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Abstract: This study uses an optimization approach representation and numerical solution for the
variable viscosity and non-linear Boussinesq effects on the free convection over a vertical truncated
cone in porous media. The surface of the vertical truncated cone is maintained at uniform wall
temperature and uniform wall concentration (UWT/UWC). The viscosity of the fluid varies inversely
to a linear function of the temperature. The partial differential equation is transformed into a
non-similar equation and solved by Keller box method (KBM). Compared with previously published
articles, the results are considered to be very consistent. Numerical results for the local Nusselt
number and local Sherwood number with the six parameters (1) dimensionless streamwise coordinate
ξ, (2) buoyancy ratio N, (3) Lewis number Le, (4) viscosity-variation parameter θr , (5) non-linear
temperature parameter δ1, and (6) non-linear concentration parameter δ2 are expressed in figures and
tables. The Taguchi method was used to predict the best point of the maxima of the local Nusselt
(Sherwood) number of 3.8636 (5.1156), resulting in ξ (4), N (10), Le (0.5), θr (−2), δ1 (2), δ2 (2) and ξ
(4), N (10), Le (2), θr (−2), δ1 (2), δ2 (2), respectively.

Keywords: taguchi experimental method; variable viscosity; non-linear boussinesq; free convection;
vertical truncated cone; porous media

1. Introduction

The coupled heat and mass transfer of free convection in saturated porous media have many
important applications in nature and engineering. Examples include geothermal flow, nuclear
waste storage, electronic heat transfer systems, building insulation, powder metallurgy, groundwater
contamination, osmotic cooling and chemical industry separation procedures.

Cheng et al. [1] analyzed natural convection of a Darcian fluid about a cone. With respect to the
study on heat and mass transfer, the coupled heat and mass transfer by free convection over a truncated
cone in porous media, variable wall temperature and variable wall concentration (VWT/VWC) or
variable heat flux and variable mass flux (VHF/VMF) was solved by Yih [2]. Cheng [3] considered an
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integral approach for heat and mass transfer by natural convection from truncated cones in porous
media with variable wall temperature and concentration. Cheng [4] extended the work of Yih [2] and
Cheng [3] to present Soret and Dufour effects on heat and mass transfer by natural convection from
a vertical truncated cone in a fluid-saturated porous medium with variable wall temperature and
concentration. Free convection from a truncated cone subject to constant wall heat flux in a micropolar
fluid has been explored by Postelnicu [5]. Chamkha [6] considered coupled heat and mass transfer
by MHD natural convection of micropolar fluid about a truncated cone in the presence of radiation
and chemical reaction. Yih and Huang [7] investigated the effect of internal heat generation on free
convection flow of non-Newtonian fluids over a vertical truncated cone in porous media: VWT/VWC.
Cheng [8] solved free convection of a nanofluid about a vertical truncated cone. Amanulla et al. [9]
explored thermal and momentum slip effects on hydromagnetic convection flow of a Williamson
fluid past a vertical truncated cone. Mahdy [10] presented modeling of gyrotactic microorganisms
non-Newtonian nanofluids due to free convection flow past a vertical porous truncated cone.

The study of the variable viscosity in porous media has been widely discussed. Lai and Kulacki [11]
considered the effect of variable viscosity on convective heat transfer along a vertical surface in a
saturated porous medium. Mahdy et al. [12] reported double-diffusive convection with variable
viscosity from a vertical truncated cone in porous media in the presence of magnetic field and radiation
effects. The effect of chemical reaction and heat generation or absorption on double-diffusive convection
from a vertical truncated cone in porous media with variable viscosity was studied by Mahdy [13].
Vajravelu et al. [14] analyzed free convection boundary layer flow past a vertical surface in a porous
medium with temperature-dependent properties.

The non-linear Boussinesq approximation has been the subject of much research. Vajravelu
et al. [14] obtained solutions for a class of coupled nonlinear differential equations, arising in free
convection flow at a vertical flat plate embedded in a saturated porous medium at high Reynolds
numbers in the presence of heat sources (or sinks) and with non-linear density temperature variation.
Prasad et al. [15] used the non-Darcy model and the non-Boussinesq approximation to explore free
convection boundary layer flow past a vertical surface in a porous medium with temperature-dependent
properties. With respect to heat and mass transfer, Kameswaran [16] examined the thermophoretic
and non-linear convection in non-Darcy porous medium. Combined convection from a wavy surface
embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq
approximation was analyzed by Kameswaran et al. [17]. The non-linear Boussinesq article for the case
of truncated cone is lacking.

