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Abstract: This paper presents a closed-form quite handy formula for the local thermal resistance Rb

between the temperature of the bulk heat-carrier fluid in the pipes, equally spaced on a concentric
circle inside a circular energy pile, and the mean temperature at the periphery of the pile. The so-called
multipole method is used to calculate the temperature field. An important improvement of the
multipole method is presented, where Cauchy’s mean value theorem of analytical functions is used.
The formula for thermal resistance Rb0 for the zero-order approximation (J = 0), where only line heat
sources at the pipes are used, is presented. The errors using zeroth-order approximation (J = 0) are
shown to be quite small by comparisons with eight-order approximation (J = 8) with its accuracy
of more than eight digits. The relative error for the local thermal resistance Rb0 for the zero-order
approximation (J = 0) lies below 5% for a wide range of input parameter values. These ranges are
judged to cover most practical cases of application. The smallest local thermal resistance Rbmin is,
with some exceptions, obtained when the pipes lie directly in contact with the pile periphery. A neat
formula for this minimum is presented.

Keywords: energy piles; thermal piles; pile foundations; local thermal resistance; minimum thermal
resistance; multipole method; ground source heat pump (GSHP)

1. Introduction

Ground-source heat pump (GSHP) systems are among the most energy-efficient and environmentally
clean heating and cooling technologies available today [1]. Due to their higher efficiency, they offer
substantial potential for energy savings and carbon emissions reduction in buildings [2]. The most
common application of GSHP systems is with vertical borehole heat exchangers [3]. Boreholes are
routinely drilled to 100- to 400-m depths and require a specific drilling area as well as specialized drilling
equipment. The high capital cost of installing borehole heat exchangers is one of the underlying reasons
that hamper the widespread deployment of GSHP systems in many places around the world. For new
constructions, an alternative to using borehole heat exchangers is to use piled foundations with embedded
heat exchange elements as ground heat exchangers. The thermally active foundation piles, commonly
referred to as energy or thermal piles, are dual-function structural elements that transmit mechanical
loads through unstable soil layers to lower ground levels with high bearing capacity as well as exchange
heat with the surrounding ground to provide heating and cooling to the building. They do not require
the capital cost and land requirements of borehole heat exchangers and have the potential to lower the
environmental footprint of GSHP systems by using fewer materials with low embodied energy.

Energy piles are constructed in many different configurations, as shown in Figure 1, and have
typical diameters varying between 0.1 m and up to 3.0 m and lengths ranging from 10 to 60 m [4].
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The number and arrangement of heat transfer pipes in the pile depend on the size and construction
method of the energy piles. Driven piles of steel or concrete usually have one to two U-pipes arranged
in a series or parallel configuration. The heat transfer pipes are placed towards the center of the
pile in the hollow driven piles and are positioned around the reinforcement bars in the solid driven
piles. Continuous flight auger (CFA) piles have one to three U-pipes installed in the center of the pile.
Bored piles have one to several U-pipes mounted on the reinforcement frame close to the boundary
of the pile. The differences in construction methods and geometrical arrangements lead to different
thermal characteristics of energy piles.
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Figure 1. Common types of energy piles.

The current design and analysis methods of energy piles are primarily based on the methods
developed for borehole heat exchangers [5]. This is done under the assumption that the thermal
characteristics of energy piles and borehole heat exchangers are similar, which is not entirely accurate
but simplifies the analysis. Energy piles usually have a greater number of heat transfer pipes and a far
smaller aspect (length to diameter) ratio, which differentiates their thermal response from borehole
heat exchangers. A key characteristic in this regard is the thermal resistance, which characterizes the
heat transfer inside the ground heat exchangers. The thermal resistance Rb of a ground heat exchanger
is the ratio of the temperature difference between the circulating fluid in the heat transfer pipes and the
surrounding ground to the heat flux per unit length of the ground heat exchanger. The larger number
of pipes and their many possible arrangements in energy piles complicate the heat transfer and make
the calculation of thermal resistance calculation more complex than for borehole heat exchangers.

There are two main approaches for calculating the thermal resistance of energy piles. In the first
approach, thermal resistance is estimated using in situ thermal response testing of energy piles [6,7].
This approach is not generally useful for design purposes as it can only estimate thermal resistance of
an existing energy pile. In the second approach, thermal resistance is computed using mathematical
models based on conductive heat transfer. Several mathematical models have been proposed and
used in this regard. Readers are referred to studies [8–10] for a detailed survey and comparison of
these models. Some of the commonly used models for calculating the thermal resistance of energy
piles include those of Loveridge and Powrie [11], Paul [12], Sharqawy et al. [13], Bauer et al. [14],
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and Diao et al. [15]. A great majority of these models only work well under certain conditions and
perform poorly under others [10]. Moreover, among the existing methods, only the Loveridge and
Powrie model can calculate the thermal resistance of energy piles with more than two U-pipes. In the
absence of suitable analytical methods, the common practice has been to use a conservative estimate of
thermal resistance when sizing energy piles with three or more U-pipes.

One of the most robust and accurate methods for calculating the thermal resistance of ground
heat exchangers is the multipole method. It is a mathematically rigorous and thoroughly validated
analytical method used for calculating the thermal resistances of any number of arbitrarily placed
pipes in a composite region. The model, originally developed in the 1980s by Bennet, Claesson,
and Hellström [16], uses a combination of line heat sources and so-called multipoles to yield an exact
solution of the steady-state temperature field and thermal resistances for arbitrarily placed pipes in a
circular region surrounded by an infinite region. The accuracy of the model increases with the number
of multipoles used for the calculation. The 10th-order multipole provides a greater than 8-decimal
digit accuracy. The original model with 10th-order multipole was provided as a FORTRAN code
of approximately 600 lines. It has since been incorporated into several building energy simulation
software and ground heat exchanger design programs for calculating the thermal resistance of borehole
heat exchangers with single and double U-pipes [17,18]. A principal modification to the model was
made in 2011 by Claesson and Hellström [19], who simplified the algorithm by putting a condition on
the mean temperature around the periphery of the ground heat exchanger instead of prescribing a
constant temperature condition at a suitable radial distance outside the ground heat exchanger in the
original model. The modified multipole model is available as a Mathcad program.

The multipole method has a highly sophisticated mathematical formulation and a rather complex
algorithm. Its implementation in design and simulation programs is intricate and requires considerable
programming expertise and effort. This has led to the development of closed-form multipole formulas
that, under certain conditions, can be as accurate as the original multipole method in calculating the
thermal resistance of ground heat exchangers. So far, exact multipole formulas have only been developed
for single and double U-pipe configurations. Claesson and Javed [20] presented zeroth-, first-, second-,
and third-order multipole formulas for single U-pipe ground heat exchangers with symmetrically
positioned pipes. Later, the authors also presented zeroth- and first-order multipole formulas for
double U-pipe ground heat exchangers with symmetrically positioned pipes [21]. The accuracy of the
presented formulas depends upon the order of their multipoles. The zeroth-order multipole formulas
only account for line sources and do not consider any multipoles. Javed and Spitler [10] noted that for
a single U-pipe borehole heat exchanger the accuracy of the zeroth-order multipole formula varies
from case to case. In some cases, the accuracy of the zeroth-order formula is quite good; in other cases,
it is not as good. However, the first- and second-order multipole formulas provide an accuracy of
better than 3% and 1%, respectively, compared to the original multipole method under all practical
conditions [20]. Similar trends have also been observed for double U-pipe ground heat exchangers by
Claesson and Javed [21]. The multipole formulas for single and double U-pipe ground heat exchangers
are also applicable to energy piles with a corresponding number of U-pipes.

In this paper, an important improvement of the multipole method is presented. Cauchy’s so-called
mean-value theorem for analytical functions is used to determine the value of certain complex-valued
integrals around the pipe periphery (see Section 3). The objective of this paper is to derive a closed-form
zeroth-order multipole formula for any number of evenly distributed pipes in a ground heat exchanger.
The derived formula is applicable for energy piles with multiple U-pipes equally spaced on a circle.
The accuracy of the presented formula is established by a detailed parametric study that brackets all or
almost all real-world energy piles with a circular cross-section.

