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Abstract: Occupancy-aware heating, ventilation, and air conditioning (HVAC) control offers the
opportunity to reduce energy use without sacrificing thermal comfort. Residential HVAC systems
often use manually-adjusted or constant setpoint temperatures, which heat and cool the house regardless
of whether it is needed. By incorporating occupancy-awareness into HVAC control, heating and cooling
can be used for only those time periods it is needed. Yet, bringing this technology to fruition is dependent
on accurately predicting occupancy. Non-probabilistic prediction models offer an opportunity to use
collected occupancy data to predict future occupancy profiles. Smart devices, such as a connected
thermostat, which already include occupancy sensors, can be used to provide a continually growing
collection of data that can then be harnessed for short-term occupancy prediction by compiling and
creating a binary occupancy prediction. Real occupancy data from six homes located in Colorado is
analyzed and investigated using this occupancy prediction model. Results show that non-probabilistic
occupancy models in combination with occupancy sensors can be combined to provide a hybrid HVAC
control with savings on average of 5.0% and without degradation of thermal comfort. Model predictive
control provides further opportunities, with the ability to adjust the relative importance between thermal
comfort and energy savings to achieve savings between 1% and 13.3% depending on the relative
weighting between thermal comfort and energy savings. In all cases, occupancy prediction allows
the opportunity for a more intelligent and optimized strategy to residential HVAC control.

Keywords: HVAC control; occupancy prediction; energy consumption; thermal comfort

1. Introduction and Background

The finite quantity of fossil fuels and the mounting concern of climate change makes reducing energy
use a global necessity. Buildings are major consumers of energy worldwide, and used around 3060 million
tons of oil equivalent (Mtoe) in 2018 according to the International Energy Agency (IEA) [1]. In the United
States, heating, ventilation, and air conditioning (HVAC) systems account for 50% of all building energy
consumption [2], while U.S. homes alone are responsible for the use of approximately 4.7 quadrillion
British thermal units (Btu) for space heating and air conditioning per year [3]. Therefore, reducing energy

Energies 2020, 13, 5396; doi:10.3390/en13205396 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-9394-5393
https://orcid.org/0000-0003-4734-0750
https://orcid.org/0000-0002-4084-9709
http://dx.doi.org/10.3390/en13205396
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5396 2 of 30

consumption associated with residential heating and cooling has the potential to result in large energy
savings when applied across the sector.

Traditionally, heating and cooling in residential buildings has been controlled by a thermostat that
has a single setpoint temperature, which keeps the indoor temperature constant whenever the thermostat
is in use. Over time, different technologies have been added to HVAC systems to improve temperature
control and reduce energy use, one of which is occupancy-based control. This method controls the indoor
temperature to provide thermal comfort only when the building is believed to be occupied, and turns the
HVAC system off when it is vacant. This typically results in reduced energy use during unoccupied hours.
Previous studies have estimated that the potential savings when using these systems is between 5–23%.
The magnitude of savings depends on various factors, such as climate, building vintage, and occupant
behavior [4]. While occupancy-based HVAC control has potential benefits, questions still remain on how
best to detect occupancy and implement control decisions. To provide the best experience for occupants,
thermal comfort standards should be met during all occupied hours. Thus, a good control strategy needs
to not only know when a building is currently occupied, but also needs to accurately predict occupancy
ahead of an occupants arrival. This allows the space to be appropriately conditioned in advance of the
arrival.

1.1. Historical Trends in U.S. Housing

An understanding of how buildings are changing is critical to reducing energy use in the built
environment. Looking at how buildings and control systems have performed historically can highlight
opportunities for improvement and can indicate the ways in which current trends may shape the future.
The 2015 Residential Energy Consumption Survey found that the United States residential sector is
comprised of 118.2 million homes, totaling 223 billion square feet of floor space [3]. Residential buildings
currently use 22% of U.S. annual energy, and in the three decades from 1980 to 2009 residential building
site energy use increased by 8.9% [5]. This growth can be attributed to increases in three factors: home size,
number of homes, and appliance use. For instance, the number of households in the U.S. increased by 33%,
while the average size of a single-family detached home also increased from 2100 square feet to 2688 square
feet, as depicted in Figure 1. This led to a 52% increase in total floor space [5]. Additionally, appliance
electricity consumption during the same time period increased by 30.6%, with the largest increases being
from microwave ovens, personal computers, air-conditioners, and clothes dryers [5].

Figure 1. Size of residences by home type for 1980 and 2009 (ft2) [5].
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At the same time that energy use was increasing due to changes in housing characteristics, other factors
were leading to decreases in energy use. These decreases are attributable to: (1) population shifts in the
U.S., as large numbers of people moved from the Northeast and Midwest to the less heating-intensive
regions of the South and West; (2) changes in weather patterns, both heating-degree days and cooling
degree-days were lower across the nation in 2009 than in 1980 [5]; and (3) a decline in energy intensity, led
by advances in engineering and a promotion of energy efficiency standards for household appliances. For
example, the annual fuel utilization efficiency (AFUE) of a standard furnace increased from 78% to 97%,
leading to decreased energy consumption for the same heating output. The largest change in consumption
occurred from 1990–2001, which coincides with an era when federal efficiency programs, like ENERGY
STAR, were enacted. The combined effect of all contributors in the 30-year period was an increase in
energy consumption over time, with U.S. homes consuming 9.1 quads per year [5].

1.2. Temperature Control in Buildings

Despite changes in the housing sector, occupants’ desires for thermal comfort have remained constant.
One method of measuring occupant comfort is the predicted mean vote (PMV), first developed by Povl Ole
Fanger [6], which predicts the average comfort level of a hypothetical group of people in a space. ASHRAE
Standard 55, first published in 1966, specifies the fraction of occupants that find a space comfortable using
the predicted mean vote must be at least 80% [7]. PMV, which ranges from −3 (too cold) to +3 (too hot), is
based on the combined effects of air temperature, mean radiant temperature, relative humidity, air speed,
metabolic rate (based on activity), and occupants’ clothing levels.

In buildings, comfort requirements are met by using a thermostat and control system to maintain a
setpoint temperature. The thermostat measures the indoor air temperature and compares it to the setpoint
temperature, while the control system manages how the HVAC system tracks the indoor air temperature,
attempting to keep it within small deviations of the setpoint. The interaction of these two components,
and the programming of the system, determines how well the setpoint is tracked and how effectively the
system achieves thermal comfort conditions.

Manual, programmable, and “smart” thermostats are the three main categories of thermostats
in-use today. In manual thermostats, the setpoint is a single temperature that the system always tries to
maintain when it is on. To change the temperature of the space, you must manually change the setpoint.
Programmable thermostats are similar, but with different temperature setpoints for different times of the
day or days of the week that can be programmed by users [8]. This allows temperatures to be setback during
nighttime hours or during daytime vacancies, and automatically adjusts to more comfortable temperatures
when people are frequently home. These thermostats often have modes for different days (weekday and
weekend), and modes for different times of day (e.g., morning, day-time, evening, and night). Endorsed
by Energy Star at their 1995 release, initial demonstrations showed that programmable thermostats could
reduce heating and cooling bills by 10%–30%. However, the U.S. Environmental Protection Agency
ultimately suspended Energy Star certification of programmable thermostats in 2009 since a lack of
undisputed energy savings materialized [8]. Investigations revealed that 30% of households had failed to
set them properly, and over 89% had not set separate weekend and weekday schedules [9]. Due to their
complexity of operation, most programmable thermostats were operated manually, negating their energy
savings potential.

