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Abstract: Power lines are often placed in ground or sea water, which are weakly conductive media.
In the paper, a new analytical formula, taking into account the proximity effect in a twin line placed
in a weakly conductive medium, is derived, and the effect of the conductive medium is considered.
In the first step, one of the wires is replaced by a current filament, and the solution is sought for
magnetic vector potential around the filament. In the next step, an analytical formula for eddy
currents induced in a long straight conductor of circular cross-section placed near to the current
filament in the extensive conductive medium is found by using the method of separation of variables.
The correctness of the formula is checked by comparison with the results obtained via other methods
like finite and boundary element methods. Then, the effect of various parameters on the eddy
current distribution is tested. Next, the proximity effect in a twin symmetrical line is considered,
and the effect of the conductivity of the surrounding medium is investigated. The results indicate that
the conductive medium weakens the proximity effect, but in typical cases (ground and sea water),
the effect is very small.

Keywords: skin effect; proximity effect; cylindrical conductors; current density; conductive medium;
analytical solution

1. Introduction

Round wires are often used in power and signal transmission. The higher the electrical conductivity,
magnetic permeability, cross-section radius, and frequency of currents in a wire, the less current passes
through the central layers of the wire and more current passes in the superficial layers. This phenomenon
is known as the skin effect and is a result of electromagnetic induction. If two or more conductors are
placed in the vicinity, electromagnetic induction generates eddy currents in the neighboring wires,
and the current density becomes additionally disturbed. This is known as the proximity effect. The two
effects impact greatly the current distribution inside the wires and, consequently, the impedance of
a system, which reflects then in increased voltage drops and increased losses in such lines. Therefore,
the knowledge of current density distribution in the conductors is very important in the calculations
of network properties of such lines. Starting from Maxwell [1], a lot of research has been performed
so far in this field, and many analytical and numerical methods have been developed. One of the
first approaches was presented by Manneback [2], who developed an integral equation for skin effect
in parallel conductors. Dwight [3] considered the proximity effect in thin tubes. The approach was
later expanded in [4,5] and used to model power and signal lines with neighboring wires substituted
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with current filaments [6–8]. A similar method was later presented in works [9,10]. Jabłoński [11]
considered a general solution for round wire affected by an arbitrary time-harmonic magnetic field.
At the same time, various numerical methods were used in this field. Rolicz proposed Galerkin +

variable separation method [12]. Jabłoński used boundary elements with specific approximation [13].
Piątek et al. used a numerical approach based on the integral equation [14]. A similar method was
proposed by Coufal [15] or Freitas et al. [16]. Besides, the finite elements were often involved [17–19].
Pagnetti et al. [20], and independently Jabłoński et al. [21], proposed a numerical-analytical method,
generalizing the approach with substitutive current filaments.

All of the above-mentioned works considered wires placed in a non-conductive medium. However,
power and transmission lines are sometimes placed in the ground or in the sea [22], which are conductive
media, although of electrical conductivity much less than that of typical metals used for electrical wires,
e.g., copper. It is worth investigating two commonly encountered conductive media: ground and water.
The conductivity of ground (soil or rock) is highly dependent on moisture and composition. For low
frequencies, the typical values of electrical conductivity for soils and rocks are from 0.01–1 mS/m for
loose sands to 1 S/m for some clays [23]. The electrical conductivity of water depends on the content of
cations and anions. Typical values are from around 1–3 mS/m for rainwater [24] to around 5–6 S/m for
sea water [25]. Since the problem for more than one wire of finite cross-section has no exact closed
solution (excluding the cables of cylindrical symmetry), there are two ways to deal with the problem:
using numerical methods or using approximate analytical formulas. Both approaches are approximate,
and both have pros and cons. Numerical methods allow us to take into account realistic aspects,
but obtaining general conclusions is difficult. In contrast, analytical methods require usually more
simplifications but offer formulas, which can be very useful within certain limits. One of the earliest
analytical approaches was proposed by Pollaczek [26], who found a formula for electric field induced
due to current filament buried in the ground at a certain depth. Several other more or less similar
analytical approaches can also be found in the literature. Machado and da Silva developed an analytical
approach for underground cables via power series expansion [27,28]. This solution requires calculating
rather complicated integrals. A generalization of this approach was described by Tsiamitros et al. [29].
At the same time, numerical methods, especially finite elements, were used [30,31]. The magnetic field
of underground cables was considered in works [32,33]. Later, Brito et al. used their previous results
for underground three-phase cables [34].

In this paper, the focus is directed to the analytical approach, taking into account the proximity
effect in a twin line placed in a conductive medium. In contrast to previous works, a new analytical
formula for eddy currents induced in a long straight conductor of circular cross-section placed in an
extensive conductive medium in the vicinity of current filament is found. The approach is similar
to that described in [6]; however, the surrounding medium was considered non-conductive there.
The formula obtained in this paper is used then to investigate the effect of various geometrical and
material parameters of a twin line placed in a conductive medium. Based on the analysis, the effect of
ground and sea water on current distribution is assessed.

The layout of the paper is as follows: in Section 2.1, the main ideas of the proposed approach
are presented, as well as the range of the research is presented. Sections 2.2–2.5 contain derivations
and formulas related to particular steps of obtaining a solution. The results are presented in
Section 3.1, Section 3.2, Section 3.3, and a detailed discussion on the effect of particular parameters is
provided. Section 3.4 gives results for typical weakly conductive media like ground or water. Finally,
Section 3.5 provides a discussion on limitations and error estimation.

2. Methodology

2.1. The Configuration, Idea of Solving, and Outline of Research

The cross-section of the configuration under consideration is presented in Figure 1. Two parallel
round conductors with complex root mean square (r.m.s.) currents I1 and I2 of frequency f are placed
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in the conductive medium. The radii of the conductors are R1 and R2, respectively, and their axes
are separated by distance d. Their conductivity is σ1 and σ2, respectively, and the conductivity of the
medium equals σm. To ensure lack of electric contact between the conductive medium and the wires,
non-conductive layers of radii b1 and b2 are introduced so that d = b1 + b2 + g, where g is the gap
between the closest points of the insulations.