2. Energy Pile with Pipes Equally Spaced on a Circle

Figure 2 shows the considered type of energy pile. The N (=8) vertical heat exchanger pipes are
equally spaced on the circle r = rc. Typical values for N may be in the range from 2 to 12. The left-hand



Energies 2020, 13, 5445 4 of 24

figure shows a horizontal cross-section of the energy pile and the surrounding ground, and the
right-hand figure shows in greater detail the pipe with the center at (rc, 0) on the positive x-axis.
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Figure 2. Energy pile with N (=8) heat exchanger pipes equally spaced on the circle r = rc.

The radius of the energy pile is rb. The index b for borehole is kept from other multipole papers.
The thermal conductivity in the ground outside the energy pile, r > rb, is λ (W/(m·K)), and it is λb

inside the circular energy pile region outside the pipes. The outer radius of the pipes is rp, and Rp

denotes the thermal resistance from bulk fluid in the pipes to the outer pipe wall (per meter pipe,
(K·m)/W). The pipe resistance Rp is the sum of the thermal resistances of the pipe wall (an annulus)
and the fluid boundary layer.

The heat injection from each pipe to the ground is q0 (W/m). The value of q0 is negative for heat
extraction from the ground. The required fluid temperature Tf for the heat carrier fluid to achieve the
prescribed heat flux q0 is to be calculated.

The (steady-state) thermal problem requires that an outer ground temperature is prescribed.
As will be discussed in Section 6, it is sufficient to prescribe the average temperature Tbav around the
periphery r = rb of the energy pile. This way is close to the thermal problem that was first presented
in [19].

The thermal problem has a high degree of symmetry. The temperature field in the wedge indicated
in the left-hand Figure 2 around the x-axis with the opening angle ϕ = 2π/N is repeated around each
of the N pipes. The temperature field is symmetric in y, so the upper and lower halves of the wedge
mirror each other.

The primary input data are:

N, q0, λb, λ, rp, rc, rb, Rp, Tbav. (1)

The thermal resistance Rp ((K·m)/W) may be represented by a nondimensional parameter β,
and the ratio between the two conductivities by the parameter σ:

β = 2 π λbRp, β ≥ 0, σ =
λb − λ
λb + λ

, −1 < σ < 1. (2)

The positions of the N pipes on the circle r = rc become using the complex exponential ze:

zn = rc · zn
e , ze = e

2·π·i
N = cos(2 π / N) + i · sin(2 π / N), n = 1, 2, . . . , N;

z1 = rc · z1
e , z2 = rc · z2

e , . . . , zN = rc · zN
e = rc; |ze| = 1, arg(ze) =

2 π
N .

(3)

The positions of consecutive pipes are obtained by the complex rotation ze or increase of the polar
angle by 2π/N. The last pipe N lies on the positive x-axis at z = rc.
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The circles around the pipes and the pile must not intersect. This gives the following restrictions
on rp, rc, and rb for any N:

N ≥ 2 :
rp

sin(π / N)
≤ rc ≤ rb − rp; N = 1 : 0 ≤ rc ≤ rb − rp, N ≤

π

arcsin
(
rp/(rb − rp)

) . (4)

The lower limit is the case when the pipes are squeezed in the center so that consecutive pipes
touch each other. In the upper limit, the pipes touch the wall of the energy pile. The left-hand
inequalities give an upper limit for N depending on rp/(rb − rp) as indicated to the right. The pipes
may be the two shanks of U-pipes and then N is an even number. However, all formulas in the paper
are valid for any N including N = 1.

The thermal resistance Rb ((K·m)/W) between the heat carrier fluid in the pipes and the periphery
of the energy pile with the average temperature Tbav is defined by the relation:

N qp ·Rb = Tf − Tbav, Rb =
1

Kb
⇒ N qp = Kb · (Tf − Tbav). (5)

The inverse of the thermal resistance is the corresponding thermal conductance Kb (W/(K·m)) of
the energy pile.

3. The Multipole Method Applied to the Energy Pile

This section presents the application of the multipole method to an energy pile with multiple
U-pipes equally spaced on a circle.

3.1. Temperature Field from the N Line Heat Sources

Complex notations and Cartesian and polar coordinates are used:

z = x + i · y = r · ei·ϕ = r · cos(ϕ) + i · r · sin(ϕ),
∣∣∣∣∣z∣∣∣∣∣= r =

√
x2 + y2. (6)

The complex-valued logarithm of any complex function f (z) is defined by:

ln( f (z)) = ln
(∣∣∣ f (z)∣∣∣)+ i · arg( f (z)), −π < arg( f (z)) ≤ π. (7)

Explicit expressions for the temperature field are derived in Appendices A.1–A.3. The temperature
field has the following form:

T(x, y) = Tc(z) = Tbav +
q0

2 π λb
·Re[Wc(z, rc)], z = x + i · y (8)

where Wc (z, rc) is obtained from the sum of the N complex-valued line sources in Figure 2, left.
The following compact expressions are derived in detail in Appendices A.1–A.3, Equation (A12):

Wc(z, rc) =


ln

(
rN
b

zN−rN
c

)
+ σ · ln

(
r2N
b

r2N
b −zN ·rN

c

)
|z| ≤ rb

λb
λ ·

[
N · ln

( rb
z

)
+ 2 λ

λb+λ
· ln

(
zN

zN−rN
c

)]
|z| ≥ rb.

(9)

The temperature field involves the absolute value of two polynomials in z:

Pc(z) =
∣∣∣zN
− rN

c

∣∣∣, Pσ(z) =
∣∣∣r2N

b − zN
· rN

c

∣∣∣. (10)
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The formulas for the temperature in the pile and ground regions become:

T(x, y) = Tbav +
q0

2 π λb
·

ln rN
b

Pc(z)

+ σ · ln

 r2N
b

Pσ(z)

, |z| ≤ rb (11)

T(x, y) = Tbav +
q0

2 π λ
·

[
N · ln

( rb

|z|

)
+

2 λ
λb + λ

· ln
(
|z|N

Pc(z)

)]
, |z| ≥ rb. (12)

This is the line-source solution without using multipoles. The above temperature field satisfies
the following conditions:

• Laplace equation in the pile and ground regions,
• The heat flux of q0 (W/m) from each pipe,
• The internal boundary conditions of continuous temperature at the pile periphery,
• The internal boundary conditions of continuous radial heat flux at the pile periphery (the thermal

conductivity is λb in the pile region and λ in the outside ground),
• The average temperature of Tbav at the pile periphery.

The temperature field in polar coordinates becomes from (11) and (12):

Tc(r ei·ϕ) = Tpol(r,ϕ) = Tbav +


q0

2 π λb
·

[
ln

(
rN
b

Pc(r ei·ϕ)

)
+ σ · ln

(
r2N
b

Pσ(r ei·ϕ)

)]
r ≤ rb

N·q0
2 π λ · ln

( rb
r

)
+

q0
π (λb+λ)

· ln
(

rN

Pc(r ei·ϕ)

)
r ≥ rb.

(13)

The two denominators in the logarithms become:

Pc(r ei·ϕ) =
∣∣∣rN ei·N·ϕ

− rN
c

∣∣∣ = √
r2N − 2 rNrN

c cos(N ϕ) + r2N
c ,

Pσ(r ei·ϕ) =
∣∣∣r2N

b − rN rN
c ei·N·ϕ

∣∣∣ = √
r4N

b − 2 r2N
b rNrN

c cos(N ·ϕ) + r2N r2N
c .

