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Abstract: Due to the recent development of information and communication technology (ICT),
various studies using real-time data are now being conducted. The microgrid research field is also
evolving to enable intelligent operation of energy management through digitalization. Problems
occur when operating the actual microgrid, causing issues such as difficulty in decision making and
system abnormalities. Using digital twin technology, which is one of the technologies representing
the fourth industrial revolution, it is possible to overcome these problems by changing the microgrid
configuration and operating algorithms of virtual space in various ways and testing them in real
time. In this study, we proposed an energy storage system (ESS) operation scheduling model to be
applied to virtual space when constructing a microgrid using digital twin technology. An ESS optimal
charging/discharging scheduling was established to minimize electricity bills and was implemented
using supervised learning techniques such as the decision tree, NARX, and MARS models instead
of existing optimization techniques. NARX and decision trees are machine learning techniques.
MARS is a nonparametric regression model, and its application has been increasing. Its performance
was analyzed by deriving performance evaluation indicators for each model. Using the proposed
model, it was found in a case study that the amount of electricity bill savings when operating the ESS
is greater than that incurred in the actual ESS operation. The suitability of the model was evaluated
by a comparative analysis with the optimization-based ESS charging/discharging scheduling pattern.

Keywords: machine learning; digital twin; energy storage system; optimal scheduling; microgrid

1. Introduction

Recently, global interest in and demand for microgrids has been increasing, particularly with
regard to the convergence of power systems. Information and communication technology (ICT) is
emerging as the core technology of microgrids. The microgrid is accelerating the growth of the energy
industry by taking the lead in responding to the new climate regime, and it is being used for a variety of
purposes, such as economic power supply, leading to reduced demand-side electricity rates. The global
microgrid market is expected to reach USD 67.6 billion by 2021, and the annual average growth rate
from 2018 to 2021 is expected to be 21.7% [1]. As one of the components of the microgrid, an energy
storage system (ESS) can contribute to enhancing the quality of power and securing the stability of the
power grid by balancing the output and supply and demand of unstable distributed resources.

One of the most salient issues in the microgrid environment, where energy supply and demand has
been rapidly increasing in recent years, is minimizing energy costs by reducing energy consumption,
maintaining the energy supply and demand balance, and increasing renewable energy sources
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(RES) utilization. To this end, the development of an energy management system (EMS) is essential.
An EMS reinforces operational functions, such as adjusting the amount and schedule of charging and
discharging through the efficient control of the ESS and power conditioning system (PCS), and manages
the overall power flow. In addition to simple monitoring, it is linked with sensors and measurement
equipment to analyze consumer consumption patterns and manage information on all power activities
so it can be operated with optimum efficiency.

This study proposes an operation scheduling model to be applied to the digital twin in order to
solve the difficulty of grasping the physical meaning in the complex situation of the system and achieve
the synchronization technology between virtual and real spaces. By implementing the actual microgrid
in virtual space, the composition of the microgrid can be changed in various ways, and the system
operation can be improved by applying more data and algorithms. The proposed operation scheduling
model was designed by applying the daily ESS optimal charging/discharging schedule to the machine
learning technique to minimize electricity bills. If there is a change in the system, such as the addition or
removal of microgrid components, changing the operation mode and modifying the objective function
and constraints is inevitable, and it is difficult to immediately apply this to the actual system. A digital
twin that works in a way similar to real systems in virtual space can solve these problems.

Data collected through an EMS were used, and the characteristics of the actual ESS embedded in
the data were derived and reflected in the model. Various methods have been studied to establish
an ESS charging/discharging schedule [2–5], and most of them have been defined as optimization
problems. The ESS schedule was established by applying techniques such as linear programming (LP),
particle swarm optimization (PSO), and simulated annealing (SA) [6–8]. There is currently a scarcity of
studies that have applied artificial intelligence to establish an ESS optimal scheduling by extracting the
features of the data that can be applied to the microgrid operation scheduling. The existing methods
have a high understanding of the ESS and must be implemented to satisfy the control variables and
constraints, but it is difficult to accurately optimize the complex ESS structure due to the nonlinearity
and uncertainty of the system information. If existing theories and calculation methods are complex,
problems can be solved effectively by establishing a data-based model and applying machine learning.
A model was implemented to reduce errors through numerous iterative learnings based on past data
and to predict future behavior with new input data. Using these data, machine learning techniques
were applied to the ESS scheduling, and the similarity with the optimization-based ESS scheduling in
actual operation was verified through a case study. This has the advantage of implementing a model
that sufficiently reflects the characteristics of the system by grasping the physical meaning only with
the data, without knowing the information pertaining to the equipment. By modeling the virtual space,
we were able to resolve the difficulty of establishing an optimal scheduling of the ESS and improve the
stable operation and efficiency of the microgrid.