Figure 1. Two long cylindrical conductors with currents in a conductive medium with non-conductive
separating regions—cross-section.

The goal is to find the current density in both conductors. The current in conductor 1 (I1) generates
a time-harmonic magnetic field, which induces eddy currents in all conductive regions. In conductor 1,
they cause the skin effect, whereas, in conductor 2, they modify the current density resulting from current
I2 (proximity effect). The situation is analogical due to eddy currents generated by the current I2.

The idea of the calculations is as follows: first, the current densities in both conductors due to
the skin effect (Js

1
and Js

2
) are determined. These densities do not take into account the presence of the

neighboring conductors. The next step is to calculate eddy currents induced in the conductors due to
current in the neighboring conductor. The density of eddy currents induced in conductor 1 due to
current in conductor 2 is denoted as J

12
. The total current density in conductor 1 is then J

1
= Js

1
+ J

12
.

Analogical expression can be written for conductor 2. Analytical determination of the current density
components under certain simplifications is presented in the following subsections. The simplifications
are as follows:

• the wires are placed in a conductive medium, which extends theoretically to infinity,
• the material properties of the wires and the medium are constant,
• the displacement currents are neglected.

Having found the formulas for eddy currents density J
12

, the following aspects are investigated:

• what is the distribution of eddy currents density in conductor 2,
• how the skin depth parameters affect the eddy currents density,
• what is the influence of asymmetry in the conductors’ cross-sections,
• what is the influence of insulation thickness,
• how the results are affected in magnetic regions.

As for the total current density J
1

and J
2
, the following effects are studied:

• the effect of environment conductivity,
• the dependence on frequency,
• the dependence on the distance between the wires.
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2.2. Standalone Cylindrical Conductor in Conductive Medium

The first step is considering a single cylindrical conductor placed in a weakly conductive medium
(Figure 2). The conductor (Ω1) has a circular cross-section of radius R1, electrical conductivity σ1,
and magnetic permeabilityµ1. The surrounding region (Ωm) is a conductive medium of conductivity σm

and permeability µm. The two regions are separated with a tubular non-conductive and non-magnetic
region Ωi of external radius b1. The conductor carries a time-harmonic current of complex r.m.s. value
I1 and frequency f . The goal is to find out the current density in the conductor as well as the magnetic

vector potential in the surrounding medium because it will be necessary for further considerations.

Figure 2. A long cylindrical conductor (Ω1) with current I1 in a conductive medium (Ωm) with the
non-conductive separating region (Ωi)—cross-section.

It is convenient to introduce a cylindrical coordinate system with z-axis located on the axis of
the round conductor. Since currents flow only along the z-axis, it follows that the current density
vector has a z-component only, which is independent of the z coordinate. Moreover, axial symmetry
causes also independence of the angular coordinate so that J = J(ρ)ẑ, where underlining denotes
complex phasor. Therefore, the magnetic vector potential can be also assumed to have a z-component
only, i.e., A = A(ρ)ẑ. In such a case, the Maxwell equations lead to the following equations for the
z-component of the magnetic vector potential at point X(ρ,ϕ):

∇
2A1(X) − jωµ1σ1A1(X) = 0 for X ∈ Ω1, (1a)

∇
2Ai(X) = 0 for X ∈ Ωi, (1b)

∇
2Am(X) − jωµmσmAm(X) = 0 for X ∈ Ωm, (1c)

where j =
√
−1 is the imaginary unit, and ω = 2π f is the angular frequency. These equations can be

rewritten as follows:
1
ρ
∂
∂ρ

(
ρ
∂A1

∂ρ

)
− Γ2

1A1 = 0, ρ ≤ R1, (2a)

1
ρ
∂
∂ρ

(
ρ
∂Ai

∂ρ

)
= 0, R1 < ρ < b1, (2b)

1
ρ
∂
∂ρ

(
ρ
∂Am

∂ρ

)
− Γ2

mAm = 0, ρ ≥ b1, (2c)

where

Γ1 =
√

jωµ1σ1 =
1 + j
δ1

, Γm =
√

jωµmσm =
1 + j
δm

, (3a)

in which
δ1 =

1√
π fµ1σ1

, δm =
1√

π fµmσm
(3b)
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are the skin depths in the cylindrical conductor and the surrounding conductive medium, respectively.
Equations (2a)–(2c) have to be completed with the standard interface conditions as well as the
Ampère law: ∫ 2π

0

1
µ1

∂A1

∂ρ
ρ

∣∣∣∣∣∣
ρ=R1

dϕ = −I1, (4)

which allows us introducing current to the solutions. The final solutions are as follows:

A1(ρ) = −
µ1I1

2π
I0(Γ1ρ)

Γ1R1I′0(Γ1R1)
, (5a)

Ai(ρ) = −
µ0I1

2π
ln r + const, (5b)

Am(ρ) = −
µmI1

2π
K0(Γmρ)

Γmb1K′0(Γmb1)
, (5c)

where In(z) and Kn(z) are the modified Bessel functions of order n of the first and second kind,
respectively, and const is any constant. Then, the current density in the round conductor equals:

Js
1
(ρ) = −jωσ1A1(ρ) =

I1

πR2
1

J
s
(
ρ

R1
;

R1

δ1

)
, (6a)

where superscript “s” indicates that the skin effect is taken into account, and

J
s
(
ρ

R1
;

R1

δ1

)
=
Γ1R1

2
I0(Γ1ρ)

I′0(Γ1R1)
=

(1 + j)
2

R1

δ1

I0
(
(1 + j)R1

δ1

ρ
R1

)
I1
(
(1 + j)R1

δ1

) (6b)

is the relative current density in the round conductor due to skin effect. Formula (6a) is exactly the
same as that for the isolated round conductor in a non-conductive region [35].

