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Abstract: An energy optimization strategy is proposed to minimize operation cost and carbon
emission with and without demand response programs (DRPs) in the smart grid (SG) integrated with
renewable energy sources (RESs). To achieve optimized results, probability density function (PDF)
is proposed to predict the behavior of wind and solar energy sources. To overcome uncertainty in
power produced by wind and solar RESs, DRPs are proposed with the involvement of residential,
commercial, and industrial consumers. In this model, to execute DRPs, we introduced incentive-based
payment as price offered packages. Simulations are divided into three steps for optimization
of operation cost and carbon emission: (i) solving optimization problem using multi-objective
genetic algorithm (MOGA), (ii) optimization of operating cost and carbon emission without DRPs,
and (iii) optimization of operating cost and carbon emission with DRPs. To endorse the applicability
of the proposed optimization model based on MOGA, a smart sample grid is employed serving
residential, commercial, and industrial consumers. In addition, the proposed optimization model
based on MOGA is compared to the existing model based on multi-objective particle swarm
optimization (MOPSO) algorithm in terms of operation cost and carbon emission. The proposed
optimization model based on MOGA outperforms the existing model based on the MOPSO algorithm
in terms of operation cost and carbon emission. Experimental results show that the operation cost
and carbon emission are reduced by 24% and 28% through MOGA with and without the participation
of DRPs, respectively.

Keywords: multi-objective energy optimization; smart grid; renewable energy sources; wind;
photovoltaic; demand response programs

1. Introduction

Energy optimization is an indispensable task in energy management of the smart grid (SG) [1,2].
Optimal energy optimization is possible only by actively engaging consumers in demand response
programs (DRPs) offered by electric utility companies (ECUs) [3]. DRPs enable the ECUs to shift a
load of consumers from on-peak to off-peak hours by giving economic incentive to the consumers [4].
A market overview model consisting of 10 chapters is presented [5] for economic cost reduction,
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which consists of market forecasting, market management, and market monitoring to schedule energy,
ancillary services, and transmission. Moreover, DRPs provide ease and flexibility to consumers to
actively participate in the electricity market for energy optimization.

Energy demand is rising, and conventual energy sources are limited and depleting gradually.
Therefore, renewable energy is a hot topic for researchers due to high energy potential and continually
replenished nature. According to [6], the increase in population results in an increase in energy demand,
and it is predicted that demand will increase to 50% or more at the end of 2030. Renewable energy is
free of economic cost and emission. It is most suitable to use. Thus, in [7], energy optimization of a
model considering RESs is discussed due to the low price and environment-friendly advantages of
RESs. The integration of RESs was studied recently in [8], which provides a massive comfort to SG
technology in terms of cost. There is always a variation issue in RESs, to overcome these issues, and an
energy optimization model was proposed, which consists of a mathematical tool PDF discussed in [9],
to model solar and wind sources. Intermittent behaviour of wind and solar energy is modelled in [10]
by using PDF and Rayleigh distribution; in this case, the proposed method was a tree optimization.
Intermittency in RESs is one of the significant issues, RESs integration is discussed [11] by taking a
survey of models all around the world. The author concluded that communication system, specifically
two-way communication plays a significant role in the energy optimization of the SG.

An article [12] was discussed to reduce economic cost and carbon emission simultaneously as
a multi-objective function. The proposed model was accurate in all perspectives as implemented on
SCADA software and also the hardware of the proposed model was tested; in addition, the economic
cost and carbon emission are successfully reduced through a dynamic programming-based algorithm.
In this research, the author avoids the use of solar energy. A central controller is designed for a
micro-grid to improve the efficiency of the micro-grid and predict the performance of a dynamic
system [13]. The implementation of this model shows that, when a micro-generator is less than
seven, the proposed model is not working properly. In this paper, the author used an economic
model predictive control (EMPC) method to reduce economic cost. The traditional grid is not
applicable for energy optimization due to lake of communication infrastructure. The SG has advanced
metering and bi-directional communication infrastructures, which enables RESs accommodation
and active participation of consumers in DRPs to ensure low operation cost and gives carbon
emission [14]. In addition, SG enables us to perform optimization from all perspectives like energy,
cost, carbon emission, and maintaining a balance between demand and supply. The DRPs in SG reduce
cost and provide relief to the end-users; similarly, DRPs are used to overcome uncertainty in RESs.
Implementation of DRPs for operating cost minimization and efficiency improvement is discussed
in [15]. The proposed energy optimization model based on teaching and learning-based optimization
(TLBO) and shuffle frog leaping (SFL) techniques is tested on four types of residential consumers
in the centre of Tehran in Iran. The focus of the authors is only on residential load, and no value is
assigned to commercial and industrial consumers. A model predictive control (MPC) based work is
presented for sharing distributed energy resources (DERs) in micro-grids in order to optimize the
available energy [16]. The implementation of this model reduces the economic cost. A fuzzy logic
controller based model is studied in [17] to reduce economic costs. In this model, the aim is to manage
the charging and discharging rate of an energy storage system to minimize consumers’ operational
cost. For RES forecasting, the authors used a new method to take the difference between the current
REEs and load rather than forecasting approach to predict RESs.