Connected, or “smart”, thermostats have emerged in response to consumer aversion to programmable
thermostats. Like programmable thermostats, connected thermostats create a setpoint schedule but the
operation is designed to be user-friendly and may change over-time, given occupancy patterns. Products,
like the Nest Learning Thermostat, Honeywell, or Ecobee thermostat, are internet or “cloud” connected
and can be controlled by phone, web interface, or a touchscreen. The system comes with a preset schedule
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that modifies itself based on the user’s manual adjustments during initial use [10]. First introduced in
2011, the Nest Learning Thermostat catalyzed the market, with over 100% market growth per year in
the first three years. In 2015, 40% of the thermostats sold were connected thermostats [10]. The main
features of most connected thermostats include extensive data tracking, remote accessibility, local sensors
to track occupancy, and web-enabled weather forecast data. While all connected thermostats are designed
to enhance temperature control, they also create an opportunity to save energy through the use of setback
temperatures that are automatically programmed though the initial use.

1.3. HVAC Control Strategies

The control strategy utilized by an HVAC system determines how the heating and cooling is
managed. The two main controller types use in residential buildings are discrete controllers and continuous
controllers. A discrete controller, in its simplest form, simply turns devices on and off, allowing only two
states of operation. For example, when indoor temperatures are below a certain threshold (often a degree
below the setpoint temperature) the heater is actuated. The heater is then turned off once the setpoint
temperature is reached. These controllers offer ease of installation and operation, however, they often
suffer from overshoot and undershoot, making it difficult to maintain a precise indoor temperature. This
occurs because of the large thermal inertia of buildings and their engineered systems, which can result
in large deviations from setpoint temperatures [11]. If temperatures are more precisely maintained, then
the system will be frequently cycling on and off. Frequent cycling can be damaging to equipment and
annoying to occupants.

Continuous controllers, on the other hand, modulate heating and cooling to provide heat transfer at
the rate that it is needed to reject disturbances and track the setpoint. Although many continuous controllers
only use current indoor temperature as an input, they can provide much more precise setpoint tracking,
as the building response dynamics are accounted for in the set-up (i.e., tuning) process. Continuous
control is normally provided by proportional-integral (PI) or proportional-integral-derivative (PID) local
loop feedback controllers, which attempt to minimize undershoot, overshoot, rise time, settling time,
and steady-state error [9].

More advanced control systems can take additional inputs, such as future building occupancy and
predicted weather. One such strategy considered in this work, called Model Predictive Control (MPC),
predicts the future state of the building by incorporating weather forecasts and current indoor temperature.
These inputs are fed into a model to predict how the building will change under a variety of different
HVAC actions. An optimization is then performed to determine which action will achieve the required
temperature while minimizing energy use. The optimal control action is then sent to and implemented by
the HVAC system [12,13], and the cycle will be performed again. By predicting future states and correcting
for state prediction errors at every time interval, MPC acts as closed loop, real-time building controller.
Known as receding horizon control, a newly optimized control strategy is determined as temperature and
weather forecasts are updated [14].

MPC frequently utilizes a reduced order linear dynamic model that represents the building as an
equivalent circuit of thermal resistances and capacitances (RC) [13]. This means that the heat transfer
in and out of the building is simplified to linear expressions, making the optimization problem convex
and easier to solve. Buildings, however, do not always act linearly, which leads to modeling errors and
mismatch [13]. The extensive time and effort required for properly calibrating a model for individual
buildings has kept MPC from widespread adoption [15]. Yet, MPC continues to show promise and is
predicted to gain traction with research showing residential energy savings of 28% on average and cost
savings of 16% [15,16].
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1.4. Potential of Occupancy-Aware HVAC Systems

When occupancy is included in HVAC control, the system behaves conventionally when the building
is believed to be occupied, attempting to meet a pre-programmed temperature setpoint. In contrast, when
the space is believed to be vacant, the HVAC system allows the indoor temperature to drift somewhat by
using a more liberal setback temperature setpoint, minimizing total energy use. Occupancy-based controls
can be either reactive or predictive. In reactive control, the system detects an occupant in the space and
then turns on the system. This can lead to uncomfortable temperatures when an occupant first enters a
space, as the system may not be able to immediately reach the new setpoint. In predictive control, the
arrival time of the occupant is predicted and the system preheats or precools the space so that indoor
temperature reaches the setpoint just before the occupant arrives, minimizing energy while maintaining
comfortable temperatures during all occupied hours [17]. However, correctly predicting when an occupant
will arrive is challenging, as the behavior of individuals is difficult to model.

Industry professionals have been working to ascertain the energy savings potential for
occupancy-aware HVAC control. In 2014, Nagele et al. conducted a survey of 30 households in southern
Germany over a period of 14 months [9]. They then used the data collected, such as temperature setpoints
and house characteristics, to calculate energy use under eight different control strategies for ten simulated
households. Using a constant temperature on/off controller as the reference case, they showed that PID
controllers, setback temperatures, model predictive control (MPC), and occupancy-based HVAC control
all have the ability to reduce energy use, when implemented correctly. See Figure 2 for a comparison of the
results.

Figure 2. Boxplot of potential savings by control strategy for ten households [%]; adapted from
Reference [9].

The reactive strategy of simple occupancy detection offers the largest potential energy savings, but can
also increase unmet comfort hours. If a space is routinely uncomfortable when an occupant comes home,
then they are likely to turn the detection control off. Thus, to gain consumer adoption, unmet hours need
to be low enough that consumers use the functionality. This makes occupancy prediction the preferred
control choice. In simulation studies of occupancy-prediction control, savings are estimated to be between
6%–48%, and depend on factors, such as climate, insulation levels, and occupancy schedules [17,18].
Beyond simulations, utilities have measured the energy savings of connected thermostats, which often
employ occupancy-aware controls [19]. In reviewing 35 studies from 2007 to 2016, the U.S. Department of
Energy reported energy savings that ranged from 1% to 15% [10]. Definitive values for savings are hard to
determine due to variances in hardware, software, buildings, occupant behavior, and local weather.
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1.5. Occupancy in Buildings

In order to effectively incorporate occupancy information into building controls,
occupancy patterns and their impacts on energy use must first be understood. A 2017 international survey
of building energy professionals and researchers listed occupant behavior as the largest contributing factor
to energy modeling errors [20]. This is because of the varied and stochastic nature of human behavior,
which changes dramatically from person-to-person and from day-to-day. This makes correctly predicting
occupant behavior, and therefore its effect on buildings, extremely difficult.

In 1978, Robert Socolow published a 5-year observational study on occupant behavior where they
tracked gas consumption of 205 identical townhouses in Twin Rivers, New Jersey, finding a 33% variation
in consumption [21]. This revealed that seemingly identical buildings can vary due to factors, such as
occupants’ setpoint temperatures and hot water use. Similarly, a study in Kuwait showed that residents
used setpoint temperatures that varied between 19 ◦C and 25 ◦C for air-conditioning, with electricity use
increasing 21% with a 2 ◦C change [22]. In Denmark, Rune Andersen collected four years of annual heating
data from 290 identical townhouses. Again, a wide variation was found with annual heating consumption
ranging from 9.7 kWh/m2 to 197 kWh/m2, a ratio of 20 to 1 [23]. These studies, carried out in different
climates, across continents and several decades, show the significant variation of occupant behavior and
the impact it has on energy consumption.

1.6. Modeling Occupant Presence

Modeling the impact of occupancy behavior on energy consumption is comprised of two steps. First,
a researcher must create a reasonably accurate model of occupancy. Second, this model is incorporated into
a building performance simulation (BPS). Research in the past decades has investigated the best method
for performing each step, both of which are necessary to understand the impact of occupancy-based HVAC
control on energy use.

While an accurate occupancy model is critical to understanding the impact of occupant behavior,
a 2017 industry survey showed that industry professionals believe current models over-simplify real
behaviors, leading to inaccurate predictions [20]. A model can be either overly optimistic, in which case
actual energy consumption in a building performs below expectations, or overly conservative, which leads
to oversized mechanical equipment.