However, there are still very few instances of the Taguchi method being used to find the
maximum values by simulation. Ho et al. [18] suggested adaptive network-based fuzzy inference
system for prediction of surface roughness in the end milling process using hybrid Taguchi-genetic
learning algorithm. Chou [19] studied optimization methods and examples. Taguchi optimization of
bismuth-telluride-based thermoelectric cooler was examined by Kishore et al. [20]. Li and Kao [21]
found Taguchi optimization of solar thermal and heat pump combi-systems under five distinct
climatic conditions.

In this exploration, the Taguchi method and the numerical simulation of variable viscosity and
non-linear Boussinesq effects on natural convection over a vertical truncated cone in porous media are
investigated. To the best of our knowledge, this problem has not been investigated before. The partial
differential equations are transformed into non-similar equations and solved using the Keller box
method (KBM) proposed by Cebeci and Bradshaw [22]. The numerical simulation of six different
parameters is carried out to obtain the maximum value of the local Nusselt (Sherwood) number and find
the best parameter ratio. The study is divided into two phases: the first phase of the data is compared
with the previously published article, the results are considered very consistent. The main parameters
on the local Nusselt (Sherwood) number are presented in graphic and tabular form. The second stage
uses the Taguchi method to optimize the six parameters of the local Nusselt (Sherwood) number.
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The larger the local Nusselt (Sherwood) number, the greater the amount of heat (mass) that is taken
away from the cone.

2. Methods

2.1. Mathematical Equations

Phase 1: consider the influence of the variable viscosity and non-linear Boussinesq effects on
the heat and mass transfer by free convection flow over a vertical truncated cone embedded in a
saturated porous medium. Figure 1 shows the concept map. The boundary conditions are uniform
wall temperature Tw and uniform wall concentration Cw (UWT/UWC).
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Figure 1. Flow model and physical coordinate system.

The origin of the coordinate system is placed at the vertex of the full cone, where x is the
coordinate along the surface of cone measured from the origin and y is coordinate normal to the surface,
respectively. r is the local radius of the vertical truncated cone. δ is the half angle of the truncated
cone. x0 is the distance of the leading edge of the vertical truncated cone measured from the origin.
All the fluid properties are assumed to be constant, except for the viscosity of fluid and the density
variation in the buoyancy term. The viscosity of the fluid-saturated porous medium depends on the
temperature T in the following form (refer Lai and Kulacki [11] and Vajravelu et al. [23]):

1
µ
=

1
µ∞

[1 + γ(T− T∞)] = a(T− Tr) (1)

where γ is a viscosity-variation constant and µ∞ is the viscosity of the ambient fluid with the
following relation

a =
γ

µ∞
and Tr = T∞ −

1
γ

(2)

Both a and Tr are constants and their values depend on the reference state and the thermal
property of the fluid, i.e., γ. In general, a > 0 (γ > 0) for liquid and a < 0 (γ < 0) for gas. The viscosity of
the fluid usually reduces with increasing temperature while it enhances for gas.
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To further show the appropriateness of Equation (1), correlations between viscosity and
temperature for air and water are given below because these two are the most common working fluids
found in engineering applications.

For air
1
µ = −123.2(T− 742.6)

T∞ = 293 K(20 ◦C)
(3)

and for water
T∞ = 288 K(15 ◦C)
1
µ = 29.83(T− 258.6)

(4)

The data used for these correlations are taken from Weast [24]. While Equation (3) is good to
within 1.2% from 278 K (5 ◦C) to 373 K (100 ◦C), Equation (4) is good to within 5.8% from 283 K (10 ◦C)
to 373 K (100 ◦C). The reference temperatures thus selected for the correlations are very practical in
most applications.