Similarly, an energy optimization model for the residential load is presented in [18]. The authors
perform optimization of economic cost function by managing the operation of appliances in the low
generation and on-peak period using a robust optimization algorithm. The authors compared the
proposed model based on a math-heuristic optimization algorithm with the existing one, which was
based on a mixed-integer nonlinear (MILP) method and achieved better results than the current
model. However, the carbon emission is not discussed, which is a very critical future challenge. In [19],
the authors addressed both operating cost and carbon emission using a mixed-integer nonlinear
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programming (MINLP) technique of a microgrid including microturbine, fuel cell, battery, and utility
as a back-up source. The proposed model based on MINLP results is compared to the genetic
algorithm (GA) and particle swarm optimization (PSO) algorithm based models in terms of operation
cost and emission. However, the uncertainty accompanied by RESs is catered either by DRPs or
PDF/CDF. Economic cost and peak to average ratio (PAR) are reduced by using two heuristic based
demand side management techniques [20], a bacterial Foraging Optimization Algorithm (BFOA) and
a Flower Pollination Algorithm (FPA). In order to optimize the results of both proposed techniques,
a novel heuristic algorithm is introduced. Demand side management (DSM) is a very important
aspect in the energy management system (EMS). Economic cost is reduced by shifting load from
peak to off-peak hours; moreover, peak to average ratio (PAR) is also minimized in the proposed
model by using the concept of DSM to control the load at user end [21]. In order to implement DSM,
BFOA and FPA are proposed. Home appliances are scheduled in such a way to minimize economic
cost, PAR, and provide user comfort to consumers while using the home energy management system
(HEMS) concept [22]. In this research, the authors used GA, FPA, and the combination (hybrid) of
these two techniques, the genetic-flower pollination algorithm (GFPA). Similarly, HEMS focuses
on scheduling home appliances in such a way to reduce the peak load, as a result, it reduces
electricity cost, PAR, optimizes user comfort as well as the time of execution [23]. The time of
use (TOU) concept was used to obtain the required results; moreover, the proposed techniques
are GA, biogeography-based optimization (BBO). For EMS, it is important to create a balance between
energy consumption and user comfort. This paper proposes three techniques GA, Pigeon Inspired
Optimization (PIO), and hybrid of GA and PIO techniques to distribute appliances in off-peak time and
reduce load at peak time to optimize electricity cost and PAR [24]. In this research [25], few methods
are used for energy optimization, such as TOU to reduce economic cost by shifting load from peak
to off peak hours, real time pricing (RTP), and DRPs. The proposed model is beneficial for both
electricity market and consumers. The multi-agents network can provide ease and reduce economic cost.
In this study [26], a nano-biased system engages multi-agents that consist of residential, commercial,
and industrial consumers. The operational cost is reduced by using the concept of real time tariff
while purchasing/sell electricity. Moreover, incentive-based packages are provided to the different
consumers. The proposed model is designed with machine learning and reinforcement intelligence.

In this work, an optimal energy optimization strategy is developed to optimize the operation of
SG integrated with RESs in terms of operation cost and carbon emission. In addition, the concept of
incentive-based DRPs is introduced as price offer packages to overcome the uncertainty factor in power
generation by RESs like solar and wind. In this method, end-users can select an offered price package
to participate in energy optimization. In this model, the Rayleigh PDF is proposed to model variation
in energy generation caused by RESs like solar and wind. Units, distributed generations (DGs), fuel cell
(FC), wind turbine (WT) and battery are intended to provide relief to SG. Residential, commercial and
industrial consumers are considered the end-users in the proposed model. The multi-objective problem
is solved through a programming technique, multi-objective genetic algorithm (MOGA), taking Pareto
fronts into account for achieving the desired optimization results. In brief, the main contributions of
this paper are as follows:

• The uncertainty in renewable energy generation like solar and wind is covered by DRP
implementation by considering operation cost and carbon emission as multi-objective functions.