2. Background

In this section, we briefly summarized the background on the optimal scheduling of the microgrid
for the digital twin into two categories: digital twin and machine learning.

2.1. Digital Twin

The concept of the digital twin [9,10] was first introduced by Grieves in 2002, and NASA formalized
its definition in 2012. Digital twin technology utilizes IoT (Internet of Things), clouding computer
and cyber physics systems developed to detect physical problems more quickly and to better predict
physical outcomes. Figure 1 illustrates the digital twin concept for microgrid.

The definition of digital twins as defined in [9] are as follows:

• Digital twin: The digital twin is a set of virtual information constructs that fully describe a potential
or actual physical manufactured product from the micro atomic level to the macro geometrical level.
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• Digital twin prototype: This type of digital twin describes the prototypical physical artifact.
It contains the informational sets necessary to describe and produce a physical version that
duplicates or twins the virtual version.

• Digital twin instance: This type of digital twin describes a specific corresponding physical product
that an individual digital twin remains linked to throughout the life of that physical product.

• Digital twin environment: This is an integrated, multidomain physics application space for
operating on digital twins for a variety of purposes.

It detects system failure in advance and monitors its health in real time to help predict failure.
In particular, it is difficult to grasp the physical meaning in a complex situation of the system, so it is
not easy to quickly grasp the failure until the system actually fails. The advantages of the digital twin
are as follows [11–15]:

• System monitoring
• Health management and maintenance
• Increased productivity
• Performance optimization and planning

Figure 1. Digital twin concept for microgrid.

2.2. Machine Learning

Machine learning [16,17] is a technique that learns empirical characteristics and makes predictions
or decisions using past data. In 1959, Arthur Samuel defined it as an area of research aimed at giving
computers the ability to learn, without explicitly writing programs [18]. Since then, technology
that combines machine learning and big data, which has recently been of interest, has been
actively researched.

Machine learning identifies patterns, rules, and meanings fundamental in data through learning
and improves performance by itself through repeated learning and trial and error. As shown in
Figure 2, machine learning types [19–23] are divided into supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning uses a set of labeled learning data and iteratively
learns to reduce the error between the predicted value and the actual correct answer through the
features of the data. In supervised learning, there are regression and classification, data mainly are
predicted by regression, and the training data are learned to determine a group of input data by
classification. Unsupervised learning without labels in a dataset learning based on the features of data
is mainly used to solve problems such as clustering. Clustering such as k-means, Gaussian mixture,
and hierarchical groups similar data together to identify data patterns. Reinforcement learning is
a technique that maximizes the reward that the agent gets through interaction with the environment,
and learns an algorithm that determines the next action by receiving feedback on each action.
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Figure 2. Types of machine learning.

2.3. NARX

Nonlinear autoregressive with external input (NARX) [24] is a nonlinear autoregressive neural
network with external inputs. It learns to predict the original time series using the previous value of
one time series, a feedback input value, and a second time series, which is an external time series [2].
It is a two-layer feedforward network that has a sigmoid transfer function in the hidden layer and
a linear transfer function in the output layer. As shown in Figure 3, the output y(t) can be trained
efficiently through an open feedback loop that is fed back to the network input through delay.

Figure 3. Architecture of NARX networks.