While many occupant models have been published in scientific papers, an industry consensus on
what the best model is has not yet been achieved. Occupancy can be modeled and predicted at two levels:
group or individual. In the group level, one model is created for the entire group occupying a building. In
this method, which is currently the most widely used, the building is essentially the entity being modeled.
At the individual level, a separate model is created for each occupant of a building. Some of the most
common occupancy models are described below [24].

• Schedules are the current industry standard for modeling occupancy presence. A predetermined
fraction of occupancy is multiplied by the space density to determine the number of people during
each hour.

• Deterministic models use a rule-based approach to represent occupancy behavior. Unlike schedules,
deterministic models incorporate environmental triggers that can affect actions.

• Non-probabilistic models use historical data to create a model. The aggregated data is averaged to create
a probability profile, with each time interval having a probability between 0 and 1. If the probability
is above a threshold, the building is predicted to be occupied; below the threshold, vacant. Because
the profile is created from a training set, the accuracy of the model depends highly on the data used.
The model created does not include a stochastic term.



Energies 2020, 13, 5396 7 of 30

• Probabilistic or stochastic models incorporate the variability of human behavior by using randomization.
Like non-probabilistic models, stochastic models use historical data to create a model. A probability
profile is created and compared to a randomly generated number to classify the space as occupied
or vacant. Because a random number is used, a different profile will result each time the model is
generated. Stochastic models require multiple runs to achieve reliable results.

• Agent-based models model occupants individually, aggregating multiple prediction models to create a
full building model. Because modeling is done on an individual basis, the complexity is extremely
high.

1.7. Modeling Building Performance

The second step to incorporating occupancy is loading the model into the building simulation, for
which there are many simulation programs available. The International Building Performance Simulation
Association (IBPSA) lists sixty-seven whole building energy simulation programs [25]. EnergyPlus,
developed and distributed by the U.S. Department of Energy (DOE), is used most commonly in occupancy
research [20]. EnergyPlus is a compiled physical model, which means the characteristics of the building,
such as insulation values, window size, and orientation, are built into the model itself [17], while the
mechanical equipment and schedules, such as occupancy, are included as inputs to the building operation.
When executed, the simulation calculates the heat and mass transfer for each time step [4]. Simulations are
normally performed per annum to integrate both heating and cooling seasons [17]. ASHRAE occupant
schedules are embedded within the example EnergyPlus models but different occupant models can also
be incorporated in custom models.

1.8. Review of Commonly Used Occupant Models

Past studies have sought to answer the question of which occupant model works best to predict
occupancy [14,18,26–34]. Since the published studies were conducted using individually collected data,
such as occupancy and climate, and utilized building-specific performance simulations, it has been difficult
to directly compare different occupant models [24]. Individual analyses have sought to solve this by
comparing different occupancy models made with the same occupancy data. A review of occupant
presence comparison studies is summarized in this section.

A study by Mahdavi and Tahmasebi [35] compared three models: two probabilistic models from
literature (Reinhart 2004 and Page 2008) and a non-probabilistic model the authors developed. Using data
from eight workspaces, the three models were created using four weeks of training data to predict building
occupancy over the next 90 working days. Predicted occupancy was compared to measured ground-truth
occupancy to analyze the prediction model’s capability. The model was evaluated by comparing the arrival
time, departure time, duration of occupancy, fraction of correct occupancy state, and number of transitions
to the ground-truth data. Analysis showed that the two stochastic models performed similarly, while
the non-probabilistic model performed best. Mahdavi and Tahmasebi conclude that, while probabilistic
models are suitable for annual simulations, non-probabilistic models are more effective in providing
short-term occupant presence predictions [35].

Following their 2015 study, Tahmasebi and Mahdavi [36] input a variety of occupancy models into a
building simulation program to determine the effect of the occupancy prediction on building performance.
The first model used the ASHRAE 90.1 office schedule. The second used the average group occupancy data
for the year, while the third used the average individual occupancy data for the year. A stochastic model
for each of the previous three was created to generate a total of six models. An EnergyPlus performance
simulation was executed to calculate energy use under each occupancy model. Stochastic models were
executed using 100 Monte Carlo runs to find the average performance. The performance of the models
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was evaluated using the key performance indicators of annual and peak heating and cooling loads; see
Figure 3. It was observed that the ASHRAE schedules performed poorly in all metrics. The stochastic
models of individual and grouped occupancy performed better when simulating heating loads, while
the non-probabilistic models performed better when simulating cooling loads. Tahmasebi and Mahdavi
conclude that known occupancy data is critical for accurate building performance simulation, while
stochastic models are not [36].

Duarte et al. [26] performed an occupancy study on a multi-tenant 11 story office building in
Boise, Idaho. Using data from 223 private offices over two years, probabilistic models and ASHRAE
90.1 schedules were compared to a non-probabilistic model. Comparing the different occupancy models,
the ASHRAE 90.1 schedule overestimated occupancy by as much as 46%. Using data from ten offices for
training, the stochastic model matched the training data but not the overall measured occupancy. The
authors recommend using a low and high non-probabilistic model because it represents occupancy well
without increasing modeling complexity [26].

In all comparison studies, the authors agree that the best model is case specific [24]. Most models are
developed using single data and building sets and do not transfer effectively to different building types or
occupant behaviors [37]. Despite this, some general conclusions can be drawn:

• ASHRAE occupancy schedules are not reflective of actual behavior.
• Model complexity, such as stochasticity, does not always improve results.
• Models perform best when applied to the case study used to derive them [24].

Since there is no universal occupant prediction model, the IEA Annex 66 consortium recommends
choosing a model that matches the complexity levels of the occupant model to the case study. The study
presented in this paper aimed to evaluate the possible energy savings on short-term occupancy-based
HVAC predictive control. Thus, a non-probabilistic model, which was shown to have the best short term
presence prediction, was used [26,35].

Figure 3. Results of building performance simulation (BPS) model accuracy from 2017 study. Adapted
from Reference [38].
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2. Occupancy Model Generation and Discussion

The goal of this work was to evaluate the impact of occupancy-based HVAC control on residential
building models and associated potential energy savings. To facilitate this, actual residential occupancy
had to first be determined. Real occupancy data was collected from multiple homes located in Boulder,
Colorado, and used to create non-probabilistic occupancy prediction models. The effectiveness of the
model was determined by comparing the predicted occupancy against actual occupancy. The details of
this process are explained in following subsections.

2.1. Ground Truth Data Collection

Occupancy and eight different physical modalities (e.g., temperature and CO2) data was collected
from six homes for a period of 4–9 weeks each. Occupancy data was collected using a geo-fencing
application installed on the users’ cell phones, as well as with a paper sign-in sheet by the front door. The
two collection methods were cross-referenced by the researchers to confirm correctness. Through both
methods, occupant arrival and departure times were recorded for each person residing in the home.
Individual occupant data was combined in order to determine the binary occupancy state of the residence.
General occupancy information for each residence is shown in Table 1.

Table 1. Summary of residences measured during study.

House # Occupant Count House Type Days Measured Avg. Occupancy

1 4 house 64 86%
2 1 apartment 45 56%
3 3 house 71 75%
4 3 apartment 29 82%
5 2 apartment 27 81%
6 1 apartment 63 52%

Residences used for the study were chosen from volunteer participants at a university, and consisted
of graduate and undergraduate students, a post-doctoral researcher, and a university professor. Since
most of the participants were students of some type, their occupancy patterns may be quite different from
those collected in a different segment of the population. For instance, the fact that several of the homes
contained multiple graduate students with a variety of class and work schedules meant that someone
was nearly always home (yielding occupancy rates of 82% and 86%). Furthermore, none of the homes
contained children, which might have led to different occupancy patterns. Additionally, occupancy was
impacted by extended absences during spring and fall breaks for a few of the homes studied.