Observe that the solution in the surrounding medium can be also rewritten as

Am(ρ) = −
µmI

′

1

2π
K0(Γmρ), (7a)

where

I
′

1 =
I1

Γmb1K′0(Γmb1)
(7b)

is an equivalent current, which if placed on the axis of the cylindrical conductor would cause the same
effects in the conductive surrounding medium. Equations (7a) and (7b) are used in the next subsection
to find the eddy currents density induced in the neighboring conductor (J

21
).

2.3. Cylindrical Conductor in Conductive Medium Near a Current Filament

To determine the eddy current density in conductor 2 due to current in conductor 1, the following
approach is used: currentI1 in conductor 1 generates a time-harmonic magnetic field in its surroundings.
When conductor 2 is placed nearby, eddy currents will be induced in it. The density of these eddy
currents is denoted as J

21
. The magnetic vector potential of the source field is given by Equation

(5c), or equivalently—by Equation (7a). The latter is simpler in further considerations; therefore,
a filament with current I′1 in the conductive medium is used (Figure 3). The conductor (Ω2) has
a circular cross-section of radius R2, electrical conductivity σ2, and magnetic permeability µ2. The two
regions are separated with a tubular non-conductive and non-magnetic region Ωi of external radius b2.
The filament is placed at a distance of d > b2 from the conductor’s axis.
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Figure 3. A long cylindrical conductor (Ω2) and a parallel current filament in a conductive medium
(Ωm)—cross-section.

The Maxwell equations lead to the following equations for the z-component of the magnetic vector
potential at point X(r,θ):

∇
2A21(X) − jωµ2σ2A21(X) = 0 for X ∈ Ω2, (8a)

∇
2Ai1(X) = 0 for X ∈ Ωi, (8b)

∇
2Am1(X) − jωµmσmAm1(X) = −µmI

′

1δ(X −Y) for X ∈ Ωm, (8c)

where δ(X −Y) is the Dirac delta, and Y(d, 0) is the point of location of the current filament. The potential
in the surrounding medium can be expressed as Am1 = Areact + Aexc, where Areact satisfies the
homogeneous Helmholtz equation, and Aexc(X) is any solution of Equation (8c). One of such solutions
is given by Equation (7a); it can be rewritten as follows:

Aexc(X) =
µmI

′

1

2π
K0(Γm|X −Y|), (9)

where |X −Y| represents the distance between points X and Y. The equations for A21, Ai1, and Areact
can be rewritten as follows:

1
r
∂
∂r

(
r
∂A21

∂r

)
+

1
r2

∂2A21

∂θ2 − Γ
2
2A21 = 0, (10a)

1
r
∂
∂r

(
r
∂Ai1

∂r

)
+

1
r2

∂2Ai1

∂θ2 = 0, (10b)

1
r
∂
∂r

(
r
∂Areact

∂r

)
+

1
r2

∂2Areact

∂θ2 − Γ2
mAreact = 0, (10c)

where

Γ2 =
√

jωµ2σ2 =
1 + j
δ2

, (11a)

in which
δ2 =

1√
π fµ2σ2

(11b)

is the skin depth in the cylindrical conductor. Equations (10a)–(10c) can be solved using the method
of separation of variables. The symmetry with respect to angle θ requires that A(r,−θ) = A(r,θ).



Energies 2020, 13, 6087 7 of 23

Value of A21 should be finite at any point of the cylinder. Besides, Areact should be finite for any point
of region Ωm and should vanish for r→∞ . The above requirements lead to the following solutions:

A21(r,θ) =
∞∑

n=0

CnIn(Γ2r) cos nθ, r ≤ R2, (12a)

Ai1(r,θ) = E0 + F0 ln r +
∞∑

n=1

(Enrn + Fnr−n) cos nθ, R2 < r < b2 (12b)

Areact(r,θ) =
∞∑

n=0

DnKn(Γmr) cos nθ, r ≥ b2, (12c)

where Cn, Dn, En, and Fn are certain constants to be determined.
Having found Cn, one can determine the eddy currents induced in the conductor as follows

J
21
(r,θ) = −jωσ2A21(r,θ). (13a)

The total current induced in the conductor equals

I21 =

∫ R

r=0

∫ 2π

θ=0
J
21
(r,θ)dθrdr. (13b)

It is proportional to C0 because cos nθ for n = 1, 2, . . . integrates to 0. This current should be zero (only
eddy currents, whose total is zero, are in the conductor); hence, C0 = 0. The remaining constants can
be found using conditions for field continuity on boundaries r = R2 and r = b2. The continuity of
tangential components of the magnetic field intensity vector leads to the following equations:

1
µ2

∂A21

∂r

∣∣∣∣∣∣
r=R2

=
1
µ0

∂Ai1

∂r

∣∣∣∣∣∣
r=R2

, (14a)

1
µ0

∂Ai1

∂r

∣∣∣∣∣∣
r=b2

=
1
µm

∂Am1

∂r

∣∣∣∣∣∣
r=b2

. (14b)

The continuity of normal components of magnetic flux density vector yields

A21(R2,θ) = Ai1(R2,θ), (14c)

Ai1(b2,θ) = Am1(b2,θ) + Ccm, (14d)

where Ccm is arbitrary constant resulting from the difference of voltage drops per unit length in the
conductor and the surrounding environment.