NARX with exogenous input is a cyclic dynamic network, and the feedback connection includes
several layers, which are shown in Equation (1).

y(t) = f
(
y(t− 1), y(t− 2), · · · , y

(
t− ny

)
, u(t− 1), u(t− 2), u(t− nu)

)
(1)

Here, the next value of the dependent output signal y(t) is regressed from the previous values of
the output signal and the previous values of the independent (exogenous) input signal. The NARX
model can be implemented using a feedforward neural network that approximates the function
f. The input value to the feedforward network is more accurate, and so the resulting network has
a pure feedforward architecture and can be used for more efficient algorithm training. The output
y(t) can be trained efficiently through an open feedback loop that is fed back to the network input
through a delay. The true output value can be used during the network training, and therefore, the
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actual output can be used instead of feeding back the expected output with the above open-loop
architecture. NARX is advantageous because the input value to the feedforward network is more
accurate, and because the resulting network has a pure feedforward architecture, a more efficient
algorithm can be used for training.

The training was performed using the Levenberg–Marquardt algorithm. This algorithm combines
the Gauss–Newton method and the gradient descent method. When it is far from the solution, it operates
in the gradient descent method, and when it is near the solution, the Gauss–Newton method is used
to find the solution. This method is mainly used for nonlinear least-squares problems because it can
obtain the solution in a more stable manner than the Gauss–Newton method. It is more likely to
find the solution, even when the initial value is far from the solution, and does so relatively quickly.
The equations are shown in (2) and (3).

Pk+1 = Pk −
(
JT
r Jr + µkdiag

(
JT
r Jr

))−1
JT
r r(Pk), k ≥ 0 (2)

Jr(P) =


∂r1(p)
∂p1

· · ·
∂r1(p)
∂pm

...
. . .

...
∂rn(p)
∂p1

· · ·
∂rn(p)
∂pm

, r(p) =


r1(p)
r2(p)

...
rn(p)

 =


y− f (x1, p)
y− f (x2, p)

...
y− f (xn, p)

 (3)

The Levenberg–Marquardt algorithm improves the Gauss–Newton method by reducing the risk of
divergence and finds the solution more stably. When p is updated with the current µ value, µ continues
to increase until E(p) decreases if E(p) increases, and µ being decreased to the original default value
means minimum value if E(p) decreases.

2.4. Decision Tree

Decision trees (DT) are mainly used in data mining and are effective when predicting results or
classifying data using a regression tree or a classification tree, according to the purpose. There is little
need to process the data, and even with a large data set, the computation time is shorter than that for
other algorithms. However, there is a risk of overfitting and creating a complex tree. The building
strategy for Regression Tree is summarized in Algorithm 1 [25].

Algorithm 1. Building a Regression Tree [25]

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal
node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees,
as a function of α.

3. Use k-fold cross-validation to choose α. That is, divide the training observations into k folds.
For each k = 1, . . . ,K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

2.5. MARS

As one of the nonparametric regression methods, multivariate adaptive regression splines (MARS)
is a nonlinear modeling method for the relationship between independent and dependent variables.
MARS is a regression model that models data more effectively, and automatically determines the
parameters based on data. It is suitable for analyzing a large set of data because it can perform various
and complex large-scale dynamic calculations [26].
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f̂ (x) =
k∑

i=1

ciBi(x) (4)

Bi(x) represents the basis function for each section, and Ci represents the coefficient value for
the corresponding basis function. When the variable section is divided into two sections based on t,
it appears in the form of a hinge function. Here, t is the inflection point, which is the point at which the
influence of the variable is reinforced or converted.

f̂ (x) = β0 + β1max(0, x− t) + β2max(0, t− x) (5)

During the pruning process, MARS considers the possibility of overfitting. Its goal is to find
a subset of the basis function with the minimum generalized cross-validation (GCV) value.

GCV =
RSS

n× (1− nk/n)2 (6)

The purpose of the MARS procedure is to combine recursive partitioning and spline fitting to best
preserve the positive aspects of both, while being less vulnerable to adverse properties. In the regression
analysis, it is a technique that quickly finds the spline basis function useful for fitting by using the
subset selection method. Its advantage is that it is suitable for analyzing a large set of data because the
form of the result is easy to interpret and the algorithm is simple.