While the average occupancy for the testing period ranged from 52% to 86%, the daily occupancy of
each home varied. Distributions of daily occupancy rates for each residence are shown in Figure 4. Home
6 (a young graduate student who lived alone) had the largest distribution in daily occupancy, while home
5 had the lowest (married postdoctoral researchers, one of whom worked from home).
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Figure 4. Daily occupancy rate for each measured day by house [%].

Beyond daily occupancy, arrival time, departure time, and number of occupancy state transitions
were also analyzed. Arrival is defined as the transition of the residence from an unoccupied state to
occupied state; departure is the inverse transition. In residences with more than one occupant, the arrival
and departure times identified only indicate cases where the residence transferred to or from vacant.
Distributions in daily occupancy, arrivals, departures, and occupancy state transitions demonstrate the
stochasticity of human behavior. For all residences measured, the arrival and departure times for weekdays
differed significantly from those of weekends.

2.2. Occupancy Model Generation

Based on the literature review, a non-probabilistic model was chosen to model occupancy.
Since non-probabilistic models use past data to create an occupancy probability, the model can be optimized
by establishing what training data to include. Model optimization was done by splitting the collected
occupancy data into separate training and testing data sets. Models were trained using the first set,
and performance was evaluated by testing the trained model on the second dataset. The only exception to
this is the case of the moving training mode, which used a receding horizon. In this case, the model was
continually being trained, then tested on unseen data, and then the model was updated after comparison
to ground truth.

The percentage of data used for training versus testing was varied, along with three other parameters.
Up to 96 different non-probabilistic models were created for each house, with each model using a different
subset of training data to create the occupancy profiles. Table 2 shows the different values for each
parameter that was used when creating the models.

Table 2. Variables used for occupancy model creation.

Day Categorization Training Time Training Mode Time Resolution

day of week 1 fixed 1 min
week/end 2 moving 5 min

mfweekend 3 15 min
4 60 min

The four group parameters are defined as follows:

• Day categorization: This determines how each day of the week is categorized. For example, in day
of week, only training data that matches the day being predicted is used. In week/end categorization,
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all Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays are used to predict occupancy for
weekdays. Finally, in mfweekend categorization, Tuesday, Wednesday, and Thursday are used to
predict weekdays with Monday and Friday kept as separate individual days.

• Training time: This determines how many weeks are used when training the model, ranging from one
week to four weeks. Up to 50% of the collected data was used for training, meaning that in residences
where only four weeks of total occupancy data were recorded, only two weeks were available for
training. In these cases, only 48 total models were generated because the 3-week and 4-week training
time was unavailable.

• Training mode: This determines whether the training time is used in a fixed mode (static training set)
or in a moving mode (where a trailing horizon is used). For example, in a 1 week moving mode, only
the last seven days are used to predict occupancy for that day.

• Time resolution: This determines how often occupancy is sampled. Time is shown in minutes.

After a training set was generated from the collected data, the average occupancy was determined
for each interval of the day, resulting in an occupancy probability between 0 and 1. To create a binary
occupancy schedule, a threshold probability was set for each day. This threshold was determined by
finding what value produced the same minutes of predicted occupancy as the summed occupancy minutes
in the input data. An example of a single day for House 1 is shown in Figure 5. Occupancy prediction
models were created for a time period of two to five weeks, depending on the length of total measured
data.

Figure 5. Occupancy probability, threshold, and resulting model for single day, by time.

2.3. Occupancy Model Accuracy

Once the non-probabilistic models were generated for each home, the resulting predicted occupancy
state was compared against the actual occupancy state. To evaluate the effectiveness of the occupancy
prediction models, three metrics were used:

• False negative rate: Percentage of minutes that the model incorrectly predicted the house was vacant
when it was occupied.

• False positive rate: Percentage of minutes that the model incorrectly predicted the house was
occupied when it was vacant.

• State matching error: Percentage of minutes that the model incorrectly predicted occupancy. This is
the inaccuracy of the model. The state matching error is the sum of the false negative and false
positive rate.
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All the metrics are error rates, and so should be minimized. The best models had low values for false
negative rate, false positive rate, and state-matching error. False negative errors and false positive errors
have different impacts. When a false negative occurs, the house is actually occupied when predicted vacant.
In this case, indoor temperature may not be in the comfort range because the control has been changed to
a setback temperature. When a false positive occurs, the house is actually vacant when predicted occupied.
In this case, the HVAC system may be running to maintain an unnecessarily tight temperature setpoint
range, resulting in higher energy use.

Training and evaluation times varied by house due to differences in data collection periods. Table 3
lists how the collected data was used in generating the prediction models. Training period shows how
many weeks were set aside for determining occupancy probability, and evaluation period shows how
many weeks were used to evaluate the generated model. The training period is the maximum number
of weeks available. Training time, used as a variable, determined how many of the weeks were used in
training the model. During the evaluation period, the predicted occupancy was compared against the
measured occupancy at one-minute intervals.

Table 3. Summary of model training and evaluation for each house.

House # Models Created (Count) Training Period (Weeks) Evaluation Period (Weeks)

1 96 4 5.1
2 96 4 2.4
3 96 4 6.1
4 48 2 2.1
5 48 2 1.9
6 96 4 5.3

The model configuration with the lowest state matching error is shown for each house in Table 4.
House 5 had the lowest state matching error with an error rate of 8%, while House 6 had the highest at
35%. Each house, due to its occupancy pattern, had a different optimal occupancy model, which indicates
the value in tailoring the model to the specific use case.

Table 4. Best occupancy prediction model for each residence.

House Day Categori-Zation Training Time Training Mode Time Resolution False Negative False Positive State Matching Error

1 mfweekend 4 fixed 15 12% 4% 16%
2 weekend 3 moving 5 13% 13% 26%
3 weekend 1 moving 1 28% 6% 35%
4 weekend 1 moving 60 8% 2% 10%
5 weekend 1 moving 60 5% 3% 8%
6 day of week 2 moving 15 7% 30% 37%

To understand the effect of each parameter on the resulting prediction model, the performance results
were compiled and analyzed. The parameter with the largest effect on state matching error was the
occupancy pattern, shown in Figure 6. The results show that each house, with its different occupancy
patterns, has a strong influence on the effectiveness of creating a prediction model. As previous studies
showed, the behavior of people has a large variance and can drastically affect prediction models.
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Figure 6. State matching error for each house [%].

In contrast to the differences in house occupancy patterns, the parameters that were used to develop
the training set each had a small influence on the prediction error. The results of all four parameters are
discussed below.

Day categorization On houses with fewer weeks of collected data (House 2, 4, and 5), using day of
week categorization resulted in the least accurate prediction models. This is likely due to the extremely
limited training data for each day. In a day of week model, each weekday is treated individually. Thus, if only
two weeks of training data are used, then there would be only two instances of each day. In contrast, in
House 6, where the occupant had a part-time job that she attended three days a week, the day of week
method increased the prediction accuracy.

Training time: As would be expected, using more training data improved the accuracy of models
for most of the houses. House 3, the exception, had a shift in occupancy patterns halfway through data
collection, when some of the occupants went on vacation and extended visitors arrived. This indicates
that when new occupants join a household, the previous training data will not effectively predict the
new occupancy pattern. To explore this theory further, Figure 7 shows the resulting state-matching error
when the training time is extended to seven weeks. With additional training weeks, the error is reduced,
indicating that the longer the training data is accumulated, the more the error can be reduced.

Figure 7. State matching error for House 1, by number of training weeks.
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Training mode: The moving training mode had improved prediction accuracy for five of the six
houses. By allowing the model to adjust over time, the moving training mode adapts to shifting behavior.
House 1 had the best prediction accuracy with the fixed mode. The difference between the highest
performing fixed mode and highest performing moving mode for House 1 was 0.3%. The higher
performance using fixed mode indicates the initial data reflected the general behavior more than later
weeks.

