penalty model and fixed-penalty model. 
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the fixed-penalty model, the average utilization rate of the charging spaces reached 92.5%, and there 
is less occurrence of the situation that the EVs that need to be charged cannot be served. The average 
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Table 6. Comparison of indicators under the three optimized models.

Orderly Parking
Charging Strategy

Parking Fee
(Yuan)

Charging Fee
(Yuan)

Utilization
Rate (%)

Unserved
EVs

Non-penalty model 24546.00 3341.82 50.677 36.13
Fixed-penalty model 26102.00 6146.85 92.543 22.37

Dynamic-penalty model 32213.50 4467.86 73.351 33.54

As can be seen from Figure 9, the parking fees in the non-penalty model are relatively balanced,
with few fluctuations, and there are obvious differences on the workday and weekend. The daily
average number of parking in the parking lot is 1000, and the average parking fee per vehicle is
24.5 Yuan. Compared with the non-penalty model, the fixed-penalty parking model has basically
the same change in parking fees, and the average parking fee has increased by less than 2 Yuan.
The parking fees of the dynamic-penalty models are much higher than that of the non-penalty model
and the fixed-penalty model, and they have no steady pattern to cost fluctuations. The reason is that
in the dynamic-penalty model, there is a transitional nature in the penalty region, which reduces the
driver’s willingness to move out. At the same time, it increases the probability of stopping at random
within a short time.
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Figure 10 shows that the charging cost in the non-penalty model is basically maintained in the
range of 2000 to 4000 yuan, and the difference between weekend and working days is not significant.
The charging cost of the fixed-penalty model is much higher than that of the non-penalty model.
The average daily charging cost reaches 6000 yuan, which means that more EVs are charged in this
model. The charge for dynamic-penalty model is between non-penalty model and fixed-penalty model.

Figure 11 shows the comparison of the charging space utilization rates under four different
strategies. The charging space utilization index is the key to the optimization of penalty models.
Through the five-week simulation, the average utilization rate of the charging spaces is 50.7% in the
non-penalty model, which means that the illegal occupancy of the charging spaces is very serious.
In the fixed-penalty model, the average utilization rate of the charging spaces reached 92.5%, and there
is less occurrence of the situation that the EVs that need to be charged cannot be served. The average
utilization rate of the dynamic-penalty model is 73.4%. There is still much room for improvement.

As can be seen from Figure 12, there is a significant difference in the number of unserved EVs
between the workday and the weekend. However, the trend of unserved EVs in the four models is
basically the same. The fixed-penalty model is still the best performing strategy. The overall situation
is better than the non-penalty model and the dynamic-penalty models. The number of unserved EVs
in the non-penalty model is the highest.

As can be seen from the comparison figures, the results of different strategies in four indicators
showed the characteristics of stratification. Since the results of linear dynamic-penalty model and
non-linear dynamic-penalty model are similar in various indices, we describe them as dynamic-penalty
model, and their average is compared with non-penalty model and fixed-penalty model in Table 6.

With the development of technology and the increase in the number of EVs, the demand for
high-power charging facilities is becoming stronger. In the future, the charging power of charging
piles will gradually increase, and the popularity and application of high-power charging piles will
further shorten the charging time. At the same time, with the gradual increase in the number of EV
users, facing the pressure of the shortage of parking spaces, parking lots need to increase the number
of EV parking spaces. However, due to the current gasoline-fueled vehicles still occupying a dominant
position, and the use of parking spaces is limited, there will be no substantial increase in parking spaces
for EVs in near future. To further increase the utilization rate and reduce the number of unserved EVs,
it is particularly necessary to combine punitive measures with increasing EV spaces and increasing the
charging power of charging facilities. Therefore, based on the penalty model, this paper compares the
impact of increasing charging power and increasing EV parking spaces on the utilization rate and the
number of unserved EVs, respectively. The simulation results are shown in Figures 13 and 14.
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As shown in Figure 13, when the charging power is increased from 30 KW to 110 KW,
the fixed-penalty shows the highest utilization rate. Its value increases from 92.5% to 98.3%, and the
number of unserved EVs is reduced from 22 to 6. In dynamic-penalty model, the utilization rate
increased from 73.4% to 84.1%, and the number of unserved EVs is reduced from 33 to 22. For the
non-penalty model, since there is no penalty for EVs to stay in the charging space after being
fully charged, increasing the charging power will not affect the utilization rate and the number of
unserved EVs.