(14)

The temperature around the wall of the energy pile becomes:

Tpol(rb,ϕ) = Tbav +
q0

π (λb + λ)
· ln

 rN
b

Pcb(ϕ)

, Pcb(ϕ) =
√

r2N
b − 2 rN

b rN
c cos(N ϕ) + r2N

c . (15)

Pcb(0) = rN
b − rN

c , Pcb(0.5 π / N) =
√

r2N
b + r2N

c , Pcb(π / N) = rN
b + rN

c . (16)

The wall temperature varies around the average Tbav roughly following cos(N·ϕ).

3.2. Boundary Condition at the Pipes

The boundary condition at the periphery of any pipe remains to be fulfilled. It is sufficient to
consider pipe N at zN = rc due to the rotational symmetry, where the temperature field is repeated for
every increase of the polar angle ϕ by 2π/N. See Figure 2 and the discussion at Equation (A13).

Let ρ be the local radial distance from the center of pipe N and ψ the local polar angle from this
center z = rc as indicated in Figure 2, right:

z = rc + ρ · ei·ψ, 0 < ρ ≤ rb − rc, −π < ψ ≤ π. (17)

The circular region around pipe N inside the energy pile area extends at least to the pipe radius rp.
Let hp (W/(m2

·K)) denote the heat transfer coefficient (per unit pipe area) between the heat carrier
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fluid in the pipes and the outer side of the pipe wall. The pipe thermal conductance Kp (W/(m·K)) is
obtained by multiplication by the length of the circumference:

Kp = 2 π rp · hp, Rp =
1

2 π rp · hp
,
λb

hp
= λb · 2 π rp ·Rp = β · rp. (18)

In the right-hand formula, (2), left, is used. The boundary condition involves a heat balance
between the radial heat flux at the outside pipe wall and, the difference between the bulk fluid
temperature Tf and the temperature outside the pipe multiplied by the heat transfer coefficient hp.
The temperature outside the pipe and the heat flux vary around the pipe with the local polar angle ψ:

hp ·
[
Tf − Tc(rc + rp · ei·ψ)

]
= qpN(ψ) = (−λb) ·

∂
∂ρ

[
Tc(rc + ρ · ei·ψ)

]∣∣∣∣∣
ρ=rp

, −π < ψ ≤ π. (19)

It should be noted that the above two heat fluxes have the dimension of W/m2.
The above exact boundary condition at each point of the periphery may be written in the

following way:

TBC(ψ) = Tc(rc + rp · ei·ψ) +
qpN(ψ)

hp
= Tf, −π < ψ ≤ π. (20)

The sum of the temperature outside the pipe and the radial heat flux over the pipe divided
by hp shall be equal to (a constant) Tf for all ψ. The subscript BC is used to denote this left-hand
boundary-condition function of ψ. In a more precise solution, the boundary condition may be fulfilled
with increasing accuracy by adding multipole components to the temperature field with suitably
adjusted strength factors. This is, however, left to a sequel paper. Here, only line heat sources are
used, which means that the boundary condition is fulfilled approximately as a mean heat balance for the
considered pipe.

The integral of qpN (ψ) around the pipe is equal to the heat flux q0. Integration of (20) gives:

π∫
−π

qpN(ψ) · rp dψ = q0,

π∫
−π

Tc(rc + rp · ei·ψ) · rp dψ+
1

hp
· q0 = 2 π rp · Tf. (21)

Using (18), center, the following relation between the fluid temperature Tf0 and the mean
temperature outside the pipe is obtained in the present approximation without multipoles (J = 0):

1
2 π
·

π∫
−π

Tc(rc + rp · ei·ψ) dψ+ Rp · q0 = Tf0. (22)

The subscript 0 is added for the fluid temperature to underline that it is the value for J = 0.
The remaining task is now to calculate this mean temperature around the pipe from the temperature
field (8) and (9), upper line.

3.3. Mean Temperature at the Outer Periphery of the Pipes

The temperature Tc (z) consists of the line source at z = rc and a remaining part that is an analytic
function of z near z = rc. The direct contributions from the N pipes in (9), upper left, is rewritten in the
following way:

ln
(

rN
b

zN−rN
c

)
= ln

( rb
z−rc

)
+ ln

(
rN
b

zN−rN
c
·

z−rc
rb

)
= ln

( rb
z−rc

)
+ ln

(
rN−1
b

S(z,rc)

)
,

zN
−rN

c
z−rc

= S(z, rc) =
N∑

n=1
zN−n

· rn−1
c , S(rc, rc) = N · rN−1

c .
(23)
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The full solution Wc (z, rc) consists of the line source with its singularity at z = rc and an analytic
part Wa (z, rc):

Wc(z, rc) = ln
( rb

z− rc

)
+ Wa(z, rc), Wa(z, rc) = ln

 rN−1
b

S(z, rc)

+ σ · ln

 r2N
b

r2N
b − zN · rN

c

. (24)

The integral of the line source becomes:

1
2 π
·

π∫
−π

Re

ln rb

rc + rp · ei·ψ − rc

 dψ =
1

2 π
·

π∫
−π

Re

ln rb

rp · ei·ψ

 dψ = ln
(

rb

rp

)
. (25)

There is a nice mean-value theorem for analytic functions by Cauchy, which is directly applicable to
the integral of Wa (z, rc) around the pipe at z = rc. Let f (z) be a function that is analytic on and inside a
circle with the radius rp around a point z0 in the complex z-plane. Then, the mean value of the function
on the circle is equal to the value of f (z) at the center of the circle:

1
2 π
·

π∫
−π

f (z0 + rp · ei·ψ) dψ = f (z0), f (z) analytic in |z− z0| ≤ rp. (26)

This formula may be found in any standard book on analytical functions, for example [22].
An important idea in the improved new approach to the multipole technique presented here is to use
this mean-value theorem for the analytic function Wa (z, rc):

1
2 π
·

π∫
−π

Wa(rc + rp · ei·ψ, rc) dψ = Wa(rc, rc). (27)

The integral of Tc around the pipe in (22) gets a logarithmic contribution (25) from the line source
and another one (27) from the analytical part:

1
2 π
·

π∫
−π

Tc(rc + rp · ei·ψ) dψ = Tbav +
q0

2 π λb
·

[
ln

(
rb

rp

)
+ Re[Wa(rc, rc)]

]
. (28)

The value of Wa (z, rc) for z = rc is from (23) and (24):

Wa(rc, rc) = ln

 rN−1
b

N · rN−1
c

+ σ · ln

 r2N
b

r2N
b − r2N

c

. (29)

The fluid temperature now becomes from (22), (27), and (29):

Tf0 = Tbav + Rp · q0 +
q0

2 π λb
·

ln(
rb

rp

)
+ ln

 rN−1
b

N · rN−1
c

+ σ · ln

 r2N
b

r2N
b − r2N

c

. (30)

4. Thermal Resistance of the Energy Pile

The main goal of this paper is to derive a formula for the (local, steady-state) thermal resistance
between the heat carrier fluid in the pipes and the periphery of the energy pile with its prescribed
average temperature Tbav. This resistance becomes from (5) and (30):

Rb0 =
Tf0 − Tbav

N q0
=

Rp

N
+

1
N · 2 π λb

·

ln rN
b

N · rp · rN−1
c

+ σ · ln

 r2N
b

r2N
b − r2N

c

 . (31)
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The formula is based on the line-source approximation for the temperature field. An important
task is then to determine the accuracy of the formula for various input parameter values; see Section 8.

4.1. The Thermal Resistance Rb0 as a Function of rc

The thermal resistance Rb0 of the energy pile depends on the input parameters (1) and in particular
on the radial distance rc from the center z = 0 to the pipes. Equation (31) may be written as:

Rb =
Rp

N
+

1
N · 2 π λb

·

[
ln

(
rb

N · rp

)
+ R′(rc)

]
. (32)

The dependence on rc is expressed by the function R’(rc):

R′(rc) = (N − 1) · ln
( rb

rc

)
+ σ · ln

 r2N
b

r2N
b − r2N

c

, rc ≤ rb − rp. (33)

The range of allowed values for rc is limited by the restrictions that the circles of pipes and energy
pile must not intersect each other, (4).