Time resolution: Results are nearly identical for each time resolution variable signaling that sampling
time does not play a large role in increasing prediction accuracy.

While the lowest state matching error can be achieved by optimizing a non-probabilistic occupancy
prediction model to a specific house, a universally applicable model is desirable. This would allow a single
model to be deployed in different houses, without the need for preliminary data gathering to determine
the parameters. To find the best occupancy model for all the houses surveyed, the state matching error
results were normalized by dividing the results by the lowest state-matching error achieved by that house.
The lowest error for each house was used to ensure that all of the houses were considered equally. Figure 8
shows a parallel category plot of the results. Occupancy models that were within 5% of the best model for
that house are shown in green, while other models are shown in red.

Figure 8. Parallel category plot of occupancy models.

Results show that the mfweekend day categorization does not work well for the houses surveyed. Day
of week and week/end both work well, with week/end performing better for most homes, suggesting the six
houses surveyed do not have distinct Monday or Friday schedules. Four and one week training times
were the best, with two and three week training times performing slightly worse. Houses with consistent
schedules benefited from the increased data of a longer training time. Houses in which occupants were
absent for days benefited from the faster reaction of the shorter training time adjusting to their absence
and return. The moving training mode produced the highest number of low state matching errors, which
is likely due to its ability to continuously adjust to occupants’ behavior changes over time. As seen in
the individual evaluations, different time resolutions produced equivalent results, although the 15-min
time resolution yielded a slightly higher number of low normalized state matching errors. Based on these
results, the optimal universal model across all houses was a one week training time moving model that uses
week/end day categorization and a 15-minute time interval. The state matching error for each house with
the universal prediction model is shown in Table 5.
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Table 5. Results of universal occupancy prediction model for each residence.

House Day Categori-Zation Training Time Training Mode Time Resolution False Negative False Positive State Matching Error

1 weekend 1 moving 15 15% 2% 17%
2 weekend 1 moving 15 22% 10% 32%
3 weekend 1 moving 15 28% 6% 35%
4 weekend 1 moving 15 8% 2% 10%
5 weekend 1 moving 15 5% 3% 8%
6 weekend 1 moving 15 11% 33% 44%

3. Building Simulation Setup

Building performance simulations were conducted in EnergyPlus (Version 9.1, National Renewable
Energy Laboratory, Golden, CO, USA) to understand the impact of residential HVAC control on energy
use for a number of representative home scenarios. Multiple home types, climates, seasons, and occupancy
patterns were used to more globally represent the breadth of scenarios, as well as to understand the range
of possible outcomes.

3.1. Building Performance Simulation Settings

The six previously collected occupancy data sets were used as the possible occupancy scenarios.
Data from these homes were assumed to represent occupancy patterns over all climates and seasons for
which the simulations were performed. Five prototype home styles were used, as provided by National
Renewable Energy Laboratory (NREL) for the building models [39]. Each home had a different climate
and building construction that was representative of the national housing stock. The five locations used
were: Boston, Phoenix, Atlanta, Seattle, and Houston. House sizes averaged 2000 ft2 with typical home
construction and vintages for each region. Details on the home and construction parameters are shown in
Table 6.

The occupancy prediction models developed in Section 2.3 ranged from 13 to 36 days depending on
the house. A two-week period with one-minute timestep intervals was used for the building performance
simulations. Building simulations were performed for two different seasons using the first two weeks of
January and the first two weeks of July. Including both winter and summer runs allowed the impact of
HVAC control to be ascertained for both heating and cooling modes.

Boston and Atlanta have cold, near-freezing winters, and hot summers. In both of these locations,
the outdoor air temperature was well outside of the comfort range for the majority of the simulations.
Houston has moderately cold winters and hot summers, while Phoenix has mild winters and extremely
hot summers. Both Houston and Phoenix require significant cooling in the summer. During winter in
Phoenix, the outdoor air temperature oscillates within the comfort range. Seattle, in contrast, experiences
both cool winters and cool summers, requiring some heating year-round.

Heating and cooling temperature setpoints were established using the method of predicted mean vote
(PMV). ISO EN 7730 establishes three comfort categories using operative temperature. These categories
are shown in Table 7. Class A and B were used as the defined comfort range to maintain a PMV within 0 ±
0.5.
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Table 6. Summary of house model constructions.

Boston, MA Phoenix, AZ Atlanta, GA Seattle, WA Houston, TX

Climate Cold Hot-Dry Mixed-Humid Marine Hot-Humid
5A 2B 3A 4C 2A

Vintage <1950s 1970s 1970s <1950s 1970s
House Size 2589 ft2 2013 ft2 2013 ft2 1938 ft2 2013 ft2

Envelope
Attic Uninsulated Ceiling R-13, Vented Ceiling R-19, Vented Ceiling R-13, Vented Ceiling R-13, Vented
Wall Cavity Uninsulated Uninsulated Uninsulated Uninsulated Uninsulated
Foundation Uninsulated Uninsulated Uninsulated Uninsulated Uninsulated
Windows Clear, Double, NM, Air Clear, Double, Metal, Air Clear, Single, Metal Clear, Single, Metal Clear, Double, Metal, Air
Air Leakage 15 ACH50 15 ACH50 15 ACH50 15 ACH50 15 ACH50

HVAC
Heating Gas Boiler, 80% AFUE Gas Furnace, 80% AFUE Gas Furnace, 80% AFUE Gas Furnace, 80% AFUE Gas Furnace, 80% AFUE
Cooling Room AC, EER 10.7 Central, SEER 13 Central, SEER 13 None Central, SEER 13

Table 7. Three categories of thermal comfort (ISO EN 7730, 2005).

Thermal State of the Body as a Whole Operative Temperature ◦C

Category PPD % PMV Summer (0.5 clo) Winter (1 clo)

A <6 −0.2 < PMV < +0.2 23.5–25.5 21.0–23.0
B <10 −0.5 < PMV < +0.5 23.0–26.0 20.0–24.0
C <15 −0.7 < PMV < +0.7 22.0–27.0 19.0–25.0

While operative temperature, as used in the calculation for PMV, defines thermal comfort,
HVAC systems are controlled by measuring zone air temperature. The ambient air temperature setpoints
that were used to control the heating and cooling systems in the simulations are given in Table 8.

Table 8. Zone air temperature setpoints and setback temperatures used in building simulations.

Setpoint Temperature Setback Temperature

Heating 22.0 ◦C 18.0 ◦C
Cooling 24.5 ◦C 28.0 ◦C

Three HVAC control scenarios were modeled in the building performance software: conventional
operation, occupancy-based HVAC control, and occupancy-based MPC. Conventional operation used a
constant heating and cooling setpoint, and was used as the baseline. Results for each strategy are discussed
in the subsequent sections.

3.2. Conventional Control (Baseline) Results

When all home scenarios were operated under conventional control, Boston winters showed the
highest amount of energy use among all scenarios. This is logical due to the cold ambient environment,
older vintage house, and larger size.

In addition to energy use, thermal comfort was evaluated by calculating operative temperatures.
Temperatures between 20 ◦C and 26 ◦C were considered comfortable to accommodate 0.5 to 1.0 clo clothing
levels (typical of a person inside their home). By using a constant setpoint temperature that was within
the comfort range, it was expected that the percentage of time temperatures were within the comfort
range would be high. Comfort was high except for Phoenix and Seattle in summer. Further examination
shows Phoenix achieved a constant internal air temperature of 24.5 ◦C in summer. However, the operative
temperatures were higher, which created uncomfortable conditions. This case demonstrates the impact
of using air temperature, rather than operative temperature to drive system controls. In Seattle, both the
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indoor air and operative temperature were too high for comfort. High temperatures were caused by the
hot outdoor temperatures which could not be mitigated without an air conditioner.