The further procedure requires representing Aexc in terms of coordinates r and θ. By the cosine
theorem, it follows that (see Figure 3)

|X −Y|2 = r2 + d2
− 2rd cosθ. (15)

By using formulas 8.406, pos. 3 and 8.407, pos. 1 in 8.531, pos. 2 from [36], the following expansion
formula can be derived:

K0

(
m

√
r2 + d2 − 2rd cosθ

)
= I0(mr)K0(md) + 2

∞∑
n=1

In(mr)Kn(md) cos nθ, (16)
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where m is any constant and d > r. Therefore,

Aexc(r,θ) =
µmI

′

1

2π
I0(Γmr)K0(Γmd) +

µmI
′

1

2π
2
∞∑

n=0

In(Γmr)Kn(Γmd) cos nθ. (17)

Using Equations (14a)–(14d) with (12a)–(12c) and (17) after some transformations (see Appendix A
for details), one obtains the following expression for coefficient Cn:

Cn = −
µ2I1

2π
1

Γmb1K1(Γmb1)

Kn(Γmd)
Kn(Γmb2)In(Γ2R2)

Mn, (18a)

where

Mn =
1
n

4µmr[
µ2r − Ĩn(Γ2R2)

][
µmr + K̃n(Γmb2)

]
τn

2 −
[
µ2r + Ĩn(Γ2R2)

][
µmr − K̃n(Γmb2)

]
τ−n

2

, (18b)

in which µ2r and µmr are the relative magnetic permeabilities of conductor 2 and the surrounding
medium, respectively, τ2 = R2/b2, and the following notation is introduced:

Ĩn(z) =
z
n

I′n(z)
In(z)

, (19a)

K̃n(z) =
z
n

K′n(z)
Kn(z)

. (19b)

The details of the derivation are in Appendix A. Other constants and coefficients are omitted here as
they are not very important in this paper.

Eddy current density in the round conductor can now be found via Equation (13a), which yields

J
21
(r,θ) =

I1

πR2
2

J
p
( r

R2
,θ

)
. (20a)

where superscript “p” stands for the proximity effect, and

J
p
( r

R2
,θ

)
=

(Γ2R2)
2

2Γmb1K1(Γmb1)

∞∑
n=1

Mn
Kn(Γmd)In(Γ2r)

Kn(Γmb2)In(Γ2R2)
cos nθ (20b)

is an auxiliary function, which can be interpreted as current density induced in a round conductor
placed in the conductive medium by a neighboring filament current I1 placed in a non-conductive
cylindrical hollow of radius b1 and expressed in the units of I1/πR2

2. It depends on several parameters
involving dimensions, material properties, and frequency. However, the factual parameters are as follows:

• Γ2R2 = (1 + j)R2/δ2,
• Γmd = (1 + j)d/δm,
• Γmb1 = (1 + j)b1/δm = (1 + j)(b1/d)(d/δm),
• Γmb2 = (1 + j)b2/δm = (1 + j)(b2/d)(d/δm),
• R2/b2,
• relative permeabilities µ2r,µmr.

Hence, the independent parameters can be assumed to be R2/δ2, d/δm, b1/d, b2/d, R2/b2,µ2r,µmr.
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2.4. Special Cases

It is worth considering the case when the insulating regions become extremely thin but still
prevent the currents from the round conductors from leaking to the surrounding medium. Then,
b1 = R1, b2 = R2, τ2 = 1, and Equation (18b) becomes

Mn|b2=R2 =
1
n

2µmr

µ2rK̃n(ΓmR2) − µmr̃In(Γ2R2)
(21a)

so that

J
p
( r

R2
,θ

)
=

Γ2R2

ΓmR1K1(ΓmR1)

∞∑
n=1

Kn(Γmd)In(Γ2r)
µ2r
µmr

ΓmR2
Γ2R2

K′n(ΓmR2)In(Γ2R2) − I′n(Γ2R2)Kn(ΓmR2)
cos nθ. (21b)

Another special case is a non-conductive and non-magnetic medium (σm = 0, µmr = 1).
Formulas for this case can be obtained by taking the limit Γm → 0 . It follows that

lim
Γm→0

Kn(Γmd)
Kn(Γmb2)

=

(
b2

d

)n

=

(
b2

R2

)n(R2

d

)n
= τ−n

2

(R2

d

)n
, (22a)

lim
Γm→0

K̃n(Γmb2) = lim
Γm→0

Γmb2K′n(Γmb2)

nKn(Γmb2)
= −1, for n = 1, 2, 3, . . . (22b)

lim
Γm→0

Γmb1K1(Γmb1) = 1, (22c)

so that Equation (18b) yields

Mn = −
1
n

2τn
2

µ2r + Ĩn(Γ2R2)
. (22d)

Then, by applying Equation (19a) and the following formula (see Equation 8.486, pos. 3 [36]):

I′n(z) = In±1(z) ±
n
z

In(z). (23)

The function Jp becomes

J
p
( r

R2
,θ

)
σm = 0
µmr = 1

= −
(Γ2R2)

2

2

∞∑
n=1

2In(Γ2r)
(µ2r − 1)nIn(Γ2R2) + Γ2R2In−1(Γ2R2)

(R2

d

)n
cos nθ. (24a)

When µ2r = 1, the formula simplifies significantly as follows:

J
p
( r

R2
,θ

)
σm = 0

µmr = µ2r = 1

= −Γ2R2

∞∑
n=1

In
(
Γ2R2

r
R2

)
In−1(Γ2R2)

(R2

d

)n
cos nθ. (24b)

which agrees with that obtained in the literature [2,6,9]. It equals to function Λ
(

r
R2

,θ, . . .
)

defined
in [21].

2.5. Total Current Density

The total current density in conductor 2 is the sum of Js
2
(r) resulting from current I2 in the

conductor and J
21
(r) resulting from current I1 in conductor 1:

Jtot
2
(r,θ) = Js

2
(r) + J

21
(r,θ). (25a)



Energies 2020, 13, 6087 10 of 23

By analogy to Equation (6a), it follows that

Js
2
(r) =

I2

πR2
2

J
s
( r

R2
;

R2

δ2

)
, (25b)

and Equation (20a) with (7b) yield

J
21
(r,θ) =

I1

πR2
2

J
p
( r

R2
,θ

)
. (25c)

Hence, the total current density in conductor 2 equals

Jtot
2
(r,θ) =

I2

πR2
2

J
s
( r

R2
;

R2

δ2

)
+
I1

πR2
2

J
p
(

r
R2

,θ;
R2

δ2
,

d
δm

,
b1

d
,

b2

d
,

R2

b2
,µ2r,µmr

)
. (26a)

By symmetry, the total current density in conductor 1 equals

Jtot
1
(ρ,ϕ) =

I1

πR2
1

J
s
(
ρ

R1
;

R1

δ1

)
+
I2

πR2
1

J
p
(
ρ

R1
,π−ϕ;

R1

δ1
,

d
δm

,
b2

d
,

b1

d
,

R1

b1
,µ1r,µmr

)
. (26b)

It should be realized that the above formulas, although pretty complicated, are the first
approximation of the skin and proximity effect only. This is due to the fact that current density
J
21

is a source of the secondary magnetic field that produces additional eddy currents in conductor 1
(reverse reaction). The currents themselves again induce eddy currents in conductor 2, and so forth.
However, these higher-order reactions generate usually very small corrections to the current density in
the round conductors and are omitted here. This is discussed in Section 3.5.