3. Optimal Scheduling of ESS

This section describes data collection, configuration, and experimentation for learning and trialing
the optimal ESS charging/discharging scheduling technique. Figure 4 shows the optimal scheduling
process for ESS. The proposed algorithm does not apply an optimization technique to establish an ESS
charging/discharging schedule, and so it is implemented as a black box using machine learning without
setting the objective function and constraints separately.

Figure 4. Optimal scheduling process for energy storage system in field [27].
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3.1. Original Scheduling

The ESS daily optimal scheduling [27] such as Figure 4 applied to the EMS uses
an optimization-based algorithm, and an objective function is defined to maximize the savings
in electricity bills. The rated charging/discharging output of the ESS, the battery capacity of the ESS,
and the minimum and maximum power reception of consumers were set as constraints.

3.2. Simulation Data

The actual ESS operation data collected from November 2019 to July 2020 from the EMS of the
actual microgrid and the time-of-use (TOU) tariff information [28] by time were used. The data measured
hourly were collected and classified into working days, Saturdays, and holidays. Only working days
were used. The rates and time zones are different for each season, and therefore, February, May, and
July were set as test months representing winter, spring, summer, and autumn. A total of 144 samples
were tested on 6 days per season. Date, time, TOU tariff, State of Charge(SOC), and power of ESS
information were selected as input data, and because the size of the data differed, all collected operation
data were normalized and used (0, 1). From the collected operation data, 720 samples of the training
data, 144 samples of the verification data, and 144 samples of the experimental data were set. Figure 5
provides information regarding the case study subject, which consisted of an ESS with a battery
capacity of 500 kWh and a PCS capacity of 250 kW. Figure 6 illustrates the amount of charging and
discharging actually operated by the ESS.

Figure 5. Energy storage system under field operation: battery racks (left), inverter and transformer
(right).

Figure 6. Real operating data of energy storage system (November 2019–July 2020).
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3.3. TOU Tariff

South Korea follows the Korea Electric Power Corporation(KEPCO) electricity tariff system [28]
and applies the rates in six categories according to the purpose of the electricity use (contract type:
residential, general, industrial, educational, agricultural, and streetlight). The differential rate system
for each season and time zone is a system whereby high rates are applied during peak load times
in winter and summer when power consumption increases, and low rates are applied to light and
intermediate loads in spring and autumn when electricity consumption is relatively low. It contributes
to the stabilization of power supply and demand by strengthening demand management, and reflects
the difference in the supply cost by season and time zone, which occurs according to the size of the
power demand. The seasons were divided into spring from March to May, summer from June to
August, autumn from September to October, and winter from November to February. Time zones were
divided into light load, intermediate load, and maximum load. The time zones applied by season are
shown in Table 1.

Table 1. Time Zones for off-Peak, mid-peak, peak load.

Winter Spring Summer

Off-Peak Load 23:00–09:00 23:00–09:00 23:00–09:00

Mid-Peak Load
09:00–10:00 09:00–10:00 09:00–10:00
12:00–17:00 12:00–13:00 12:00–13:00
20:00–22:00 17:00–23:00 17:00–23:00

Peak Load
10:00–12:00
17:00–20:00
22:00–23:00

10:00–12:00
13:00–17:00

10:00–12:00
13:00–17:00

The industrial rate system is divided into types A and B according to the contract demand in
Table 2, and the electricity rate was calculated using the high-voltage type A option 2 rate system for
industrial power as of 2020. Industrial type B is applied when the user contract demand is 300 kW
or more.

Table 2. Electric rates of TOU tariff for industrial customers.

Winter Spring Summer

Off-Peak Load (KRW/kW) 63.1 56.1 56.1
Mid-Peak Load (KRW/kW) 109.2 78.6 109.0

Peak Load (KRW/kW) 166.7 109.3 191.1

3.4. ESS Scheduling

The ESS has different objective functions for each usage, and accordingly, constraints must be
set differently. The characteristics of ESS and PCS should be fully understood and reflected in the
objective function and constraints in order to derive a result suitable for the purpose. These processes
can be shortened using machine learning, and optimal charging and discharging schedules can be
established by learning, for example, the charging/discharging pattern of ESS using only past ESS
operation data, without reflecting the physical information of the facility, such as capacity of ESS and
PCS, and charging and discharging efficiency. Among the techniques commonly used in data-driven
models, the daily ESS hourly schedule was established using the decision tree and NARX, which
are supervised learning methods, and MARS, which is a nonlinear regression model. Based on past
operation data, the algorithm was modeled to plan the charging/discharging of the ESS without
defining, for example, any objective function or constraints. The experimental process is shown in
Figure 7. In order to prevent overfitting the models, a simulation was performed using cross-validation
for each model.
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Figure 7. Flowchart of the proposed ESS optimal scheduling using machine learning.