4. Occupancy-Based HVAC Control Results

Occupancy information can be incorporated into HVAC control in a multitude of ways. In all cases
simulated in this study, knowledge of building occupancy, either through prediction or detection methods,
was used to establish the setpoint temperature for HVAC control. When the space is believed to be vacant,
the temperature is allowed to drift to a more relaxed setback temperature, reducing use of the HVAC
system when unoccupied. However, when the space is either believed to be occupied or predicted to soon
be occupied, the space is maintained at the setpoint temperature, which ensures that temperatures are
within the comfort zone.

4.1. Occupancy Control Schemes

Five total occupancy detection models were considered and simulated, which fall under three main
strategies:

1. Reactive: Occupancy is detected and setpoint temperatures are adjusted accordingly. In this case,
occupancy is sensed and no prediction is used.

2. Predictive: Occupancy is predicted using two different non-probabilistic models, as developed in
Section 2.3.

• Universal model: This is the prediction model that performed best for all houses and used a one
week, 15 min, week/end categorization, moving training set.

• Individually tuned model: This is the prediction model that performed best for the specific house.
The models used are listed in Table 4.

3. Hybrid: A hybrid of predictive and reactive occupancy models. Occupancy is first predicted using
the non-probabilistic models developed in Section 2.3. During operation, if an occupancy change
from vacant to occupied is detected that was not predicted, the control will react and reset the
temperature control to occupied settings. In order to maintain the predictive aspect of the model, this
control method does not react to changes from occupied to vacant states, which would have made
for purely reactive control.

• Universal hybrid: This is the prediction model that performed best for all houses, and used the
same universal model as described above, but with the reactive component.

• Individually tuned hybrid: This is the prediction model performed best for the specific house, with
the reactive component. Models used are listed in Table 4.

4.2. Results

Building simulations were conducted for all five occupancy-aware control methods for all homes,
climates, and seasons. The energy savings of each method, relative to the conventional baseline model,
are shown in Figure 9, with the average savings for that model shown in Table 9. While all of the
control strategies reduced the total energy used during the simulation, the two pure predictive models
(universal and individually tuned) had the largest energy savings potentials, with 10.9% and 9.6% savings,
respectively. The reactive control model has similar energy savings to the prediction models, with an
average of 9% of total energy consumption. This method was particularly helpful in homes where long
periods of unpredictable vacancy, such as a vacation, occurred. The hybrid approaches, which used both
predictive and reactive occupancy, saved the least energy with an average of 3 %–5% savings.
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Table 9. Average energy savings by control method.

Control Method Energy Savings

Reactive 9.1%
Universal Model 10.9%
Individually Tuned 9.6%
Universal Hybrid 4.3%
Individual Hybrid 5.7%

Figure 9. Energy savings and discomfort percent for simulation period by control method [%].

Of equal importance to energy savings are the comfort of occupants under each control method,
which was assessed using building operative temperature. Table 10 shows the percentage of time that the
occupants were predicted to be uncomfortable, as classified by time spent occupying the residence when
it was not within Class A or B comfort temperatures. The hybrid models achieved the highest levels of
comfort, with time spent in discomfort similar to that seen with conventional setpoint control. In contrast,
the purely predictive models, which did not react to incorrect predictions, led to the largest discomfort
percentages. Figure 9 shows the savings over conventional, compared with the percentage of occupied
time in the uncomfortable range.

Table 10. Average discomfort by control method.

Control Method Unmet %

Conventional 2.4%
Reactive 2.6%
Universal Model 7.3%
Individually Tuned 6.9%
Universal Hybrid 2.0%
Individual Hybrid 2.1%

Achieving energy savings without disrupting occupant comfort is the primary goal of effective
HVAC control. Since energy savings are achieved by allowing the temperature to drift to uncomfortable
conditions when the space is believed to be unoccupied, occupancy-aware controls can only be truly
effective if occupancy is accurately predicted and detected. Parameters, such as city, season, and occupancy
patterns, all affect comfort, according to the simulations. Phoenix and Seattle have high unmet comfort
ratios in summer, as discussed in the conventional control.
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The fact that energy savings are dependent on city indicates that either vintage of the home or climate
(and likely both) determine relative savings potential. Since home styles vary according to the region,
it is difficult to decouple these two effects. In Figure 10, energy savings are shown by city and season
simultaneously. Energy savings are highest in Atlanta, Boston, and Houston, especially during summer.
All three climates are extremely hot and humid during the summer months, thus reducing unnecessary
air-conditioning results in large energy savings.

Figure 10. Unmet comfort and energy savings for simulation period, by city and season [%].

Both energy savings potential and discomfort were affected by occupancy patterns. Houses 2 and 6,
which had the highest vacancies, also had the highest median energy savings. This indicates that the
higher the vacancy rate, the higher the energy savings potential. This is not surprising, as more unoccupied
hours means more opportunities for the temperatures to drift outside of comfort. In the cases of predictive
models, the energy savings potential is also dependent on how well the vacancy is predicted. The
savings can only be realized when the house is both vacant and correctly predicted to be so. Despite low
vacancy rates, House 5, which had the most accurate model, also had the highest energy savings in some
simulations. This indicates that the better the prediction model is, the higher the possible energy savings
can be, as time spent heating or cooling a house that has been incorrectly predicted as being occupied
is reduced. In analyzing comfort, House 2 had the highest discomfort portion and a high prediction
inaccuracy, signalling the importance of accurate prediction to comfort. Overall, these figures indicate
that although large energy savings are possible, the prediction model needs to be accurately calibrated to
achieve energy savings and comfort.

Due to the large ratio of discomfort, prediction-only models were not an effective HVAC control
strategy. Both hybrid models were able to achieve comfort at the same level of conventional control. Since
occupant comfort is not degraded, these methods are more likely to be used by occupants. Conventional,
reactive, and hybrid methods all achieve discomfort below 3% on average. Reactive control has the highest
average energy savings at 9.1% but at the cost of reduced comfort in comparison to conventional control.
Conventional control, which is the baseline, has no energy savings. The two hybrid controls, universal and
individual, achieve an average energy savings of 4.3% and 5.7%, respectively. Individual hybrid is able
to achieve the highest energy savings while maintaining comfort levels at or below conventional control.
Therefore, the individual hybrid control is the recommended occupancy-based HVAC control.
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5. Model Predictive HVAC Control Results

Model predictive control (MPC) was the final HVAC control scheme considered. In MPC, an algorithm
is used to predict and proactively react to upcoming temperature disturbances or setpoint changes. MPC
has been used in the past to optimize a number of parameters in building control, from incorporating
weather forecasts for temperature control to shifting peak loads for the power grid [11,13,15,16,40–50].
MPC has the advantage of being a proactive rather than reactive control strategy. For example, by
predicting the effect of an increase in outdoor temperature before it occurs and overheats the space, indoor
temperature can be gradually reduced, and the amount of energy used by the HVAC system can be
minimized.

In this work, MPC was used in conjunction with weather and the occupancy-prediction models from
Section 2.3 to optimize the temperature setpoints. An optimization algorithm was executed to find the
setpoint temperature that minimizes both energy use and discomfort. In Section 4, occupancy prediction
models were used to change the setpoint temperature. In that case, four total temperature setpoints
were allowed: the heating setpoint temperature, the cooling setpoint temperature, the heating setback
temperature, and the cooling setback temperature (Table 8). MPC optimization considered not only those
four temperatures, but also temperatures within those bounds, to find the optimal solution. In order to run
MPC, parameters, such as the optimization algorithm, cost function, the prediction horizon, the execution
horizon, and building model, all had to be determined.