3. Results and Discussion

3.1. Comparison with FEM and BEM Results

The first step in presenting results is checking whether the solution given by Equations (20a) and
(20b) is correct. To do this, the computations for several cases are performed using the equations as
well as two numerical methods: finite element method (FEM) and boundary element method (BEM).
The FEM analysis is done using FEMM software (version 4.2, 64-bit 21Apr2019 by David Meeker, MA,
USA, http://www.femm.info/wiki/HomePage) with a suitably fine mesh of first-order triangular finite
elements. In BEM calculations, parabolic boundary elements with constant field approximation are
used (i.e., the geometry is approximated with parabolic curvilinear elements to reflect exactly the
shape of the round conductor, whereas the field approximations throughout an element are constant).
The computations are performed for a copper wire (σ2 = 56MS/m, µ2r = 1) at such a frequency for
which the skin depth equals R/2. The thickness of insulation is assumed zero (b2 = R2), and the
distance to the filament is d = 2.5R. Four types of surrounding medium are considered:

1. non-conductive and non-magnetic medium;
2. non-magnetic conductive (σm = 1MS/m) medium;
3. non-conductive magnetic (µmr = 100) medium;
4. conductive (σm = 1MS/m) and magnetic (µmr = 100) medium.

The values of Jp(1,θ) vs. θ for these four cases are presented in Figure 4 (modulus) and Figure 5
(argument). The results obtained via Equation (20b) (solid lines) agree very well with those by BEM
(circles), but surprisingly there are some discrepancies with those by FEM (dots). The discrepancy
occurs only when σm is non-zero (red and cyan traces). To check which results are correct, also BEM
calculations are performed, and a full agreement with Equation (20b) is obtained. Hence, FEM results
are incorrect for the conductive surrounding region. Further analysis has revealed that the reason is the

http://www.femm.info/wiki/HomePage
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way of modeling the infinite surrounding region in FEMM software: the Kelvin transformation is used,
which is true if the field at infinity can be modeled with the Laplace equation. However, when the
medium is conductive, it is no longer true, and therefore some discrepancies arise. Hence, it follows
that Equation (20b) agrees with the results obtained via other methods.

Figure 4. The modulus ofJp on the surface of conductor 2 due to current filament for various material
parameters of the surrounding medium at constant remaining parameters (see the middle inset); the left
inset shows the plotting path on the cross-section of the configuration.

Figure 5. The argument ofJp on the surface of conductor 2 due to current filament for various material
parameters of the surrounding medium at constant remaining parameters (see the left bottom inset);
the green inset shows the plotting path on the cross-section of the configuration.

3.2. The Influence of Various Parameters on Eddy Current Density

The density of eddy currents due to the proximity effect is given by Equation (20a), in which
function Jp, defined in Equation (20b), is used. Below, function Jp is tested with respect to particular
parameters, and a short discussion for each effect is provided.

3.2.1. Current Density Distribution

Figures 6 and 7 present |Jp
| vs. θ and argJp vs. θ, respectively, on the surface of the conductor 2

for six various values of d/δm in the case of non-magnetic medium and tangent conductors. Trace 1
corresponds to a non-conductive medium. It agrees with that presented in the graph in Section 3.2.4. [21].
As the skin depth in the medium decreases, the maxima of |Jp

| decrease, too, so that the distribution
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of |Jp
| becomes flatter. This effect is related to weakening the field due to losses in the conductive

medium as well as with the phase lag in the surrounding conductive medium, which is visible in
Figure 7.

Figure 6. The distribution of eddy currents density on the conductor surface: the modulus of Jp on
the surface of conductor 2 due to current in conductor 1 for various skin depths in the surrounding
medium at constant remaining parameters (see inset in the right top corner); the top center inset shows
the plotting path on the cross-section of the configuration.

Figure 7. The distribution of eddy currents density on the conductor surface: the argument of Jp on
the surface of conductor 2 due to current in conductor 1 for various skin depths in the surrounding
medium at constant remaining parameters (see the inset in the top right corner); the inset above the
traces shows the plotting path on the cross-section of the configuration.

Figure 8 presents |Jp
| vs. x/R2 in conductor 2 for the same cases as in Figures 6 and 7. Trace 1

corresponds to a non-conductive medium, and it agrees with traces 1 and 3 presented in the graph
in Section 3.2.3. [21]. As the skin depth in the medium decreases, the |Jp

| decreases, too, so that the
influence of the proximity effect becomes smaller.
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Figure 8. The distribution of eddy current density across the wire: the modulus of Jp along the
symmetry axis in conductor 2 due to current in conductor 1 for various skin depths in the surrounding
medium at constant remaining parameters (see the middle inset); the leftmost inset shows the plotting
path on the cross-section of the configuration.

3.2.2. The Effect of Skin Depth

Figure 9 shows |Jp
| at the point on conductor 2 closest to conductor 1 vs. d/δm for various

R2/δ2 and constant remaining parameters for non-magnetic regions. The smaller the skin depth in the
surrounding medium, the smaller are the induced eddy currents. The effect is the stronger the smaller
the skin depth in conductor 2.

Figure 9. The effect of skin depth in the surrounding medium for various skin depths in the wire: the
modulus of Jp at the point closest to conductor 1 (see the leftmost inset) due to current in conductor
1 vs. d/δm ratio for various skin depths in conductor 2 at constant remaining parameters (see the
middle inset).