An interesting question is now what is the best choice for rc? The thermal resistance shall be
as small as possible. The resistance should normally decrease as the distance to the pile periphery
decreases. The derivative of R’(rc) is readily obtained from (33):

dR′

drc
= −

N − 1
rc

+ σ ·
2 N · r2N−1

c

r2N
b − r2N

c
= −

2 N · r2N−1
c

r2N
b − r2N

c
·

N − 1
2 N

·
r2N

b − r2N
c

r2N
c

− σ

. (34)

The derivative is negative for all rc if σ is negative, i.e., λb ≤ λ. Then, the minimum occurs at the
right end rc = rb − rp. The derivative becomes positive if the right-hand expression within the square
brackets is negative. This may happen for larger ratios of λb/λ and rc close to rb − rp, but for N greater
than, say 5, the minimum lies very close to the right-hand limit, and this limit can be used quite safely
in the present applications to determine the minimum of Rb0: Rbmin = Rb0|rc=rb−rp .

For λb larger than λ, it may be better to distance the pipes slightly from the energy pile periphery
to avoid too much heat flow in the ground region with its lower conductivity. The effect on the
minimum is, however, negligible in the present applications. For the cases N = 1, 2, 3, 4, the effect is
somewhat greater and worth considering.

4.2. Minimum Thermal Resistance for rc = rb − rp

The minimum value for the thermal resistance of the energy pile occurs exactly or with good
accuracy when the pipes touch the periphery of the energy pile. The formula for the minimum is
obtained from (31):

Rbmin =
Rp

N
+

1
N · 2 π λb

·

ln
 rN

b

N · rp (rb − rp)
N−1

+ σ · ln

 r2N
b

r2N
b − (rb − rp)

2N


. (35)

The minimum resistance depends on the ratio rp/rb in the following way:

Rbmin =
Rp
N + 1

2 π λb N ·R
′′ (r′p), r′p =

rp
rb

, rc = rb − rp,

R′′ (r′p) = ln
(

1
N r′p

)
+ (N − 1) · ln

(
1

1−r′p

)
+ σ · ln

(
1

1−(1−r′p)
2N

)
.

(36)
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The ratio rp/rb is rather small. The following approximation (derived from suitable Taylor
expansions of the logarithms) shows the behavior for small ratios:

R′′ (r′p) ' ln
(

1
N r′p

)
+ (N − 1) ·

(
r′p + 0.5 ·

(
r′p

)2
)
+ σ ·

[
ln

(
1

2 N r′p

)
+ (N − 0.5) ·

(
r′p −

2N−5
12 ·

(
r′p

)2
)]

. (37)

The two quadratic terms in rp
′ may be neglected for say rp

′
≤ 0.1. The minimum resistance of the

energy pile when the pipes touch the pile wall, rc = rb − rp, becomes, with good accuracy:

Rbmain '
Rp

N
+

1
N · 2 π λb

·

{
(1 + σ) ·

[
ln

(
rb

N rp

)
+

(N − 1) · rp

rb

]
− σ[ln(2) − 0.5] ·

rp

rb

}
. (38)

5. Formulas and Graphs for the Temperature Field

The temperature field in Cartesian and polar coordinates is given in Section 3.1, Equations (11)–(14).
Here, the temperature field is plotted and discussed for a reference case.

5.1. Reference Case

The following data are chosen as the reference case:

N = 8, q0 = 10 W/m, λb = 1.5 W/(m ·K), λ = 3 W/(m ·K),
2 · rb = 0.6 m, rc = rb − rp, 2 · rp = 0.032 m, β = 0.75, Tbav = 0 ◦C.

(39)

The pipe resistance Rp and the conductivity parameter σ become:

Rp =
β

2 π λb
= 0.0796 m ·K/W, σ =

λb − λ
λb + λ

= −
1
3

. (40)

The average temperature Tbav at the pile wall is put to zero in all formulas and graphs below for
simplicity. The resistance of the energy pile and the fluid temperature become (31):

Rb0 = 0.024 m ·K/W, Kb0 = 1/Rb0 = 41.7, Tf0 = Rb0 ·N qp = 1.916. (41)

5.2. Plots of the Temperature Field

The overall temperature field T (x, y) = Tpol (r, ϕ) for the reference case (39) is presented in Figure 3,
left. Six isotherms, T = 1, 0, −1, −2, −3, −4, are shown. The black circle r = rb shows the periphery
of the energy pipe. The isotherm T = 0 winds around the pile periphery along which the average
temperature is zero. The pipes with the fluid temperature Tf0 = 1.916 in heat carrier fluid lie inside the
N = 8 isothermal circles for T = 1. The temperatures at a few particular points become:

T(0, 0) = 0.465, Tpol(rb, 0) = 0.733, Tpol

(
rb, πN

)
= −0.352,

T(rc + rp, 0) = 0.733, T(rc, rp) = 1.16, T(rc − rp, 0) = 1.41.
(42)

The isotherm T = −1 has a wavy form influenced by the position of the pipes. The deviation from
a circle decreases outwardly. The isotherm T = −3 is very close to a perfect circle.

Figure 3, right, shows a surface plot of the temperature field for the reference case. The pipes are
clearly seen as temperature spikes. The very flat region around the center z = 0 with values close to
T(0,0) = 0.465 is to be noted.
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π/(5N), (3π)/(5N), and π/N. The red top curve for φ = 0 tends to infinity at the position r = rc of the line 
source. The bottom curve shows the radial profile for the radial line φ = π/N, which lies in the middle 
between pipe n = N and pipe n = 1 in Figure 2. The black dotted line shows the radial average 
temperature Tpolav (r), which is defined below in (46). The four curves converge to the radial average 
temperature for r greater than 0.4. The difference between the top and bottom curve is 0.091, 0.015, 
0.004, and 0.00006 at r = 0.4, 0.5, 0.6, and 1, respectively. 

Figure 3. Temperature field (left) and surface plot of the temperature field (right) for the reference
case (39).

Figure 4 shows radial profiles Tpol (r, ϕ) from (13) and (14) in the interval 0.2 < r < 0.5 for ϕ = 0,
π/(5N), (3π)/(5N), and π/N. The red top curve for ϕ = 0 tends to infinity at the position r = rc of the
line source. The bottom curve shows the radial profile for the radial line ϕ = π/N, which lies in the
middle between pipe n = N and pipe n = 1 in Figure 2. The black dotted line shows the radial average
temperature Tpolav (r), which is defined below in (46). The four curves converge to the radial average
temperature for r greater than 0.4. The difference between the top and bottom curve is 0.091, 0.015,
0.004, and 0.00006 at r = 0.4, 0.5, 0.6, and 1, respectively.
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Figure 4. Radial temperature profiles for ϕ = 0, π/(5N), 3π/(5N), and π/N. The dotted curve shows the
average temperature Tpolav (r), (46).