• Incentive-based DRPs introduced to encourage end-users, commercial, residential and industrial
sectors to participate in energy optimization actively.

• Probability density function is proposed to predict wind and solar RES behaviour.
• The multi-objective optimization problem of operating cost and carbon emission is solved through

a multi-objective genetic algorithm (MOGA).
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The remaining sections of this work are organized as: the problem statement is discussed in
Section 2, objective function is introduced in Section 3, the proposed system model is discussed in
Section 4, the proposed technique is presented in Section 5, simulation results and discussion are
illustrated in Section 6, followed by the conclusions in Section 7.

2. Problem Statement

In this paper, an energy management system model is proposed to optimize operational cost and
pollution emission with and without the implementation DRPs in SG. Due to the stochastic behaviour
of RESs, the prediction of wind and solar are not possible; in order to solve this issue, PDF is proposed.
Moreover, there is always uncertainty in RESs; in order to resolve this problem in wind and solar,
an incentive based DRPs are proposed. However, the balance between generation and consumption
is a very important factor; the proposed model discussed these frameworks while applying demand
response programs in the smart grid.

3. Objective Function

The two main objectives of the proposed energy optimization model are operation cost and carbon
emission reduction.

3.1. Operation Cost

The operational cost is divided into two categories, certain operational costs which include start
up and running cost of DGs, reserve costs of DGs and the power costs provide or taken to/from utility,
and uncertain operational cost by taking the probability of the proposed scenarios (probs) in time slot
t = 1 to T and kth scenarios, which is affected by uncertainty in the wind and solar parameters in each
case. The uncertain operational cost function normally includes the reduction in load and expected
energy not served (EENS) for consumers at the user end. The operation cost objective function is
defined as follows:

MinF1(X) =
T
∑

t=1
f cos t(t)

=
T
∑

t=1
Cop(t) +

T
∑

t=1

K
∑

k=1
probs×UCop

(1)

where Cop and UCop are certain and uncertain cost of operation, respectively, and arranged according
to the proposed scenario, probs is the probability of the proposed scenarios k, and t is the time period
starts from t = 1 to T. A certain operation cost function is given below:

Cop =
NDG
∑

j=1

[
Wj(t)σj(t)Yj(t) + Rj(t)

∣∣Yj(t)− Yj(t− 1)
∣∣+ ReCj

DGS(t)
]

+
K
∑

k=1
ReCk

DRPs(t)YBuy(t)WGrid−Buy(t)σGrid−buy(t)−YSell(t)WGrid−Sell(t)σGrid−Sell(t)
(2)

where Wj(t) and σj(t) show output power and offered price for different units, Yi(t) indicates on,
off mode of the jth DGs in time slot t. Rj(t) indicates running and shutdown costs for different
units in time period t. ReCj

DGS(t) and ReCk
DRPS(t) are the reserve cost of DGs and DRPs in time

slot t, WGrid−Buy(t), and WGrid−sell(t) shows energy exchange with a utility in time period t. Similarly,
the uncertain operating cost function is defined as:

UCop =
NDG

∑
i=1

RCi,s
DG(t) +

K

∑
k=1

RCk,s
DR(t) + ENSs(t) (3)
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where RCi,s
DG(t), RCk,s

DR(t) shows the running cost of DGs, DRPs in time slot t and ENSs(t) is
the expected energy not served in time period t, which is also categorized in uncertain operating
costs, respectively.

3.2. Carbon Emission

The carbon emission produced by DGs and grid during the energy generation is minimized
through the following equation:

MinF2(X) = ∑
t=1

f CE(t)

= ∑
t=1

CEDGs(t) + ∑
t=1

CEGrid(t)
(4)

where CEDGs(t) and CEGrid(t) are carbon emission produced by DGs and Grid in time period t,
respectively. The carbon emission produced by DGs is defined by the following equation:

CEDGs(t) =
NDGs

∑
k=1

EmissionCO2
DGs(j)× PoDGs(t) (5)

where EmissionCO2
DGs(t) is the carbon dioxide emission produced by jth DGs in time slot t;

these carbon emissions produced during power generation and PoDGs(t) is the output power produced
by DGs in time slot t. The carbon emission generated by grid is calculated as follows:

CEGrid(t) = EmissionCO2
Grid × PoGrid(t) (6)

where EmissionCO2
Grid is carbon emissions produced by grid during power generation and PoGrid(t)

is the output power produced by grid in time period t, respectively.