The NARX algorithm is a dynamic neural network, and therefore, the number of neurons in the
hidden layer and the feedback delay must be determined. The case study was conducted by setting
the neural network configuration and variables for the experiment that is shown Table 3.

Table 3. NARX Network Conditions.

Setting List Setting Value

Time delay 2
Feedback delay 1:2

Hidden layer size 10
Training dataset 720 samplings

Validation dataset 144 samplings
Testing dataset 144 samplings

Activate function Sigmoid function
Training method Levenberg–Marquardt backpropagation
Validation checks 100

4. Results

Using NARX, DT, and MARS, the performance evaluation index of the next-day hourly
ESS charging/discharging scheduling model required for the microgrid operation to be evaluated
quantitatively by root mean square error (RMSE) and mean absolute error (MAE). To evaluate the
accuracy of the model, RMSE and MAE were used as the performance evaluation indicators. RMSE is
a measure to determine the accuracy of the statistical estimation. MAE is an absolute value obtained
by converting the difference between the actual and predicted values, and is widely used as a general
regression index. The smaller the RMSE and MAE, the higher the accuracy of the estimation. The ESS
operation data collected by the actual EMS and the ESS operation schedule estimated for each model
were verified by RMSE and MAE.

Table 4 shows the savings of electricity bills by season, and the optimal refers to the optimization
technique used when operating the actual ESS. The electricity bill saved by operating the ESS was
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817,259 Korean won (KRW). When the electricity bill was calculated using MARS, the electricity bill
was reduced less at KRW 800,097, and when the ESS was operated using NARX, the electricity bill was
reduced the most at KRW 820,699. The electricity bill savings by season is demonstrated in Figure 8,
with the savings higher in spring than in winter and summer, when electricity rates are high.

Table 4. Savings of Electricity Rate (KRW).

Season Optimal Decision Tree NARX MARS

Winter 359,899 337,791 375,512 362,547
Spring 122,658 128,252 140,097 107,447

Summer 334,694 335,134 305,090 330,103
Total 817,251 801,177 820,699 800,097

Figure 8. Chart of seasonal savings of electricity rate with Machine learning algorithms.

The simulation results and actual operation results that were analyzed are shown in Figure 9.
The horizontal axis of the graph shows the actual ESS operation results, and the vertical axis shows
the ESS operation results estimated through simulation. The highest similarity when comparing the
DT and actual operation results linearly is shown in Figure 9a–c, which are also linear, but outliers,
which differ significantly from the actual values, were found more compared with DT. The outliers
were more when the NARX method was used rather than the MARS method.

Figure 9. Scatter plot of all simulation results: (a) comparison of original data and proposed output
with decision tree, (b) comparison of original data and proposed output with NARX, (c) comparison of
original data and proposed output with MARS.

Table 5 shows the organization of the performance evaluation indicators for DT, NARX, and MARS
by season. The analysis of DT, RMSE, and MAE resulted in the smallest value and, therefore, showed
the highest model performance. Conversely, NARX, RMSE, and MAE resulted in the highest value,
indicating the lowest model performance.
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Table 5. Accuracy of model based on test data.