The four curves lie very close to the value T (0, 0) = 0.465 at the center for 0 < r < 0.2. The deviation
from temperature at r = 0 is less than 0.0002 for r < 0.1 and less than 0.06 for r < 0.2. The temperature
field is very flat in the center region of Figure 3 (left) and 3 (right). This means that changes in the
thermal conductivity or introduction of a return pipe with the same fluid temperature in the central
region r < 0.2 will have a negligible, or perhaps marginal, effect on the value of the thermal resistance.
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6. Total Radial Heat Flux: Thermal Resistance to Any Radius r > rb

The Laplace equation in polar coordinates for a thermal conductivity that depends on r reads:

1
r
·
∂
∂r

(
r · λ(r)

∂Tpol

∂r

)
+

1
r2 ·

∂
∂ϕ

(
λ(r)

∂Tpol

∂ϕ

)
= 0, λ(r) =

λb r < rb

λ r > rb
. (43)

The equation is valid everywhere except at the N heat sources on the circle r = rc. Let Tpolav (r)
denote the average temperature obtained from integration over −π < ϕ < π. Integration of (43) in
ϕ gives:

Tpolav(r) =
1

2 π

π∫
−π

Tpol(r,ϕ) dϕ ⇒
1
r
·

d
dr

[
r · λ(r)

dTpolav

dr

]
+

1
r2 ·

[
λ(r)
2 π

·
∂Tpol

∂ϕ

]ϕ=π
ϕ=−π

= 0. (44)

The heat flux in the ϕ-direction is the same at ϕ = π and ϕ = −π. The right-hand term above
vanishes and the average temperature Tpolav (r) satisfies the one-dimensional radial heat conduction
equation except at r = rc, where the total radial heat flux qtotrad (r) increases from zero to N·q0:

d
dr

[
r · λ(r)

dTpolav

dr

]
= 0, r , rc; qtotrad(r) = −2 π r · λ(r)

dTpolav

dr
=

0 r < rc

N q0 r > rc
. (45)

The temperature Tpolav (r) becomes constant for r < rc. It is zero at r = rb (for Tbav = 0) and it varies
logarithmically as ln (rb/r) for r > rc, inversely proportional to the thermal conductivities λb and λ:

Tpolav(rb) = 0 ⇒ Tpolav(r) =
N q0

2 π λ · ln
( rb

r

)
, r ≥ rb;

Tpolav(r) =
N q0

2 π λb
· ln

( rb
r

)
, rc ≤ r ≤ rb, Tpolav(r) =

N q0
2 π λb

· ln
( rb

rc

)
, 0 ≤ r ≤ rc.

(46)

This average temperature is shown by the dotted line in Figure 4. It should be noted that the
derivative of the average temperature is discontinuous at r = rb following λ (r), (43) right, while the
heat flux is continuous. It should also be noted that Tpolav (0) from (46), right, gives the same value
T (0) = 0.465 as in (42).

The thermal resistance Rb refers to the resistance between the fluid in the pipes and the average
temperature at the periphery of the energy pile, (5). The corresponding thermal resistance between the
fluid in the pipes and the average temperature at any radius r0 > rb is obtained in the following way:

r0 > rb : Tf − Tpolav(r0) = Tf − Tpolav(rb) + Tpolav(rb) − Tpolav(r0) = N q0 ·Rb −
N q0

2 π λ
· ln

(
rb

r0

)
. (47)

The resistance from fluid to r = r0 becomes equal to the sum of Rb and the thermal resistance of
the annular region rb < r < r0 with its thermal conductivity λ:

Rf to r0 = Rb +
1

2 π λ
· ln

(
r0

rb

)
, r0 > rb. (48)

This simple thermal network is illustrated in Figure 5.
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This gives an explicit formula for TBC (ψ). 
Figure 6 shows the function (49) for the exact boundary condition around the periphery of the 

pipes for the reference case (39). The chosen fluid temperature Tf0 is the average or mean value of the 
boundary function over ψ as derived above in Section 3.2, Equations (28) and (30). The difference 
between the two curves represents the deviation from the exact boundary condition. The largest 
difference 0.092 between TBC (ψ) and the chosen Tf0 occurs at ψ = ±π. The relative error lies below 5%. 
The temperature at the outside of the pipe and the radial heat flux qpN, (50), divided by the heat 
transfer coefficient hp are also shown. These curves vary more than TBC (ψ), but they counteract each 
other so that the deviation in the boundary condition is much smaller. 
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Figure 5. Thermal resistance network between the fluid in the pipes and the average temperature at
any radius r0 > rb.
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7. Deviation from the Exact Boundary Condition at the Pipes

The boundary condition at the pipes is discussed in Section 3.2. Equation (20) gives the exact
boundary condition at the periphery of the pipes:

TBC(ψ) = Tc(rc + rp · ei·ψ) +
qpN(ψ)

hp
= Tf, −π < ψ ≤ π. (49)

The temperature at the outside of the pipe as a function of z is given by (8) and (9), top line.
The radial heat flux qρN (ψ) is defined in (19), right. It is fairly straight-forward to determine this radial
derivative with respect to ρ from the formula for the temperature:

qρN(ψ) =
N q0

2 π
·Re

z(ψ)N−1
· ei·ψ

z(ψ)N
− rN

c

− σ ·
z(ψ)N−1

· ei·ψrN
c

r2N
b − z(ψ)N rN

c

, z(ψ) = rc + rp · ei·ψ. (50)

This gives an explicit formula for TBC (ψ).
Figure 6 shows the function (49) for the exact boundary condition around the periphery of the

pipes for the reference case (39). The chosen fluid temperature Tf0 is the average or mean value of
the boundary function over ψ as derived above in Section 3.2, Equations (28) and (30). The difference
between the two curves represents the deviation from the exact boundary condition. The largest
difference 0.092 between TBC (ψ) and the chosen Tf0 occurs at ψ = ±π. The relative error lies below
5%. The temperature at the outside of the pipe and the radial heat flux qpN, (50), divided by the heat
transfer coefficient hp are also shown. These curves vary more than TBC (ψ), but they counteract each
other so that the deviation in the boundary condition is much smaller.
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Figure 6. Boundary-condition function TBC (ψ) (49), and its average Tf0. The dotted curves show the
boundary temperature and the radial heat flux divided by the heat transfer coefficient (50).

8. Comparison with Exact Results from Multipoles Solutions of Order J = 8

Higher-order multipole solutions (J = 1, 2, . . . ) give the thermal resistance with increasing accuracy.
The general solution for any order of multipoles J will be reported in a sequel paper. Multipoles up to
J = 8 are used in the comparisons of accuracy for the thermal resistance of the energy pile.

8.1. Error for Rb (J) as a Function of J

The error for Rb (J) compared to Rb (8) is:

∆Rb(J) =
Rb(J) −Rb(8)

Rb(8)
=

Tf(J) − Tf(8)
Tf(8)

, J = 0, 1, . . . 7. (51)
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Figure 7 shows the absolute relative error |∆Rb (J)| for J = 0, 1, . . . 7 for the reference case.
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The relative error for J = 0 is 0.0069 or 0.69%. There is a dramatic increase in accuracy with
increasing J. This is typical for the multipole method. The multipole method gives the solution and in
particular the thermal resistance Rb (8) with 8 digits of accuracy. The error for thermal resistance is
always much smaller than the relative deviations for the boundary conditions at the pipes; see Figure 6.

8.2. Relative Error ∆Rb0 (N, rb, rc, rp, σ, β) for a Suitable Set of Parameter Values

The input parameters (1) determine the temperature field and the thermal resistance of the energy
pile. The temperature field (11) and (12) is proportional to q0/λb. The non-dimensional relative error
∆Rb0 = ∆Rb (0) with J = 0 in (51) will depend on the number of pipes N, two dimensionless parameters,
and the three radii:

∆Rb0 = ∆Rb0(N, σ, β, rp, rc, rb);
rp

sin(π / N)
≤ rc ≤ rb − rp, β ≥ 0, −1 < σ < 1. (52)

It may be noted that the relative error is unchanged when the three radii are scaled with the same
factor k > 0:

∆Rb0(N, σ, β, rp, rc, rb) = ∆Rb0(N, σ, β, k · rp, k · rc, k · rb). (53)

To investigate the performance of the proposed formula, a parametric study is made, varying
the number of pipes N, the pile and ground thermal conductivities, the dimensionless pipe thermal
resistance, and the pile geometry. The parameters and levels for the full parametric study, representing
6 × 5 × 3 × 3 × 4 = 1080 cases, are summarized in (54):

N = 2, 4, 6, 8, 10, 12; 2 · rb = 0.16, 0.3, 0.6, 1.2, 2.4; rc = rc,min, 2 rb
3 , rb − rp;

2 · rp = 0.032; λb / λ = 0.5, 1, 2, or σ = − 1
3 , 0, 1

3 ; β = 0.25, 0.5, 1, 2.
(54)

These first 3 parameters represent 90 different geometries; in all cases, the outer diameter of the
U-pipe is 0.032 m. The pile diameters are between 0.16 and 2.4 m. The smallest diameter is smaller
than a typical precast driven thermal pile and the largest diameter is closer to what might be found
in a large CFA or bored thermal pile. Taken together, the considered diameters bracket almost all
energy pile installations. The three rc radii correspond to close, moderate, and wide pipe spacings.
The pipes touch each other and the wall of the energy pile for rc equal to rc,min (close spacing), and rc

equal to rb − rp (wide spacing), respectively. These cases are typical of CFA and hollow driven piles,
respectively. The case rc equal to 2rb/3 (moderate spacing) is representative of a bored energy pile
where heat exchanger pipes are mounted on the reinforcement ring. Again, the three spacings virtually
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bracket all possible spacings. Similarly, the three levels of sigma bracket the most likely ratios of the
borehole and ground thermal conductivities found in practice.