4. System Model

A programming-based energy optimization model is proposed to minimize operating cost and
carbon emission with and without DRPs implementation in SG integrated with RESs. The proposed
model consists of wind energy system, solar energy system, hybrid energy system, and demand
response programs, which is shown in Figure 1. The detailed description is as follows:

MOGA

Optimization model

Objective

functions

1 Operating cost

2 Carbon emissions

Sources

WT, PV, DG, FC, Batt,

Grid.

End users

Residential,

commercial, industrial.

Output power

WT, PV, DG, FC, Batt, Grid.

Figure 1. Proposed multi-objective energy optimization model.
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4.1. Wind Based Renewable Energy Generating System

The wind turbine produces electrical energy from the potential of wind. With the demand of
energy increasing day by day, RE is suitable to use because of low cost and emission. The online
web site data for wind is predicted through Rayleigh distribution [27] is proposed for modeling wind
energy. The PDF function is as follows:

FE(Swind) = 1− exp

[
−
(

Swind
βω

)2
]

(7)

where Swind is speed of wind and and βω is the scale parameter. The function for output power of
wind energy system is as follows:

P(Swind) =


0Swind < Sc_i

Prated
(Swind−Sc_i)
(2Sr−Sc_i)

Sc_i ≤ Swind < Sr

PratedSr ≤ Swind < Sc_o

0Swind ≥ Sc_o

(8)

where Prated, Swind, Sc_i, Sr and Sc_o are turbine rated power, wind speed, cut-in speed, rated speed,
and cut-off speed, respectively. The wind turbine in this study is used as the vertical axis wind
turbine [28], where Prated = 18kw, Sc_i = 4 m/s, Sc_o = 20 m/s, Sr = 19 m/s.

4.2. Solar Energy System

The solar generator converts solar energy into electrical energy. To model the behaviour of solar
irradiance, a mathematical tool PDF is proposed [29]. The solar irradiance modeling through PDF is
shown in Equation (9):

Fbeta =

{
Γ(δ+γ)

Γ(δ)Γ(γ) (s_i)δ−1(1− s_i)γ−1

0 otherwise
where 0 ≤ s_i ≥ 1, δ ≥ 0, γ ≥ 0

(9)

where s_i shows solar radiation coming from the sun, δ and γ are the parameters of beta PDF, which is
calculated from solar radiation. Beta PDF parameters can be calculated from solar radiation data
as follows:

δ = ψ

(
ψ(1 + ψ)

σ2
− 1
)

, (10)

γ = 1− ψ

(
ψ(1 + ψ)

σ2
− 1
)

. (11)

The output power depends on the amount of solar irradiance. The following equation is used to
convert solar radiation into solar energy [30]:

Wp_v(s_i) = A× η × s_i (12)

where A shows the effective area of the PV array, Wp_v(s_i) shows total output energy of the PV system
in kW, η shows efficiency of PV energy system and s_i indicates solar radiation which comes from the
sun in kW/m2.
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4.3. Hybrid Energy System

The hybrid energy system is the combination of output power of the solar and wind energy system:

Phyb = Pwind + Pphotovoltaics (13)

where Phyb, Pwind, and Pphotovoltaics is total output power, wind power and solar power, respectively.
It seems to be difficult to use PDF in a mathematical way because the process is so lengthy; therefore,
authors used Monte Carlo simulation for solving this problem [31]. This technique is used to forecast
different models and is beneficial while making decisions. In general, this method is used to predict
such models which can not be predicted easily.

4.4. Incentive-Based DRPs

In this study, the consumers are residential, commercial and industrial which are taking part in
DRPs. In Equations (14)–(16), constraints show that energy reduction by each consumer at each hour
should be less than or equal to the total amount of energy offered to each consumer. The following
equations are used to model the behaviour of different types of consumers:

Res(res, t)=RC(res, t)× σr,t, RC(res, t) ≤ RC
max (14)

Com(c, t)=CC(com, t)× σcom,t, CC(com, t) ≤ CC
max (15)

Ind(i, t)=IC(ind, t)× σind,t, IC(ind, t) ≤ IC
max (16)

where Res(r,t), Com(c,t) and Ind(i,t) show cost due to load minimization by each consumers
in time t, res, com and ind are industrial, residential and commercial consumers, respectively.
RC(res, t), CC(com, t), IC(ind, t) are load minimization according to the plans by each consumers.
RC

max, CC
max and IC

max are max minimization of load in time t. σr,t, σc,t and σi,t are incentive based
payments, respectively.