3.2.3. The Effect of Size Asymmetry

Figure 10 shows |Jp
| at the point on conductor 2 closest to conductor 1 vs. b1/d for various d/δm

and R2/δ2 for non-magnetic regions. The values of |Jp
| are the greater the smaller the values of

b1/d (i.e., the larger is b2/d). As the skin depth in the surrounding medium increases, the values of
|J

p
| decrease.
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Figure 10. The effect of asymmetry in conductors’ cross-sections: the modulus of Jp at the point
closest to conductor 1 due to current in conductor 1 vs. b1/d ratio for various skin depths in conductor
2 and d/δm ratios (see the top inset); the distance between the conductors is assumed b1 + b2; therefore,
b2/d = 1− b1/d in this case.

3.2.4. The Effect of Insulation Thickness

Figure 11 shows |Jp
| at the point on conductor 2 closest to conductor 1 vs. relative thickness

of insulation (t2/R2, where t2 = b2 −R2) for various d/δm and R2/δ2 for non-magnetic regions and
constant d and R2. The effect is the greater the smaller the skin depths in the conductor and medium.
For a non-conductive medium, the insulation thickness has no effect.

Figure 11. The effect of insulation thickness: the modulus of Jp at the point closest to conductor 1 (see
the top insets) due to current in conductor 1 vs. thickness to radius ratio for various skin depths in
conductor 2 and the medium at constant remaining parameters (see the right top inset).

3.2.5. The Effect of The Magnetic Medium

Figure 12 shows |Jp
| at the point on conductor 2 closest to conductor 1 vs. d/b2 for various µmr

and constant remaining material parameters. It follows that at small enough distances, the density of
eddy currents increases as the environment permeability increases, but for larger distances, the effect is
inverse. An increase in permeability lowers the skin depth, making stronger the attenuation of the
field in the medium. This is best visible with trace 6. An interesting thing is that trace 4 indicates
the strongest action on conductor 2. This is related to the small conductivity of the medium (weak
attenuation).
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Figure 12. The effect of magnetic medium: the modulus of Jp at the point closest to conductor 1 (see
the top insets) due to current in conductor 1 vs. d/b2 ratio for various skin depths in conductor 2 and
the environment permeability (µmr affects δm).

3.3. Symmetrical Twin Line—Numerical Results and Discussion

In this subsection, a twin line is considered. The wires are assumed identical and made of copper
(R1 = R2, b1 = b2, σ1 = σ2 = σCu = 56MS/m, µ1 = µ2 = µ0), with a negligibly small thickness of
insulation (b1 = R1, b2 = R2) and distance between their axes equal to d = 2R1 + g, where g is the gap
between their closest points. The remaining parameters (R1/δ1 = R2/δ2 ∼

√
f , g/R2, σm, µmr) are

subject to change. Two cases are considered: the same currents and opposing currents. In all cases,
the total current density is divided by DC current density JDC

2 = I2/πR2
2 as follows:

Jtot
2

JDC
2

= Js
( r

R2
;

R2

δ2

)
+
I1

I2
J

p
(

r
R2

,θ;
R2

δ2
,

d
δm

,
b1

d
,

b2

d
,

R2

b2
,µ2r,µmr

)
. (27)

3.3.1. Comparison with FEM and BEM

Figures 13 and 14 present the distribution of the relative current density in conductor 2 for same
and opposing currents and arbitrary parameters given in the framed insets. Four cases are considered:
(1) same currents in a non-conductive medium; (2) same currents in the medium of conductivity equal
to 1 MS/m; (3) opposing currents in a non-conductive medium; (4) opposing currents in the medium of
conductivity equal to 1 MS/m.

Figure 13. The effect of conductance of the surrounding medium for same and opposing
currents—distribution of the magnitude of relative current density on the surface of conductor
2, as shown in the bottom inset; copper wires with the gap between them equal to their radius.
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Figure 14. The effect of conductance of the surrounding medium for same and opposing
currents—distribution of the argument of relative current density on the surface of conductor 2,
as shown in the left inset; copper wires with the gap between them equal to their radius.

In addition to theoretical calculations via Equation (27), the FEM and BEM analysis is used in
a similar way as in Section 3.1. The wires are made of copper, the gap between the wires is equal to their
radius, and the medium is non-magnetic. It follows that the non-magnetic conductive medium weakens
the proximity effect. The BEM results (circles) are close to that of Equation (27), but there are small
discrepancies. They are due to the fact that Equation (27) does not take into account higher reactions
(the induced eddy currents J

21
also induce eddy currents in conductor 1, and so forth—see [21]).

The FEM results are the same as BEM results in the case of a non-conductive medium, but they are
clearly different for a conductive medium. As mentioned in Section 3.1, this is caused by the way in
which the open boundary problem is modeled in FEMM software.

3.3.2. The Effect of Environment Conductivity and The Gap between The Wires

Figure 15 presents
∣∣∣∣Jtot

2
/JDC

2

∣∣∣∣ across that diameter of conductor 2, which is parallel to the symmetry
axis intersecting the conductors. Three values of g/R1 ratio and two values of environment conductivity
are taken into account. An increase in the conductivity of the medium weakens the proximity effect
because the induced currents due to the current in the neighboring wire are smaller (electromagnetic
screening by the conductive medium). The effect is, however, noticeable for high enough environment
conductivity or large enough gap between the wires.

Figure 15. The effect of conductivity of the surrounding medium and the effect of the distance
between the conductors: the values of the magnitude of the relative current density in conductor 2
across its diameter (see the leftmost inset) for various gaps between the conductors; traces 1–3 are
for same currents, traces 4–6 are for opposing currents; dashed lines are for non-conductive medium,
whereas solid lines are for σm = 1 MS/m; the remaining parameters are given in the middle inset.
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3.3.3. The Effect of Frequency and Conductivity of The Medium

Figure 16 presents
∣∣∣∣Jtot

2
/JDC

2

∣∣∣∣ across that diameter of conductor 2, which is parallel to the symmetry
axis intersecting the conductors. Three values of frequency (expressed as R2/δ2 ratio) and two values
of environment conductivity are considered. An increase in frequency strengthens the proximity effect.
An increase in environment conductivity weakens the proximity effect due to the screening activity of
the medium.