Table 1 shows the relative errors ∆Rb0 (N, rb, rc, rp, σ, β) in percent. The grey cells in the table
indicate relative errors of 10% or more. More than 50% of the errors are marked as zero, which means
that the error is below 0.5%. For rb greater than or equal to 0.3 m, the relative error ∆Rb0 (N, rb, rc, rp,
σ, β) is less than or equal to 5% for 643 of the 648 cases and less than 10% for all cases. For rb = 0.15
m, the relative error ∆Rb0 (N, rb, rc, rp, σ, β) is less than or equal to 5% for 156 of the 216 cases and
less than 10% for all except a few cases. The relative error exceeds 10% only for 8 cases when N is
greater than or equal to 8 and β is equal to 0.25 or 0.50 (i.e., for very low Rp and Rb values). These cases
are very unlikely in practice and are possible only under the implausible conditions of extremely low
thermal conductivity of energy piles and laminar flow in the heat exchanger pipes. Moreover, although
the relative error in these cases is large, the absolute error is small and of the order of 0.002 (K·m)/W)
or less. For rb equal to 0.08 m, the relative error ∆Rb0 (N, rb, rc, rp, σ, β) is greater than 10% for over
one-third of the considered cases. With N equal to 12 and rp equal to 0.016 m, the rc,min becomes larger
than 2rb/3, and hence the moderate spacing condition does not hold. The relative error for these cases
with rb equal to 0.08 m is classified as not applicable (n/a) in Table 1. An interesting observation from
Table 1 is that the relative error ∆Rb0 (N, rb, rc, rp, σ, β) is positive for β less than 1 and is negative for β
larger than 1. This suggests that the zero-order formula overestimates the thermal resistance of energy
piles for β less than 1 and underestimates the thermal resistance for β greater than 1. For all cases with
β equal to 1, the relative error is fairly close to zero. This information is valuable when setting margins
of safety for design.

One parameter that can affect the accuracy of the multipole Formula (39) is the pipe radius.
To demonstrate the impact of different pipe radii on the relative errors of the parametric study (54),
Tables 2 and 3 present relative errors ∆Rb0 (N, rb, rc, rp, σ, β) for rb equal to 150 mm and rp equal to
12.5 mm, and rb equal to 300 mm and rp equal to 20 mm, respectively. Comparing the results of Tables 1
and 2 indicates that for energy piles with rb equal to 0.150 m, the relative errors ∆Rb0 (N, rb, rc, rp, σ, β)
become considerably lower for rp equal to 0.0125 m than for rp equal to 0.016 mm. For rp equal to
0.0125 m, the relative error exceeds 10% only when N is greater than or equal to 10, and β equal to
0.25. Comparison of the results of Tables 1 and 3 shows that for energy piles with rb equal to 0.3 m,
the relative errors ∆Rb0 (N, rb, rc, rp, σ, β) are marginally higher for rp equal to 0.02 m than for rp equal
to 0.016 m. Nevertheless, the relative error for rp equal to 0.02 m exceeds 10% only for the single case
of N equal to 12, σ equal to −0.33, and β equal to 0.25.
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Table 1. Relative error ∆Rb0 (N, rb, rc, rp, σ, β) in percent for N = 2 to 12, and rc = rc,min (close spacing), 2rb/3 (moderate spacing), and rb − rp (wide spacing) a. The pipe
radius rp is 0.016 mm.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

80

−0.33

0.25 5 13 17 21 31 65 2 8 17 25 33 n/a 3 12 27 46 65 85
0.50 3 7 9 12 16 28 1 4 8 12 16 n/a 1 5 11 18 26 32
1.00 0 0 0 −1 −1 −2 0 0 0 0 −1 n/a 0 0 0 0 −1 −2
2.00 −3 −8 −10 −13 −16 −21 0 −2 −5 −9 −15 n/a −1 −2 −5 −9 −14 −21

0.00

0.25 5 13 17 21 31 64 1 7 16 25 33 n/a 1 8 22 41 61 82
0.50 3 7 9 12 16 28 0 3 8 12 16 n/a 0 3 9 17 25 32
1.00 0 0 0 −1 −1 −2 0 0 0 0 −1 n/a 0 0 0 0 −1 −2
2.00 −3 −8 −10 −13 −16 −21 0 −2 −5 −9 −15 n/a 0 −2 −5 −9 −14 −21

0.33

0.25 5 13 17 21 31 63 0 7 16 25 33 n/a 0 5 18 37 58 79
0.50 3 7 9 12 16 27 0 3 8 12 16 n/a 0 2 8 16 24 31
1.00 0 0 0 −1 −1 −2 0 0 0 0 −1 n/a 0 0 0 0 −1 −2
2.00 −3 −8 −10 −13 −16 −21 0 −2 −5 −9 −15 n/a 0 −1 −4 −8 −14 −21

150

−0.33

0.25 3 8 9 9 9 10 0 2 4 6 8 9 2 4 9 14 21 29
0.50 2 5 5 5 5 6 0 1 2 3 4 5 1 2 4 6 9 12
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −6 −7 −7 −8 −8 0 −1 −2 −3 −5 −7 0 −1 −2 −3 −4 −5

0.00

0.25 3 8 9 9 9 10 0 2 4 6 8 9 0 1 4 9 16 23
0.50 2 5 5 5 5 6 0 1 2 3 4 5 0 1 2 4 7 10
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −6 −7 −7 −8 −8 0 −1 −2 −3 −5 −7 0 0 −1 −2 −3 −5

0.33

0.25 3 8 9 9 9 10 0 2 4 6 8 9 0 0 2 6 12 19
0.50 2 5 5 5 5 6 0 1 2 3 4 5 0 0 1 3 5 9
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −6 −7 −7 −8 −8 0 −1 −2 −3 −5 −7 0 0 −1 −1 −3 −4
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Table 1. Cont.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

300

−0.33

0.25 3 5 6 5 5 5 0 0 1 1 2 2 1 2 3 5 7 9
0.50 1 3 3 3 3 3 0 0 0 1 1 1 1 1 1 2 3 4
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −5 −5 −5 0 0 0 0 −1 −1 0 −1 −1 −1 −1 −2

0.00

0.25 3 5 6 5 5 5 0 0 1 1 2 2 0 0 1 2 3 5
0.50 1 3 3 3 3 3 0 0 0 1 1 1 0 0 0 1 1 2
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −5 −5 −5 0 0 0 0 −1 −1 0 0 0 0 −1 −1

0.33

0.25 3 5 6 5 5 5 0 0 1 1 2 2 0 0 0 0 1 2
0.50 1 3 3 3 3 3 0 0 0 1 1 1 0 0 0 0 0 1
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −5 −5 −5 0 0 0 0 −1 −1 0 0 0 0 0 −1

600

−0.33

0.25 2 4 4 4 4 3 0 0 0 0 0 0 1 1 2 2 3 3
0.50 1 3 3 2 2 2 0 0 0 0 0 0 0 1 1 1 1 1
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −4 −4 −4 −4 −4 0 0 0 0 0 0 0 0 0 −1 −1 −1

0.00

0.25 2 4 4 4 4 3 0 0 0 0 0 0 0 0 0 0 1 1
0.50 1 3 3 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −4 −4 −4 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0

0.33

0.25 2 4 4 4 4 3 0 0 0 0 0 0 0 0 0 0 0 0
0.50 1 3 3 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −4 −4 −4 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0
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Table 1. Cont.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

1200

−0.33

0.25 2 3 3 3 3 3 0 0 0 0 0 0 1 1 1 1 2 2
0.50 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 1 1 1
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −1 −3 −3 −3 −3 −3 0 0 0 0 0 0 0 0 0 0 0 0

0.00

0.25 2 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0
0.50 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −1 −3 −3 −3 −3 −3 0 0 0 0 0 0 0 0 0 0 0 0

0.33

0.25 2 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0
0.50 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −1 −3 −3 −3 −3 −3 0 0 0 0 0 0 0 0 0 0 0 0

a Relative error larger than 10% shown with a grey background.