5. Proposed Multi-Objective Genetic Algorithm

In this study, the MOGA technique is proposed for operating cost and Carbon emission
reduction. The MOGA algorithm used the position and velocity of the particle and used Pareto-fronts
for positioning best possible results [32,33]. MOGA uses the non-dominated classification of the
GA population, also maintaining diversity in non-dominated solutions. The nearest solutions to
Pareto-front are ranked equal to 1, and the ranked equal to 1 solutions are pick-up solutions. Similarly,
the other solutions than the ranked one solution are ranked accordingly, based on its location.
The equation for finding rank as follows:

Rj = 1 + Nj (17)

where Rj and Nj show the rank of solutions and the number of solutions which dominate j, respectively.
If a large number of solutions dominates, its mean rank is higher. To combine more than one objective,
the equation is as follows:
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F(Y) = m1 · F1(Y) + · · ·+ mi · Fi(Y) + · · ·+ mN fN(Y) (18)

where Y, F(Y), and Fi(Y) are string of the rank, fitness function and j-th objective function, respectively,
mi represents the variable weight for Fi(Y) and N indicates objectives function. MOGA steps are:

step 1: Assigning rank according to Rj.
step 2: Using a linear mapping function (LMF) to assign row fitness to each solution. Linear mapping
functions will assign the row fitness and also assign the row fitness function for the worst solutions.
step 3: Calculating the average of row fitness values for each rank solutions. If the rank is one,
then check the number of solutions having rank 1, and take the average of row fitness value of
these solutions.
step 4: Applying crossover to each of the assigned values to produce a new string.
step 5: Applying to mutate.
step 6: The algorithm returns to step number 1, if satisfying conditions are not valid.

Now, here we discussed how to assign fitness values to MOGA.
MOGA fitness assignment: Assign fitness values are calculated as follows:

step 1: Choose σ share, which is a constant variable and denotes how much distance is considered
between two solutions. If σ share has a lower value, then we say that the solutions are near.
step 2: Compute the number of solutions Nj and rank of solution Rj as shown in Equation (19).
step 3: If j ∝ N , j = j + 1 back to step 1. Otherwise, go to step 4.
step 4: Identify max rank Rj.

The assigned fitness value is called average fitness value, and given as follows:

Fj = Nj −
Rj+1

∑
j=1

µ(j)− 0.5[µ(Rj)− 1] (19)

Equation (20) will give average fitness to each solution j. Where Nj is total number of solutions,
µj is number of solutions of the rank Rj and µ(Rj) are the number of solutions in the current rank.
For every solution in the rank, we have to calculate the niche count [34], which is calculated as follows:

Ncj =

µ(Rj)

∑
i=1

sh(dji) (20)

where j and i are two different solutions which must be in the same rank, and sh(dji) is a share
fitness value. The Pareto-fronts determine the best possible solutions [35]. The proposed technique
implementation is shown in Algorithm 1.
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Algorithm 1 MOGA code.
1: procedure
2: Inputs:Population size, max iteration, Boundary conditions, Crossover, mutation;
3: Output: Minimization of operational cost and Carbon emissions using RE;
4: Initialization:
5: Nj= No of solutions assigned;
6: Rj= Rank of solutions;
7: Sigma share= A constant which determines distance between two solutions;
8: Step1: Assigning Rank Rk=s, where s=1,2,3,. . . . . . . . . . . . . . . . . . . . . . . . .n;
9: Step2: Using LMF to assign row fitness to each solution to number of best and worst solutions;

10: Implementation:
11: Step3: Choose solutions having rank 1;
12: Step4: Calculate the average of row fitness value for each rank solutions;
13: Step5: Assigning fitness to each rank;
14: step6: Applying mutate;
15: Fitness assignment to MOGA;
16: Choose σ share;
17: Compute Rj and Nj using Equation (19);
18: while iter <Maximum iterations do
19: for Rj=1 do
20: using equation Rj=1+Nj, then how many solutions for rank 1?;
21: Take average of row fitness value of these solutions, These are assigned fitness values;
22: if j∝N, j=j+1 then
23: back to step 1;
24: otherwise, Go to step 4;
25: End If
26: if Rj= other then 1 then
27: move to step 1;
28: End If
29: Apply crossover to each assigned values to produce new string;
30: if conditions satisfied then
31: pareto ranks are checked;
32: then Apply mutate;
33: End If
34: End For
35: for Rj=1 do
36: for i = 1 do
37: Getting desired pareto-fronts ranks;
38: Algorithm will back to step 1 if the following conditions are not satisfied;
39: End For
40: End For
41: End While
42: End Procedure