Figure 16. The effect of frequency and conductivity of the medium: the values of the magnitude of the
relative current density in conductor 2 across its diameter (see the leftmost inset) for various R2/δ2

ratios (proportional to
√

f ); traces 1–3 are for same currents, traces 4–6 are for opposing currents;
dashed lines are for non-conductive medium, whereas solid lines are for σm = 1 MS/m; the remaining
parameters are given in the middle inset.

3.4. Implications

Equations (6a) and (6b) show that the skin effect in a standalone round conductor placed in
a conductive medium is the same as in for non-conductive medium. Figure 4, Figure 5, and Figure 9
indicate that the eddy currents induced in a round conductor due to a neighboring current filament
are smaller if the surrounding medium is conductive. This result is intuitively clear because the
conductive medium acts as an electromagnetic screen. For non-magnetic medium, the change is
noticeable for conductivity values much larger than 10 S/m. Figures 13–16 also confirm this. To see it
better, the following indicator is introduced:

χ =

∣∣∣∣∣∣∣ Jtot
2
(1, 0) − Jtot

2
(1, 0)σm=0

Jtot
2
(1, 0)σm=0

∣∣∣∣∣∣∣× 100%, (28)

which is the percentage change in Jtot
2
(1, 0) value in relation to this value for the non-conductive

medium. Figure 17 shows χ vs. σm for copper wires and various other parameters. It follows that
noticeable changes can be observed for σm > 104 S/m. Hence, the effect of surrounding soil or sea water
on the proximity effect in a twin line with round conductors can be neglected because the relative
changes in current density are below 0.01%. However, this does not mean the impedances will not be
changed to a larger degree because of eddy currents induced in the conductive medium. They are
a source of additional power losses, so the effect of lowering the proximity effect in the wires may be
diminished by an increase of power losses in the conductive medium. Moreover, the results do not take
into account the complex permittivity of the surrounding medium, which may affect the results for
specific values of higher frequencies. The above aspects will be subject to further investigations. It is
also to remember that the results are obtained by neglecting the displacement currents, which can have
a certain effect in case of very high frequencies and wires placed in a very weakly conductive medium.
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Figure 17. Relative change in current density in the closest point (point P in the left top inset) vs.
conductivity of the medium for various parameters.

3.5. Limitations and Error Estimation

Finally, it is necessary to indicate that Equation (27) is an approximation of the true solution for
a twin line with round conductors. It should be realized that eddy currents of density J

21
induce eddy

currents in conductor 1, which generate additional eddy currents in conductor 2, and so forth. This is
presented in Figure 18. Let us observe that each successive reaction is much weaker than the previous
one because it can be regarded as a result of two opposite currents. For example, the light brown arrows
in wire 2 (solid and dashed) represent eddy currents J

21
and generate much weaker reaction 2 in wire 1

(short black arrows equal to differences between orange and brown arrows, depicting reactions to the
light brown solid and dashed arrows). These higher-order reactions are not included in Equation (27).
However, usually, they are very small (see [21], where these reactions were found in the case of the
non-conductive surrounding region).

Figure 18. Schematic view of interactions between currents in the wires. The current in wire 1 (thick
red arrow) induces eddy currents in wire 1 (the skin effect—red arrows) and in wire 2 (the first
approximation of the proximity effect—light brown arrows of opposite direction because the induced
current equals zero). These eddy currents in wire 2 induce eddy currents in wire 1 (orange and brown
arrows); the orange ones originate from the current symbolize with a light brown solid lines, whereas
the brown ones originate from the current symbolize with light brown dashed line. Reaction 2 (short
black arrows) is then the difference between the orange and brown arrows and, therefore, is much
weaker than reaction 1. The higher-order reactions arise in a similar way and quickly tend to zero.
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To estimate the error due to the omitted higher reactions, let us substitute wire 2 (where currents
of density J

21
are induced, Equation (20a)) with two filaments, A and B, with opposite currents I′,

as shown in Figure 19, where

I
′ = J

21
(1, 0)

πR2
2

2
=
I1

2
J

p(1, 0). (29a)

Factor πR2
2/2 originates from the fact that the total induced current in wire 2 equals 0, so approximately

half of the cross-section carries current I′, whereas the other half carries the return current. Then,
according to Equation (20a), such two filaments induce eddy currents in wire 1 as follows

J′
1
(ρ,ϕ) =

I
′

πR2
1

J
p
(
ρ

R1
,π−ϕ

)
d→d−R2

−
I
′

πR2
1

J
p
(
ρ

R1
,π−ϕ

)
d→d+R2

. (29b)

The maximum density occurs in the point nearest to wire 2, i.e., when ρ = R1 and ϕ = π.
In the nonmagnetic case (µ1r = µ2r = µm) with thin insulation (b1 = R1, b2 = R2), it follows that the
maximum of J′

1
equals

J′
1max

= J
1DC

1
2J

p
(
1, 0; R2

δ2
, d
δm

, R1
d , R2

d , 1, 1, 1
)[
J

p
(
1, 0; R1

δ1
, d−R2
δm

, R2
d−R2

, R1
d−R2

, 1, 1, 1
)

−J
p
(
1, 0; R1

δ1
, d+R2
δm

, R2
d+R2

, R1
d+R2

, 1, 1, 1
)]

.
(29c)

where J
1DC

= I1/
(
πR2

1

)
. The above value overestimates the second reaction because of the oversized

current in extremely close filament A and the closest points taken. Moreover, the successive higher
reactions have different phases so that they cancel partially (the phase difference is around 90◦ for
points on wire surface in case of weakly conductive medium). This means that the error in current

density in wire 1 is not greater than
∣∣∣∣J′1max

∣∣∣∣, but usually it is much less. Further simplification can be

obtained by considering the case of weak skin effect ( R1
δ1
� 1, R2

δ2
� 1) and non-conductive medium

(δm →∞ ). By using some mathematical effort (limits, power series expansion, geometrical series
summation), the following expression can be obtained:

J′
1max

≈ −J
1DC

1
2

(
R1

δ1

R2

δ2

)2

ln
(
1−

R2

d

)(
ln

d−R2 −R1

d−R2
− ln

d + R2 −R1

d + R2

)
. (29d)

Figure 19. Wire 2 with eddy currents of density J
21

due to current I1 is replaced with two current
filaments A and B with current I′; these two filaments induce eddy currents in wire 1.