Table 2. Relative error ∆Rb0 (N, rb, rc, rp, σ, β) in percent for N = 2 to 12, and rc = rc,min (close spacing), 2rb/3 (moderate spacing), and rb − rp (wide spacing) a. The pipe
radius rp is 0.0125 m.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

150

−0.33

0.25 3 7 7 7 7 7 0 1 2 3 5 6 1 3 6 9 14 19
0.50 2 4 4 4 4 4 0 0 1 2 3 3 1 1 2 4 6 8
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −6 −6 −7 −7 0 0 −1 −1 −2 −3 0 −1 −1 −2 −3 −3

0.00

0.25 3 7 7 7 7 7 0 1 2 3 5 6 0 1 2 5 9 13
0.50 2 4 4 4 4 4 0 0 1 2 3 3 0 0 1 2 4 6
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −6 −6 −7 −7 0 0 −1 −1 −2 −3 0 0 −1 −1 −2 −3
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Table 2. Cont.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

0.33

0.25 3 7 7 7 7 7 0 1 2 3 5 6 0 0 1 2 5 10
0.50 2 4 4 4 4 4 0 0 1 2 2 3 0 0 0 1 3 4
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −6 −6 −7 −7 0 0 −1 −1 −2 −3 0 0 0 −1 −1 −2

a Relative error larger than 10% shown with a grey background.

Table 3. Relative error ∆Rb0 (N, rb, rc, rp, σ, β) in percent for N = 2 to 12, and rc = rc,min (close spacing), 2rb/3 (moderate spacing), and rb − rp (wide spacing) a. The pipe
radius rp is 0.02 m.

rb
(mm) σ β

Close Moderate Wide

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

300

−0.33

0.25 3 6 6 6 6 6 0 1 1 2 3 4 1 3 4 7 9 13
0.50 1 4 4 4 4 4 0 0 1 1 2 2 1 1 2 3 4 5
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −6 −6 −6 0 0 0 −1 −1 −2 0 −1 −1 −1 −2 −2

0.00

0.25 3 6 6 6 6 6 0 1 1 2 3 4 0 0 1 3 5 8
0.50 1 4 4 4 4 4 0 0 1 1 2 2 0 0 1 1 2 4
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −6 −6 −6 0 0 0 −1 −1 −2 0 0 0 −1 −1 −2

0.33

0.25 3 6 6 6 6 6 0 1 1 2 3 4 0 0 0 1 2 5
0.50 1 4 4 4 4 4 0 0 1 1 2 2 0 0 0 0 1 2
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 −2 −5 −5 −6 −6 −6 0 0 0 −1 −1 −2 0 0 0 0 −1 −1

a Relative error larger than 10% shown with a grey background.
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9. Further Discussion and Concluding Summary

The newly developed zeroth-order multipole formula provides a fast, flexible, and accurate
method for calculating the thermal resistance of energy piles. The newly presented zero-order
multipole Formula (31) for Rb0 may be used in virtually all engineering applications for energy piles
with rb greater than or equal to 0.3 m and rp less than or equal to 0.02 m with pipes equally spaced on a
circle. The relative error ∆Rb0 (N, rb, rc, rp, σ, β) may exceed 10% in a few odd cases, but the absolute
error in such cases is very small. Furthermore, the zero-order multipole Formula (31) may also be used
for all energy piles with rb between 0.15 and 0.3 m and rp less than or equal to 0.0125 m if N is less than
or equal to 10, and β is greater than or equal to 0.25. For applications with rp equal to 16 mm and rb

equal to 0.15 to 0.3 m, the zero-order multipole Formula (31) may be used if N is less than or equal to 8.
The zero-order multipole formula may also be used for all energy pile applications if β is equal to 1 or
N is equal to 2.

To the best of the authors’ knowledge, zeroth-order multipole Formula (31) is the first, and the
only closed-form formula published to date, that can be used to calculate the thermal resistance of
energy piles with any number of heat exchanger pipes. The proposed formula marks a substantial
improvement on the current practice of sizing energy piles with three or more U-pipes based on a
guessed value of thermal resistance, which can lead to improperly sized systems. The explicit formula
will facilitate designers to step beyond the limits of using a conservative thermal resistance estimate,
and will enable them to optimize the energy pile design by making informed decisions about design
choices, such as the position and the number of heat exchanger pipes in the pile. The proper sizing of
energy piles will, in turn, allow for the overall system size to be reduced and the system performance
to be improved.

A possible direction for future research is the development of higher-order multipole formulas for
calculating the local thermal resistance of energy piles. The higher-order formulas will further improve
the accuracy of the thermal resistance calculation, especially for small-diameter energy piles (less than
300 mm). The derivation of such formulas is expected in the near future and they will be presented
soon in a sequel paper.

To conclude, in this paper, a closed-form Formula (31) for the thermal resistance of energy piles
with any number of heat exchanger pipes evenly spaced on a concentric circle inside the pile periphery
was derived. The proposed formula is based on the zero-order multipole approximation (J = 0) and
considers only line heat sources at the pipes. It was demonstrated that the newly derived formula can
calculate the thermal resistance of large-diameter energy piles (rb ≥ 0.3 m) with an accuracy better than
10% essentially under all conditions. The relative errors are less than or equal to 5% for over 99% of
the 648 cases analyzed in this study. It was also demonstrated that the zero-order formula can also
be used for smaller-diameter energy piles (0.15 ≤ rb < 0.3 m) for most conditions, except when the
dimensionless pipe thermal resistance β is very small and the number N of heat exchanger pipes in the
energy pile tops 8. For these specific cases and for energy piles with particularly smaller diameters
(rb < 0.15 m), the use of higher-order multipoles is recommended—closed-form formulas for which
will be presented in our forthcoming papers. This paper also presents a handy Formula (35) for the
minimum thermal resistance of energy piles when the pipes touch the periphery of the pile.
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Nomenclature

hp Heat transfer coefficient between fluid and outer side of pipe wall, W/(m2
·K), see Equation (19)

J Number of multipoles, J = 0, 1, 2 . . .
N Number of pipes in the energy pile; N = 2 for single U-tube
q0 Heat rejection rate from each pipe to the ground, W/m
Rb Local thermal resistance between fluid in the U-tube to the energy pile wall, (m·K)/W
Rb0 Local thermal resistance for the zero-order, (m·K)/W, see Equation (31)
Rbmin Minimum local thermal resistance, (m·K)/W, see Equation (38)
Rp Total fluid-to-pipe resistance for a single pipe i.e., one leg of the U-tube, (m·K)/W
rb Radius of the energy pile, m
rc Radius of the concentric circle, m, see Figure 2
rp Outer radius of heat exchanger pipe, m
T Temperature, ◦C
Tb Energy pile wall temperature, ◦C
Tbav Average temperature at the energy pile wall, ◦C
Tf Mean fluid temperature inside the U-tube, ◦C
β Dimensionless thermal resistance of one U-tube leg, see Equation (2)
∆Rb0 Relative error in local thermal resistance for zero-order, %
λ Thermal conductivity of the ground, W/(m·K)
λb Thermal conductivity of the energy pile, W/(m·K)
σ Thermal conductivity ratio, dimensionless, see Equation (2)

Appendix A. Detailed Mathematical Derivations for the Temperature Field

Appendix A.1. Complex-Valued Line Heat Source

The complex-valued line heat source function W0 (z, z0) is the basic solution and a starting point for the
multipole method:

W0(z, z0) =

ln
(

rb
z−z0

)
+ σ · ln

(
r2

b
r2

b−z·z0

)
, |z| ≤ rb,

(1 + σ) · ln
(

rb
z−z0

)
+ σ · 1+σ

1−σ · ln
(

rb
z

)
, |z| ≥ rb.