6. Simulation Results and Discussion

A programming-based energy optimization model is proposed to reduce operational cost
and carbon emission with and without DRPs in SG using RESs. To predict the behavior of RESs,
wind, and solar energy, a mathematical tool PDF is proposed. Monte Carlo simulation is proposed
for PDF implementation because PDF is difficult to use in a mathematical way. DRPs are proposed to
overcome the uncertainty factor in renewable energy generation like solar and wind. To implement
DRPs in SG, we recommend an incentive-based payment method as price offered packages. In this
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method, industrial, residential, and commercial consumers can participate in DRPs by taking an
offered package at a time. The proposed model consists of different participants, such as sources and
end-users and objective functions, operating cost, and carbon emission, which are shown in Figure 1.
The data for wind energy generation are taken from [36,37]. The behavior of wind speed is shown
in Figure 2. The solar energy system used in the proposed model has the following specifications:
25 kW SOLAREX MSX type, compose d of solar array 10 × 2.5 kW with h = 18.6% and s = 10 m2 [38].
The average solar irradiance profile utilized by the solar energy system is shown in Figure 3.
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Figure 2. Hourly wind speed curve.
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Figure 3. Hourly solar irradiance curve.

A battery used in this study, having high and low charges 10% and 100% with efficiency
94% [39,40]. Residential, commercial and industrial consumers’ daily load demand profile is illustrated
in Figure 4 [41].
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Figure 4. Daily load curves for different consumers like industrial, residential and commercial.

Figure 5 shows that DRPs optimize operation cost and carbon emission by actively engaging
consumers in the electricity market to efficiently utilize RESs (Wind/Solar) and shift their load from
on-peak hours to off-peak hours. The consumers’ participation in DRPs reduce the burden on ECUs in
terms of not turning peak power plants. The system operator reduces unscheduled power generation
and is capable of managing demand with scheduled power generating units. The results before and
after DRPs implementation are shown in Figure 5. To implement the proposed scenarios, we divided
the proposed study into three steps.
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Figure 5. Load demand with and without involvement of demand response programs.

Step 1: Operation cost and carbon emission minimization with DRPs.
Step 2: Operation cost and carbon emission minimization without DRPs
Step 3: The MOGA technique is proposed to solve the problem by taking operation cost and

carbon emission as multi-objective functions.
All the units are taking part in the SG operation to provide relief to SG. In this study,

the multi-objective problem is solved by taking operational cost and carbon emission as objective
functions and are implemented in MATLAB 2017b.
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Step 1: Operation cost and carbon emission minimization with DRPs.
In this step, the cost of operation and carbon emissions are separately reduced without the

involvement of DRPs. Table 1 results indicate that, in working hours, the emissions produced by
sources are high. In this case, the utility takes energy from SG. While taking carbon emission function
into account, both wind and solar energy produce low emissions during power production. In this
case, the power reaches the maximum level. Wind and solar energy have high operating costs, and this
scenario is only suitable for carbon emission function.

The results of Figure 6a,b show the simultaneous reduction of cost of operation and Carbon
emission with and without the implementation of DRPs. The cost of operation and Carbon emission
can be reduced by 24.5% and 28%, respectively. Figure 7a,b indicates wind and solar power generation
while taking cost of operation and Carbon emission reduction and simultaneous reduction of wind
and solar function with and without DRPs.

Step 2: Operation cost and carbon emission without DRPs.
In this step, the cost of operation and carbon emission are separately reduced with the involvement

of DRPs. The cost of operation and carbon emission are separately reduced successfully, and the
results are shown in Tables 2 and 3, respectively. Comparing Tables 1–4 shows that, when DRPs are
implemented, the wind and power generation are reduced from 9.72 kW to 8.12 kW and from 5.54 kW
to 4 kW, respectively. The optimization model proposed that the DRPs are taken with incentive-based
payments. In the case of using DRPs with incentive-based payments, it converts loads from on-peak to
off-peak hours and helps in operating cost reduction. When load shifts from peak to off-peak hours
the cost of operation starts to reduce in this period.

Step 3: Solving multi-objective energy optimization problem using a MOGA technique by
taking Pareto optimal fronts into account.