5.1. Model

Commonly, MPC is performed utilizing reduced-order linear system models. This allows the
optimization to be performed more quickly and easily. However, whole building energy simulations, like
EnergyPlus, allow the calculation of radiant heat balances and non-linear part-load system performances,
which simplified models cannot capture [44]. In cases where thermal comfort is being evaluated, these
calculations are essential, and so EnergyPlus was chosen as the modeling engine to perform the task.
However, to reduce computation time, the model was reduced as much as possible. These reductions were
achieved by hard-sizing the HVAC equipment using TMY3 data for the simulation period, increasing the
simulation timestep from one to fifteen minutes, and reducing the numbers of reported variables [44,51].

5.2. Optimization Parameters

Model predictive control requires a prediction horizon to designate how far into the future the model
is predicting and optimizing. In this study, a 24-hour prediction horizon was used to account for diurnal
temperature swings and internal gains from daily occupancy patterns and equipment use. The execution
period, which dictates how often the optimization is conducted, used a one-hour horizon to adjust to
actual occupancy and indoor temperature values. Once an optimum temperature setpoint was found, it
was implemented in the model and the simulation via EnergyPlus was stepped forward one hour in time.
A new optimization process was then started with the current state values and a new 24-hour prediction
horizon.

The MPC utilized a Matlab-based particle swarm optimization algorithm to determine the optimal
control actions. Particle swarm optimization (PSO) uses a group of candidate solutions as beginning values.
Simulations using these seeds are executed, yielding initial results for the cost function. As the particles
are evaluated and move throughout the decision space, they swarm towards the optimum solution. By
using a swarm, the possibility of finding a local minimum, rather than global minimum, is reduced [52].
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5.3. Objective Function

The cost function combines all the factors that are to be evaluated and optimized into a single formula.
How the cost function is configured determines which values are considered most important in finding the
best solution. In this study, the cost function minimized energy use and occupant discomfort. Optimization
of this function was constrained by the allowable temperature band. Discomfort was calculated using
predicted mean vote (PMV). Since thermal comfort was not always achieved in the baseline model, the
PMV from the baseline was used as the maximum allowed PMV in the optimization run, which prevented
the optimization algorithm from penalizing solutions that provided comfort performance equivalent to (or
better than) the baseline model. By minimizing energy use and occupant discomfort concurrently, MPC
could reduce energy use without sacrificing occupant comfort using Equation (1).

min
(

∑
k

Ek + P
)

(1)

subject to: Tlower,k ≤ Toptimal,k ≤ Tupper,k,

where P is the occupied discomfort, Ek is hourly HVAC consumption at timestep k, T is the temperature
setpoints at timestep k, and k is the number of timesteps in the evaluation. Occupant discomfort is
calculated as shown in Equation (2).

P = C ∑
k
(| PMVk | −PMVmax), (2)

where C is the comfort penalty slope, PMVk is predicted mean vote during timestep k, and PMVmax is the
PMV comfort threshold. Since the PMV during the baseline run may exceed 0.5, such as in the case of
Seattle in summer, the threshold is adjusted to allow the optimized MPC to use an equitable PMV during
optimization. This threshold is calculated with Equation (3).

PMVmax = max(0.5, | PMVbase,k |), (3)

where PMVmax takes the higher value between 0.5 and the PMV from the baseline run at timestep k.
The goal of MPC is to optimize for all the factors within the cost function, of which there are two

in this case: energy consumption and thermal discomfort. The relative importance of the two factors
is controlled by C, the comfort penalty slope, which determines the scaling of discomfort costs. With a
smaller C value, setpoint temperatures leading to uncomfortable hours do not increase the cost function
as much, allowing some thermal discomfort to occur in favor of energy savings. Thus, the comfort slope
allows flexibility in the cost function and can be tuned to meet the individual goals of the occupant,
depending on how much comfort they are willing to sacrifice.

To determine an appropriate comfort slope, MPC simulations were completed for two days in House
1. During the modeled time period, the house was vacant for approximately six hours of each day, allowing
the comfort slope to be evaluated during both occupied and unoccupied states. Figure 11 shows the
summarized results from this experiment. Discomfort was evaluated by classifying hours within ±0.5
PMV as comfortable, ±0.7 PMV as Class C discomfort, and beyond ±0.7 PMV as excessive discomfort. As
the comfort slope value increased, hours of discomfort decreased, while energy use increased. A comfort
slope was chosen to allow only a few hours of Class C discomfort. For all simulations in this study, a
comfort penalty slope of 1000 was used, which allowed some energy savings, while still maintaining
comfort most of the time.
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5.4. Simulation

MPC was used to simulate three different scenarios, in order to understand the factors that make
it more or less effective. The individually tuned hybrid models found in Section 2.3 were used in two
different locations (Atlanta and Houston) in the summer, and the Atlanta results were compared to those
found from a model that used perfect occupancy forecasting. Atlanta and Houston were chosen due to
their relatively average energy use and temperatures in Section 4. By using a climate that was neither mild
nor extreme, the MPC results should apply to more regions.

In each scenario, two different homes’ occupancy schedules were utilized in the simulations to show
the effects of differing occupant profiles. The three scenarios yielded different results and insights, which
are discussed in the following subsections.

Figure 11. Resulting comfort and energy use, by comfort slope value.

5.4.1. MPC Case 1: Houston with Occupancy Prediction

In this simulation, MPC was used with the individually tuned hybrid models found in Section 2.3 to
model the cooling requirements for a home in Houston in summer. Occupancy profiles for Houses 2 and
5 were chosen, as these exhibited very different patterns. A summary of the EnergyPlus model settings,
optimization parameters, and objective function is provided in Table 11. The maximum computation time
allowed for each optimization was 30 min, which yielded a minimum of 300 function evaluations for each
execution horizon. Overall, the MPC simulation for each house took 60 h to complete the five-day run
period.
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Table 11. Settings used for Model Predictive Control (MPC) optimization in Case 1.

Parameter Value

City Houston
Season Summer
Houses 2 & 5
Prediction model Individual Hybrid
Run period 5 days
Timestep 15 min
Planning horizon 24 h
Execution horizon 1 h
Occupied allowed temperatures 22 ◦C was ≤ Toptimal,k ≤ 24.5 ◦C
Unoccupied allowed temperatures 18 ◦C ≤ Toptimal,k ≤ 28 ◦C
Temperature increments 0.5 ◦C
Comfort penalty slope (C) 1000
Optimization time per execution horizon 30 min

Results for Case 1 are shown in Table 12. Discomfort is measured by exceedance above Class A and
B comfort. This value was calculated by summing the operative temperature deviations above 26.0 ◦C
or below 23.0 ◦C for all occupied hours. Results are measured in Kelvin-hours (Kh). For both houses
simulated, the energy saved is very low, with an average savings of 1%. However, little to no thermal
discomfort was achieved. The MPC optimization results found that the highest allowed temperatures
provided the lowest resulting cost. Although any temperature within the band was allowed, the optimal
temperature ending up matching the values used in occupancy-based setpoint control, signaling that for
Case 1 setpoint control and MPC optimization yielded the same temperatures.

Table 12. Results for Case 1.

House Energy Savings Discomfort

2 2.1% 3.7 Kh
5 0.2% 0 Kh

Most hours of the simulation are within the comfort region, leading to high comfort for the occupants,
but low energy savings. Hours in which the temperature was allowed to drift above comfortable
temperatures were few due to the small number of hours when the prediction model accurately predicted
the house to be vacant.

5.4.2. MPC Case 2A: Atlanta with Occupancy Prediction

In the second set of simulations, MPC was used with the individually-tuned hybrid models for Houses
1 and 2 in Atlanta in the summer. In this case, the maximum allowed temperatures during occupied hours
were kept at the same values used during all unoccupied hours. By allowing a large temperature band at
all times, the constraints within the cost function were reduced, and temperatures which produced the
smallest cost function were used, rather than the being restricted by the temperature band. A summary of
all the settings used for the simulation is shown in Table 13.