This expression can serve as maximum error estimation in current density in the case of
nonmagnetic wires with thin insulation. It is relatively simple in form and involves basic dimensions
as well as the skin depths of the wires. When the medium is conductive, the error is smaller due to the
attenuation introduced by the medium. When the skin effect in the wires is larger, the error is also
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smaller because of the phase lag in the wires, which makes partial cancellation of the currents. This is
shown in Figure 20.

Figure 20. Error estimation of the solution; the true error is much less due to much overestimated
action of filament A and partial cancellation of the successive reactions: (a) error vs. R1/d = R2/d for
constant R1/δ1 = R2/δ2 = 1; (b) error vs. R1/δ1 = R2/δ2 for constant R1/d = R2/d = 0.4.

The higher-order reactions may have a noticeable influence in the case of very small gaps at
higher frequencies, as visible in Figures 13 and 14, where some differences between Equation (27) and
BEM results can be observed. Especially two cases must be mentioned: (i) when the conductivity
of the medium is rather high (at least 1% of that for wires); (ii) when the magnetic permeabilities of
the regions differ considerably. Another limitation is the fact that the whole surrounding region is
assumed conductive and homogeneous, i.e., no ground surface is taken into account.

4. Conclusions

Based on the above considerations, the following conclusions can be formulated:

• The eddy currents density in the round conductors placed in the non-magnetic conductive medium
is decreased compared to the same conductor in the non-conductive and non-magnetic medium
due to the screening effect of the medium. This results in decreasing the proximity effect.

• If the conductors are placed in the magnetic and non-conductive medium, the proximity effect
is enlarged.

• For the conductive and magnetic medium, the proximity effect is decreased in a larger degree
compared to the case of a non-magnetic medium of the same conductivity.

• For copper conductors placed in soil or sea water, the change in current density distribution is
very small, usually below 0.01%.

• Further investigations can be focused on tubular conductors and groups of conductors as well as
on their impedances; also the boundaries of the medium can be taken into account.
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Appendix A

To ensure a satisfying Equations (14a)–(14d) for any θ, the corresponding coefficients of cos nθ for
each n must be equal. For n = 0, the following equations are obtained:

C0I0(Γ2R2) = E0 + F0 ln R2, (A1)

E0 + F0 ln b2 =
µmI

′

1

2π
I0(Γmb2)K0(Γmd) + D0K0(Γmb2) + Ccm, (A2)

C0
Γ2

µ2
I′0(Γ2R2) =

1
µ0

F0

R2
, (A3)

1
µ0

F0

b2
=
Γm

µm

µmI
′

1

2π
I′0(Γmb2)K0(Γmd) + D0

Γm

µm
K′0(Γmb2). (A4)

Taking into account that C0 = 0 (see Equation (13b)), it follows that

F0 = 0, E0 = 0, D0 = −
µmI

′

1

2π

I′0(Γmb2)K0(Γmd)

K′0(Γmb2)
, Ccm =

µmI
′

1

2π
K0(Γmd)

Γmb2K′0(Γmb2)
. (A5)

For n = 1, 2, 3, . . . , the following equations are obtained

CnIn(Γ2R2) = EnRn
2 + FnR−n

2 , (A6)

Enbn
2 + Fnb−n

2 =
µmI

′

1

2π
2In(Γmb2)Kn(Γmd) + DnKn(Γmb2), (A7)

Cn
Γ2

µ2
I′n(Γ2R2) =

1
µ0

n
(
EnRn−1

2 − FnR−n−1
2

)
, (A8)

1
µ0

n
(
Enbn−1

2 − Fnb−n−1
2

)
=
Γm

µm

µmI
′

1

2π
2I′n(Γmb2)Kn(Γmd) + Dn

Γm

µm
K′n(Γmb2). (A9)

Equations (A6) and (A8) yield

En =
In(Γ2R2) +

µ0
n
Γ2R2
µ2

I′n(Γ2R2)

2Rn
2

Cn =
µ2r + Ĩn(Γ2R2)

2µ2rRn
2

In(Γ2R2)Cn, (A10)

Fn =
In(Γ2R2) −

µ0
n
Γ2R2
µ2

I′n(Γ2R2)

2R−n
2

Cn =
µ2r − Ĩn(Γ2R2)

2µ2rR−n
2

In(Γ2R2)Cn, (A11)

where functions Ĩn(z) and K̃n(z) are defined by Equations (19a) and (19b). Combining Equations (A7)
and (A9) leads to

(
Enbn

2 + Fnb−n
2

)µ0

n
Γmb2

µm
K′n(Γmb2) −

(
Enbn

2 − Fnb−n
2

)
Kn(Γmb2) = −2

I
′

1

2π
µ0

n
Kn(Γmd). (A12)

Substituting Equation (A10) for En and Equation (A11) for Fn in Equation (A12) leads to some
transformations in Equations (18a) and (18b). During the transformations, the following equation is
used (see [37] 9.6.15 + 9.6.26):

Kn(z)I′n(z) −K′n(z)In(z) =
1
z

. (A13)
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13. Jabłoński, P. Approximate BEM analysis of time-harmonic magnetic field due to thin-shielded wires.

Pozn. Univ. Technol. Acad. J. Electr. Eng. 2012, 69, 57–64.
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