In this step, the simultaneous minimization of multi-objective functions, cost of operation,
and carbon emission with and without DRPs takes place and is based on the MOGA technique.
Both functions start to reduce simultaneously and result in the best possible solution by using a Pareto
optimal path. Figure 6a,b show that operation cost and carbon emission are plotted on the x-axis and
y-axis, respectively. Moving from an initial point towards the finishing point along the Pareto path
represents a change in operation behavior from low operation cost and high emission to high operation
cost and low emission, respectively. The optimize operation point is obtained via a fuzzy mechanism
of MOGA.
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Figure 6. Multi-objective energy optimization of the proposed MOGA and existing MOPSO algorithm
using Pareto-fronts criterion for operation cost and carbon emission optimization (a) without DRPs;
(b) with DRPs
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Figure 7. Renewable energy sources generation. (a) wind energy system; (b) solar energy system

Figure 7a,b results show that maximum solar and wind energy production are utilized considering
carbon emission and operation cost to establish a balance between them by simultaneous optimization.

Table 1. Carbon emission optimization different energy generating units without DRPs.

Hours
Distributed
Generations

(kW)

Fuel Cell
(kW)

Wind
Turbine (kW)

Solar Array
(kW) Battery (kW) Utility

(kW)

1 39.64 30.91 1.92 0.00 31.08 −30.00
2 32.00 25.00 0.78 0.00 29.58 −26.56
3 32.00 27.17 1.98 0.00 30.95 −25.54
4 32.05 30.55 0.98 0.00 30.56 −23.33
5 32.00 28.00 1.95 0.00 31.98 −26.91
6 32.00 32.00 0.99 0.00 31.01 −26.28
7 35.27 30.68 1.90 0.00 30.35 −24.26
8 52.71 30.00 1.95 0.27 29.25 0.00
9 49.52 31.56 1.93 4.12 30.00 −9.00

10 115.04 30.00 1.89 12.00 31.95 −8.00
11 127.77 30.99 10.75 13.81 30.44 −30.00
12 152.40 30.99 11.41 25.00 30.00 −30.00
13 143.10 30.98 4.95 21.65 29.25 −26.96
14 165.92 32.00 2.94 8.42 29.98 −20.84
15 176.90 32.00 1.98 4.19 30.05 −10.91
16 171.37 30.09 1.99 0.93 31.80 −15.00
17 160.97 28.93 1.99 0.50 31.00 −21.22
18 154.91 31.00 1.98 0.00 31.06 −26.00
19 117.21 29.81 1.90 0.00 31.40 28.87
20 110.76 29.98 1.98 0.00 25.86 27.35
21 99.16 31.00 1.80 0.00 31.80 21.92
22 74.69 31.00 1.88 0.00 31.10 28.23
23 46.10 30.98 1.11 21.65 29.25 −25.96
24 40.99 29.00 0.75 8.32 29.98 −20.83
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Table 2. Operating cost optimization of different energy generating units with DRPs.

Hours
Distributed
Generations

(kW)

Fuel Cell
(kW)

Wind
Turbine (kW)

Solar Array
(kW) Battery (kW) Utility

(kW)

1 33.64 7.18 0.38 0.00 0.68 30.00
2 34.00 12.00 0.28 0.00 −16.51 26.57
3 30.00 12.31 0.38 0.00 −19.97 29.47
4 30.15 20.5 0.71 0.00 −29.57 29.13
5 30.00 4.000 0.58 0.00 −29.99 3.81
6 30.00 7.000 0.14 0.00 −21.30 16.28
7 31.77 25.67 0.50 0.00 −29.73 28.22
8 35.71 28.000 0.05 0.25 −3.525 2.00
9 80.56 21.456 0.60 0.12 −20.00 −32.00

10 161.60 16.000 0.80 0.00 26.75 −32.00
11 233.37 5.99 0.75 0.51 28.44 −32.00
12 203.64 14.98 0.10 0.00 18.00 −30.00
13 260.21 26.98 0.91 0.65 −1.25 −30.66
14 223.99 4.00 0.34 0.42 −4.88 −34.83
15 214.90 22.00 0.90 0.19 −7.05 −32.71
16 171.36 23.09 0.38 0.38 −3.90 −32.00
17 125.09 26.93 1.79 0.55 11.00 7.52
18 44.01 28.00 0.68 0.00 5.07 29.00
19 52.25 28.12 1.11 0.00 30.34 31.79
20 90.26 24.98 1.01 0.00 27.88 31.35
21 129.16 22.00 0.22 0.00 25.80 −29.72
22 100.69 18.00 0.35 0.00 30.81 29.33
23 29.21 26.98 0.65 0.51 −1.24 −30.66
24 28.99 29.00 0.35 0.21 −4.98 −34.43

Table 3. Carbon emission optimization of different energy generating units with DRPs.