As shown in Figure 14, when the parking spaces for EVs are increased from 20 to 50,
the fixed-penalty can still better improve the utilization rate and reduce the number of unserved
EVs. The utilization rate increases from 92.5%to 99.3%. The number of unserved EVs decreased from
22 to 1; the utilization rate of dynamic-penalty increased from 73.4% to 90.5%, and the number of
unserved vehicles was reduced from 33 to 20. The expansion of parking spaces for EVs under the
non-penalty model will also help increase the utilization rate and reduce the number of unserved
EVs. The utilization rate has increased from 50.7% to 70.7%, and the number of unversed EVs has
been reduced from 36 to 26. It can be seen under the non-penalty that, although the utilization rate
of EV parking spaces has been improved, and the number of unserved EVs have also been reduced,
there is still a large gap compared with the penalty. Therefore, based on the penalty model, further
increasing the parking lot of EV charging spaces can better improve the utilization rate of EVs. However,
for parking lots that cannot expand EV charging spaces, effective use of penalties can also greatly
increase the utilization rate of EV charging spaces.

5. Conclusions

At present, many parking lots in public areas have a low utilization rate of charging spaces. Based
on this, this paper proposes three penalty strategy models for parking in the charging space. Taking the
utilization rate of charging spaces as the objective function, the penalty factors in the penalty models
are optimized through the particle swarm optimization algorithm. By comparing four different penalty
methods, adopting an appropriate penalty strategy model can significantly improve the utilization
rate of charging spaces.

In applying penalties, the fixed-penalty model has a better optimization effect than the dynamic-
penalty models. In the actual rulemaking, the fixed-penalty model can be used first to guide an orderly
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transition. After the EV drivers have formed the habits of orderly parking and charging, we can then
move into a dynamic-penalty model that will improve the satisfaction of parking and charging.

For some shopping mall parking lots that have been built, the fixed-penalty model proposed in
this article can be used to penalize drivers who do not move their cars after being fully charged. After
they adapt to the penalty measures, dynamic-penalty models can be used to improve their satisfaction
degree. For a shopping mall parking lot in the planning stage, the analysis of the charging power and
the number of EV parking spaces in Figures 13 and 14 can be integrated, and the penalty measures
suitable for the parking lot of the shopping mall can be selected and the number of charging spaces
can be planned.

Author Contributions: Conceptualization, R.S. and K.Y.L.; methodology, R.S. and J.Z.; software, J.Z.; validation,
H.S. and K.Y.L.; formal analysis, R.S. and J.Z.; investigation, Z.L.; resources, Z.L.; data curation, J.Z. and H.S.;
writing—original draft preparation, R.S., J.Z., and H.S.; writing—review and editing, R.S., J.Z., and H.S.;
visualization, J.Z. and H.S.; supervision, R.S.; project administration, R.S.; funding acquisition, R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This paper is supported by National Natural Science Foundation of China under Grant 61203100 and
the Fundamental Research Funds for the Central Universities under Grant 16MS42.

Conflicts of Interest: The authors declared that they have no conflicts of interest to this work.

Nomenclature

A. Nouns and numbers
EV electric vehicle
PSO particle swarm optimization
EVs electric vehicles
AFVs alternative fuel vehicles
V2G vehicle-to-grid
V2B vehicle-to-building
ISO International Standards Organization
PSO particle swarm optimization
N the number of simulations
NT the total simulation time
n the number of EVs leaving at t + 1
B. Function parts
X = k there are k cars arriving in the parking lot per hour
λ The average number of vehicles arriving in the parking lot
f1(x;µ1, σ1) the first small peak
f2(x;µ2, σ2) the second small peak
fM(x) the distribution of traffic flow in shopping malls in one day
Po2EV the probability of parking an ordinary car in a charging space
co2o the cost of an ordinary car parked in an ordinary parking space
co2EV the cost of ordinary cars parked in a charging space
c∗ the cost of total parking fee under different parking models
p∗(t) parking fees per unit of time in this model
Tarrival the arrival time of the car
Tleave the leave time of the car
Pm the probability of moving out
cm the cost of moving a car from the charging space to other appropriate parking space
cp the cost of penalty
cn the cost without penalty
Tpresent current moment
F(t) the parking fee that users should pay when they accept penalty
Pwp the probability that the user enters the charging parking piles to park based on the parking time
t the illegal parking time
Fnp the parking fee of non-penalty model
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Fsp the parking fee of fixed-penalty model
Qs the fixed-penalty factor
Fldp the linear dynamic-penalty model
Qdl the linear dynamic-penalty factor
Fnldp the non-linear dynamic-penalty model
Qdn1,Qdn2 the non-linear dynamic-penalty factors.
max

{
ft(x)

}
the objective function

η the utilization of charging parking spaces
Nc the total number of EVs that have been charged
Nn the total number of EVs that needed charging
s.t constraints to be satisfied
Cari the property of the i-th car
NORi the status of the i-th normal parking space
EVSi the status of the i-th charging parking space
EVCi the charging state of the charging parking space
Soci the power of the i-th EV
C1,C2 Learning factor
$ the inertia weight factor
Kmax Maximum number of iterations
N Population size
r1,r2 random numbers in [0, 1]
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