Season
RMSE MAE

Decision Tree NARX MARS Decision Tree NARX MARS

Winter 9.56 9.46 12.07 1.60 6.70 7.39
Spring 3.90 5.41 8.61 0.68 3.19 3.35

Summer 8.52 19.61 10.61 4.33 9.78 5.37

The comparison and analyses of the actual daily ESS charging/discharging, estimated by applying
the actual seasonal ESS daily charging/discharging and each technique, are shown in Figures 10–12.
The actual ESS operation data and the ESS charging/discharging estimated through DT and the actual
ESS operation data and the ESS charging/discharging estimated through NARX are shown Figure 12a–c,
showing the actual ESS charging/discharging and the ESS charging/discharging estimated through
MARS. As shown in Tables 1 and 2, because the electricity rate time zone and the electricity rate unit
price differ for each season according to the load, the ESS operation pattern in winter in Figure 10 and
the ESS operation pattern in spring and summer in Figures 11 and 12 differ. Although the unit prices
of the electricity rates in spring and summer differ, Figures 11 and 12 show the same pattern because
the electricity rate time zone is the same. Figures 10–12 show that the ESS operation pattern estimated
using DT in all seasons is the most similar to the actual ESS operation pattern.

Figure 10. (a) Optimal schedule of ESS for minimization of operation cost at winter, (b) real and
simulation results with DT, (c) real and simulation results with NARX, (d) real and simulation results
with MARS.
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Figure 11. (a) Optimal schedule of ESS for minimization of operation cost at spring, (b) real and
simulation results with DT, (c) real and simulation results with NARX, (d) real and simulation results
with MARS.

Figure 12. (a) Optimal schedule of ESS for minimization of operation cost at summer, (b) real and
simulation results with DT, (c) real and simulation results with NARX, (d) real and simulation results
with MARS.

The estimated ESS charging/discharging and the actual value by applying each technique were
compared, which is shown in Figure 13. Figure 13a indicates that DT had less overall error than the
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other techniques. Figure 13b shows that NARX had the highest error value compared with the other
techniques, and the error was frequent between 5:00 p.m. and 7:00 p.m. Figure 13c shows that the
error occurred frequently, with the exception of the maximum load time, but the value of the error was
small. The maximum value of the error was also the smallest compared with the other techniques.

Figure 13. Comparison of error for simulation results: (a) error of simulation results with decision tree,
(b) error of simulation results with NARX, (c) error of simulation results with MARS.

The results of this case study show that the accuracy of DT is the most similar to the actual ESS
operation schedule, and because DT had the highest accuracy, the amount of electricity bill savings did
not differ greatly from the actual operation. In contrast, the lowest accuracy of NARX meant that it
was different from the actual operation, so it can be found that electricity bills also reduced more than
they actually did.

5. Conclusions

This study proposed an optimal charging/discharging scheduling model for application when
operating ESS by implementing an actual microgrid in virtual space through a digital twin. A machine
learning model was proposed for the purpose of establishing a daily ESS hourly charging/discharging
schedule required for microgrid operation, and this was applied to an actual ESS for evaluation.
Through the machine learning technique, even if the user does not know the physical characteristics of
the ESS, it can be modelled similarly to the actual ESS based on past data, and because the data-based
machine learning technique is applied rather than the optimization algorithm, the difficulty of setting
the objective function and constraints separately can be solved. The suitability of each model of
RMSE and MAE was evaluated, and this was the performance evaluation index of the ESS optimal
scheduling model. The savings in electricity bills were calculated and compared with the savings
in electricity bills obtained by operating the actual ESS. With regard to the reduction of electricity
bills, when the ESS was operated using the proposed machine learning method, more money was
saved. Therefore, if the machine learning method most convenient for the user is selected and learned
appropriately, the optimal ESS schedule can be sufficiently established with only data, and not physical
information. Through the digital twin, the microgrid configuration changed, or various operating
algorithms were applied to the virtual space to solve the difficulties experienced in the operation of the
existing microgrid and to improve operational efficiency.

If the problem is solved using an optimization-based algorithm, it is possible to solve the problem
by deriving the correct objective function rather than past data, but if the problem is solved using
machine learning, it is necessary to accumulate historical data for a sufficient period of time. We expect
to build an efficient and accurate model through the strategic accumulation of more data in the future.
We will continue to collect ESS operational data to verify the accuracy of the model. In addition,
we plan to further improve the model performance by changing predictors or parameters for each
model and implementing microgrid operation schedules, including PV(Photovoltaic).
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