Hours
Distributed
Generations

(kW)

Fuel Cell
(kW)

Wind
Turbine (kW)

Solar Array
(kW) Battery (kW) Utility

(kW)

1 29.00 10.98 0.08 0.00 26.08 −30.000
2 29.00 23.00 0.28 0.00 28.18 −24.567
3 30.00 26.17 0.00 0.00 29.75 −27.547
4 30.15 2.65 0.00 0.00 19.76 −29.133
5 30.00 3.00 2.78 0.00 30.88 −31.981
6 29.00 26.00 0.98 0.00 5.31 −29.288
7 31.77 26.68 1.01 0.00 21.75 −28.262
8 30.77 29.00 0.05 0.00 29.25 −29.000
9 34.56 24.46 2.30 3.11 29.00 −28.00

10 37.64 28.00 7.09 7.00 23.75 −20.00
11 78.75 26.99 9.77 9.51 26.44 20.00
12 105.60 30.99 3.40 11.10 21.60 15.00
13 40.21 30.88 2.15 21.65 29.45 29.96
14 128.99 29.00 1.35 23.32 27.98 1.83
15 124.98 28.00 2.80 7.89 23.25 15.71
16 70.37 30.19 1.74 5.98 29.80 29.00
17 57.07 29.53 1.93 0.50 28.60 3.22
18 65.01 30.00 1.85 0.00 30.07 22.00
19 100.15 30.30 0.00 30.30 23.79 −19.66
20 95.26 28.96 1.30 0.00 26.86 18.75
21 56.16 28.00 1.20 0.00 27.80 27.72
22 35.99 30.00 1.55 0.00 26.80 15.33
23 50.10 29.98 2.91 21.65 29.45 16.96
24 30.92 29.00 1.34 23.32 27.98 −11.43



Energies 2020, 13, 5718 15 of 17

Table 4. Operation cost optimization of different energy generating units without DRPs.

Hours
Distributed
Generations

(kW)

Fuel Cell
(kW)

Wind
Turbine (kW)

Solar Array
(kW) Battery (kW) Utility

(kW)

1 30.43 8.98 0.48 0.00 12.78 30.00
2 33.00 29.00 0.48 0.00 −16.51 27.57
3 37.00 20.31 0.28 0.00 −16.97 23.57
4 39.66 25.65 0.81 0.00 −29.57 30.13
5 33.00 14.70 0.78 0.00 −26.99 27.91
6 31.00 24.91 0.00 −21.30 −10.28 23.00
7 32.12 26.67 0.50 0.00 −19.73 23.22
8 34.61 25.00 0.305 0.27 −0.55 23.00
9 106.66 3.46 0.30 0.12 30.00 -32.00

10 243.60 19.00 0.09 0.00 −13.95 −32.00
11 215.77 5.99 0.75 0.81 18.44 −32.00
12 291.64 6.98 0.10 0.00 −26.00 −30.00
13 277.21 9.98 0.95 0.95 −25.25 −30.96
14 223.99 25.00 5.00 0.345 22.32 −30.88
15 218.90 29.00 0.98 0.89 32.20 −27.91
16 228.36 7.09 0.78 0.38 30.00 −27.00
17 117.09 27.93 1.99 0.50 31.00 27.22
18 95.01 30.00 0.98 0.00 31.07 29.00
19 107.25 32.82 1.31 0.00 30.34 31.79
20 125.76 31.96 1.31 0.00 27.88 31.35
21 157.11 29.00 0.32 0.00 30.80 −29.72
22 89.69 25.00 0.55 0.00 30.81 29.33
23 56.21 26.98 0.95 0.65 30.24 −30.66
24 33.99 25.00 0.35 0.32 29.98 26.83

7. Conclusions

A programming-based energy optimization model is proposed to optimize operation cost and
carbon emission with and without the involvement of DRPs in SG with integrated RESs like solar
and wind. The incentive-based DRPs in SG as price offered packages is introduced to overcome
the uncertainty factor in renewable energy generation like solar and wind. Moreover, to achieve
optimized results, a PDF is intended to predict the behaviour of solar and wind RESs. Simulations are
conducted in three steps: (i) multi-objective energy optimization problem of operation cost and carbon
emission is solved using MOGA, (ii) operation cost and carbon emission optimization without DRPs,
and (ii) operation cost and carbon emission optimization with DRPs. The proposed model is tested on a
smart sample grid serving consumers of residential, commercial, and industrial sectors. The proposed
energy optimization model based on MOGA outperforms the existing models in terms of operation
cost and carbon emission. Experimental results show that the operation cost and carbon emission with
and without DRPs are reduced by 24% and 28% using the proposed technique MOGA, respectively.
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