(A1)

The real part of the function W0 (z, z0) gives the temperature field for a line heat source at z = z0 with the
strength q = 2πλb (W/m). It will satisfy the Laplace equation in pile and ground regions since it is the real part
of an analytical function except for the right-hand top logarithm involving z. However, this latter part is the
complex-conjugate of the analytic logarithm function defined by (A3), and its real part will satisfy the Laplace
equation. This is a bit tricky and must be kept in mind in the analyses and derivations below.

The following complex notations are used:

z = x + i · y,
∣∣∣∣∣z∣∣∣∣∣= √

x2 + y2, z = x− i · y, z0 = x0 + i · y0,
∣∣∣∣∣z0

∣∣∣∣∣< rb − rp. (A2)

The complex-valued logarithm of any complex function f (z) is defined by (7):

ln( f (z)) = ln
(∣∣∣ f (z)∣∣∣)+ i · arg( f (z)), −π < arg( f (z)) ≤ π (A3)

The upper expression of (A1) is valid in the circular energy pile region and the lower one in the ground
outside the pile. The first top logarithm represents an ordinary line heat source, while the second term represents a
line source at the “mirror” point z = r2

b/z0. The expressions in the two regions are constructed so that the real part,
and the ensuing radial heat flux at the pile and ground sides, become equal at the pile radius |z| = rb This means
that the real solution satisfies the two internal boundary conditions at the pile wall. The average temperature from
the real part of W0 (z, z0) (which will determine Tbav) taken around the pile periphery is zero.

The real part of W0 (z, z0) will be used in the temperature fields below. The complex conjugate of z times z0
may be replaced by z times the complex conjugate of z0:

Re

ln r2
b

r2
b − z · z0

 = ln

 r2
b∣∣∣r2

b − z · z0
∣∣∣
 = ln

 r2
b∣∣∣r2

b − z · z0
∣∣∣
 = Re

ln r2
b

r2
b − z · z0

. (A4)
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The expression (A1) outside the pile (lower line) may be written in the following alternative way:

|z| ≥ rb : W0(z, z0) =
1 + σ
1− σ

· ln
( rb

z

)
+ (1 + σ) · ln

(
z

z− z0

)
,

1 + σ
1− σ

=
λb
λ

, 1 + σ =
2 λb
λb + λ

. (A5)

The first part presents a simple line source at the center z = 0 with the radial logarithmic temperature decrease
ln(rb/r). The second part tends to zero as r = |z| increases and it determines the ϕ-dependence for r > rb.

Appendix A.2. Temperature Field from N Line Heat Sources on a Circle

The (steady-state, real-valued) temperature field Tc (z) for the pipes on the circle is to be determined for
the prescribed heat flux q0 (W/m) from all pipes, and any prescribed average temperature Tbav around the pile
periphery. From this, the required fluid temperature Tf is to be determined from the boundary condition at the
pipes. The thermal resistance Rb of the energy pile is then determined in accordance with (5).

The temperature field consists of a linear combination of the real part of the line heat source solution taken at
the center of each pipe:

Tc(z) = Tbav +
q0

2 π λb
·Re[Wc(z, rc)], zn = rc · zn

e . (A6)

Wc(z, rc) =


N∑

n= 1

[
ln

(
rb

z−zn

)
+ σ · ln

(
r2

b
r2

b−z·zn

)]
, |z| ≤ rb,

λb
λ ·

[
N · ln

(
rb
z

)
+ 2 λ

λb+λ
·

N∑
n= 1

ln
(

z
z−zn

)]
, |z| ≥ rb,

zn = rc · z−n
e . (A7)

where Wc (z, rc) is the sum of the N complex-valued line sources (A1) for the energy pile and ground regions.
The “conjugate” substitution (A4) is used. The prescribed average temperature is to be added since the average
temperature at the pile periphery is zero for each term in the sum. The factor before the sum ensures that the heat
flux from each pipe is q0. The total heat flux from all pipes to the surrounding ground is N·q0 (W/m).

Equation (A6) is the line-source solution without using multipoles. The above temperature field satisfies the
five conditions listed in Section 3.1 (after Equation (12)).

Appendix A.3. New Formulas for the Temperature Field

The sums in (A7) for Wc (z, rc) of the N complex-valued line sources involve two sums of logarithms:

Σ1 =
N∑

n=1

ln
( rb

z− zn

)
, Σ2 =

N∑
n=1

ln

 r2
b

r2
b − z · zn

, zn = rc · z−n
e . (A8)

The first sum of logarithms may be rewritten as a logarithm of products:

Σ1 = ln

 rN
b(

z− rc · z1
e

)
·

(
z− rc · z2

e

)
· . . . ·

(
z− re · zN

ϕ

)  = ln

 rN
b

zN − rN
c

. (A9)

The roots of the polynomial zN
− rc

N = 0 are z = zn, n = 1, . . . N. The two polynomials in the denominator
of order N have the same roots. Hence, they are identical. The other sum of logarithms may, in the same way,
be rewritten as:

Σ2 = ln

 r2N
b(

r2
b − z · rc · z−1

e

)
· . . . ·

(
r2

b − z · rc · z−N
e

)  = ln

 r2N
b

r2N
b − zN · rN

c

. (A10)

where, again, the two polynomials in the right-hand denominator of the logarithms are identical since they have
the same roots:

r2N
b − (z · rc)

N = 0 ⇒ z · rc · z−n
e = r2

b, n = 1, 2, . . . N. (A11)

It may be noted that the two left-hand expressions involving logarithms in (A9) and (A10) may differ by 2πi
times an integer depending on the choice of arguments in the logarithms. However, this does not influence the
real part used for the temperature field. This comment is applicable to the addition of logarithms in all other cases
in this paper.

The complex-valued temperature field (A7) may now be written in the following concise form inserting the
sums (A8)–(A10):

Wc(z, rc) =


ln

(
rN

b
zN−rN

c

)
+ σ · ln

(
r2N

b
r2N

b −zN ·rN
c

)
, |z| ≤ rb

λb
λ ·

[
N · ln

(
rb
z

)
+ 2 λ

λb+λ
· ln

(
zN

zN−rN
c

)]
, |z| ≥ rb

. (A12)
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These formulas are the starting point in Section 3.1, Equation (9). The above temperature fields depend
on zN. Let the point z be “rotated” m times by ze.

(zm
e · z)

N =
(
e

2πi
N ·m

)N
· zN =

(
e

2πi
N ·N

)m
· zN = zN

⇒ Re[Wc(zm
e · z, rc)] = Re[Wc(z, rc)]. (A13)

The real part of the temperature field repeats itself for any rotation (ze)m. This means that the temperature
field is the same in every wedge with the opening angle ∆ϕ = 2π/N as indicated in Figure 2, left. The temperature
field is also symmetric in y. It is sufficient to consider the temperature field in the wedge 0 ≤ ϕ ≤ π/N, r ≥ 0.

Figure 3 (left) and (right), in Section 5.2 show the temperature field from (A6) and (A12) for the reference
case (39). The black circle r = rb = 0.3 shows the periphery of the energy pile. The positions of the N pipes and the
rotational symmetry (N = 8) are clearly seen.
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