Results of these simulations are summarized in Table 14. For this simulation, the two houses saved
an average of 9.0% in energy use. Exceedance is higher than Case 1 with an average of 35.3 Kh. Total
occupied hours for both houses for the week was 185 h, with House 1 being occupied for 100 h and House
2 being occupied for 85 h. With the average exceedance of 35.3 Kh, an average distribution of thermal
discomfort would yield 0.4 ◦C above the ideal temperatures.
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Table 13. Settings used for MPC optimization in Case 2A.

Parameter Value

City Atlanta
Season Summer
Houses 1 & 2
Prediction model Individual Hybrid
Run period 1 week
Timestep 15 min
Planning horizon 24 h
Execution horizon 1 h
Occupied allowed temperatures 19 ◦C ≤ Toptimal,k ≤ 27 ◦C
Unoccupied allowed temperatures 19 ◦C ≤ Toptimal,k ≤ 27 ◦C
Temperature increments 0.5 ◦C
Comfort penalty slope (C) 1000
Optimization time per execution horizon 30 min

Table 14. Results for Case 2A.

House Energy Savings Discomfort

1 7.5% 30.8 Kh
2 10.4% 39.8 Kh

Figure 12 shows temperatures for House 1 for two days of the simulation. Chosen temperatures
ranged from 19 ◦C to 27 ◦C, with the average setpoint temperature at 25.4 ◦C and 26.2 ◦C for House 1
and 2, respectively. With the expanded temperature range, temperature values selected did not always
conform to setpoint temperatures as seen in Case 1. While setpoint values allowed an 8 ◦C range, ambient
air temperatures occurring within the building had a 4.5 ◦C to 4.7 ◦C range. More extreme setpoint
temperatures only lasted for an hour, preventing temperature within the building from reaching the
setpoint and maintaining a comfortable space despite the setpoints used.

Figure 12. Case 2A temperatures for House 1 using individualized hybrid prediction model.

Figure 13 shows the electricity consumption resulting from the setpoint temperatures used. Due to
changing setpoint temperatures, electricity consumption jumped in hours using low setpoint temperatures
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as more cooling occurred. In other hours, however, electricity was significantly less than the conventional
constant temperature. Over the week simulated, electricity consumption was reduced to allow 7.5% and
10.4% energy savings for House 1 and 2, respectively.

Figure 13. Case 2A electricity consumption for House 1 using individualized hybrid prediction model.

Figure 14 shows the duration curve of operative temperatures for House 1. The figure shows that
allowed temperature deviation was higher for unoccupied hours. In hours that the house was occupied,
operative temperature was kept closer to the center point temperature of 23.5 ◦C. With the chosen cost
function, some temperature deviation was allowed to achieve higher energy savings. Unlike Case 1, which
had tight occupied temperature constraints, temperature deviation in Case 2A is higher. Changes to the
comfort penalty slope would change how much deviation is allowed and, in result, how much energy was
saved.

Figure 14. Case 2A duration curve of deviation from 24.5 ◦C operative temperatures.

5.4.3. MPC Case 2B: Atlanta with Perfect Occupancy Forecasting

In a third scenario, all settings used from Case 2A were kept the same except for the occupancy
prediction model. In this scenario, actual occupancy data was used in Houses 1 and 2 to imitate perfect
occupancy forecasting. This allows for an exploration of how imperfections in the occupancy prediction
impact MPC results. A summary of all used settings are shown in Table 15.
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Results from the MPC optimization with perfect occupancy predictions are shown in Table 16. Energy
savings for Houses 1 and 2 increased by 5.4% and 2.9%, respectively, while comfort exceedance in both
homes decreased (Figure 15). Like Case 2A, setpoint temperatures range from 19 ◦C to 27 ◦C. However,
unlike Case 2A, low setpoint temperatures are used less often to achieve a quick temperature change. The
resulting internal air temperature ranged from 22 ◦C to 27 ◦C.

Table 15. Settings used for MPC optimization in Case 2B.

Parameter Value

City Atlanta
Season Summer
Houses 1 & 2
Prediction model Perfect forecasting
Run period 1 week
Timestep 15 min
Planning horizon 24 h
Execution horizon 1 h
Occupied allowed temperatures 19 ◦C ≤ Toptimal,k ≤ 27 ◦C
Unoccupied allowed temperatures 19 ◦C ≤ Toptimal,k ≤ 27 ◦C
Temperature increments 0.5 ◦C
Comfort penalty slope (C) 1000
Optimization time per execution horizon 30 min

Table 16. Results for Case 2B.

House Energy Savings Discomfort

1 12.9% 21.0 Kh
2 13.3% 21.0 Kh

This experiment shows that with an accurate occupancy forecast, MPC optimization is able to allow
less energy-intensive temperatures during vacant periods, without the penalty from discomfort when an
occupant unexpectedly returns. This allows improvements in both energy savings and thermal comfort.
Thus, with accurate occupancy forecasting, energy savings above 10% are possible with the occupancy
patterns recorded. Accurate occupancy prediction, therefore, is essential in improving HVAC control.

Figure 15. Case 2B duration curve of deviation from 24.5 ◦C operative temperatures.

6. Summary and Conclusions

Residential heating and cooling accounts for a large portion of annual energy consumption in the
United States. Reducing energy use can contribute to furthering the goals of the Paris Agreement by
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reducing the burning of fossil fuels and thus reducing CO2 emissions. Within the residential energy
sector, energy savings can be realized by accounting for occupancy in HVAC control. This allows energy
reduction without negatively impacting thermal comfort of occupants, which is essential to the widespread
adoption of new HVAC control technologies.

A literature review revealed that non-probabilistic models historically have performed best for
short-term occupancy prediction. By collecting real occupancy data from six different homes, individual
non-probabilistic models were created and evaluated. Prediction inaccuracy in the models, termed
state-matching error in the study, ranged from 8.0% to 48.7%. Model training data that used a moving,
multi-week training set worked the best for all homes, with differences in occupancy patterns being
the highest contributor to prediction inaccuracy. An examination of increased training time indicates
that models can improve over time as more data is collected and included into the prediction model.
Once the occupancy prediction models were generated, they were then incorporated in occupancy-based
setpoint control and occupancy-based model predictive control in a building performance simulation. Five
EnergyPlus home models were used to simulate the energy use and indoor temperatures for two-week
periods in summer and in winter. Occupancy-based setpoint control showed possible energy savings
from 0% to 50.0% over control methods that used a constant setpoint temperature depending on climate,
occupancy pattern, and control strategy. Non-probabilistic prediction models achieved the highest energy
savings, with an average of 10.0%, but with the disadvantage of high thermal discomfort for the occupants.
By including an override, in which the occupancy prediction model can sense the actual occupant presence
and react to it, thermal discomfort was reduced. In these hybrid occupancy models, the energy savings
averaged 5.0%, while the number of hours that the space was deemed uncomfortable were low.

Model predictive control showed that energy savings is highly dependent on how the cost function
and constraints are parameterized. In Case 1, where the temperature constraints were much stricter during
occupied hours, little to no energy savings was achieved. However, in Case 2A, where temperature
constraints were relaxed during occupied hours, energy savings increased with only a slight impact on
discomfort. In Case 2B, where occupancy was perfectly predicted, both energy savings and thermal comfort
improved, leading to two conclusions: First, a cost function that combines both energy consumption
and thermal discomfort allows for flexibility for the user to determine what trade-off between energy
savings and discomfort is appropriate for the them. Second, accurate occupancy prediction improves both
performance aspects in the cost function. This shows that, as occupancy prediction improves, the ability
for occupancy-aware HVAC control to maintain comfort and increase energy savings improves.
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