Introducing the boundary layer approximation and non-Boussinesq approximation, the governing
equations and the boundary conditions based on the Darcy law can be written as follows:

Continuity equation:
∂(ru)
∂x

+
∂(rv)
∂y

= 0 (5)

Momentum (Darcy) equation:

µ · u = −K(
∂p
∂x

+ ρg cos δ) (6)

µ · v = −K(
∂p
∂y
− ρg sin δ) (7)

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

= α(
∂2T
∂y2 ) (8)

Concentration equation:

u
∂C
∂x

+ v
∂C
∂y

= D(
∂2C
∂y2 ) (9)

Non-Boussinesq approximation:

ρ = ρ∞

[
1−βT0(T− T∞) −βT1(T− T∞)

2
−βC0(C−C∞) −βC1(C−C∞)

2
]

(10)

Boundary conditions:
y = 0 : v = 0, T = TW, C = CW (11)

y→∞ : u = 0, T = T∞, C = C∞ (12)

Here, u and v are the Darcian velocities in the x- and y- directions; µ, p and ρ are the variable
viscosity, the pressure, and the density of the fluid, respectively; K is the permeability of the porous
medium; g is the gravitational acceleration; T and C are the volume-averaged temperature and
concentration, respectively; α and D are the equivalent thermal diffusivity and mass diffusivity,
respectively; βT0 , βT1 and βC0, βC1 are the thermal and concentration expansion coefficients of the
fluid, respectively.
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We note the governing Equations (6) and (7). If we do the cross-differentiation ∂(µ · u)/∂y −
∂(µ · v)/∂x, then the pressure terms in Equations (6) and (7) can be removed. In the next step, with the
help of Equation (10) and the boundary layer approximation (∂/∂x� ∂/∂y, v� u), we can obtain

∂
∂y

(µ · u) = ρ∞g cos δ ·K
[
βT0
∂T
∂y

+ 2βT1(T− T∞)
∂T
∂y

+ βC0
∂C
∂y

+ 2βC1(C−C∞)
∂C
∂y

]
(13)

Integrating Equation (13) once and via Equations (1) and (12), we then get

u = [1 + γ(T− T∞)]
ρ∞g cos δ ·K

µ∞

 βT0(T− T∞) + βT1(T− T∞)
2

+βC0(C−C∞) + βC1(C−C∞)
2

 (14)

Using the following dimensionless non-similarity variables:

ξ =
x∗

x0
=

x− x0

x0
(15a)

η =
y
x∗

Ra1/2
x∗ (15b)

f(ξ,η) =
ψ

α · r ·Ra1/2
x∗

(15c)

θ(ξ,η) =
T− T∞

Tw − T∞
(15d)

φ(ξ,η) =
C−C∞

Cw −C∞
(15e)

Rax∗ =
ρ∞g cos δ ·βT0K(Tw − T∞)

µ∞
·

x∗

α
(15f)

Substituting Equation (15) into Equations (14), (8)–(12), we obtain

f′ =
(
1−

θ

θr

)
·

(
θ+

δ1

2
· θ2 + N ·φ+ N ·

δ2

2
·φ2

)
(16)

θ′′ + (
ξ

1 + ξ
+

1
2
) · fθ′ = ξ(f′ ·

∂θ
∂ξ
− θ′ ·

∂f
∂ξ

) (17)

1
Le
φ′′ + (

ξ

1 + ξ
+

1
2
) · fφ′ = ξ(f′ ·

∂φ
∂ξ
−φ′ ·

∂f
∂ξ

) (18)

Equation (16) is obtained by integrating Equation (13) once with the help of Equation (12).
The boundary conditions are defined as follows:

η = 0 : f = 0, θ = 1,φ = 1 (19)

η→∞ : θ = 0,φ = 0 (20)

Furthermore, in terms of the new variables, the Darcian velocities in x- and y- directions are,
respectively, given by

u =
αRax∗

x∗
f′ (21)

v = −
αRa1/2

x∗

x∗

[
(
ξ

1 + ξ
+

1
2
) · f + (ξ ·

∂f
∂ξ
−

1
2
η · f′)

]
(22)

where primes denote differentiation with respect to η.
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The buoyancy ratio N and the Lewis number Le are defined as follows, respectively:

N =
βC0(CW −C∞)
βT0(TW − T∞)

, Le =
α

D
(23)

Via Equations (15d) and (2), the viscosity-variation parameter θr is a constant and is defined by

θr =
Tr − T∞
Tw − T∞

= −
1

γ(Tw − T∞)
(24)

For Equation (1), its value considers that for γ→ 0, i.e., µ = µ∞ (constant viscosity) then θr →∞ .
It is also important to note that θr is negative for liquid and positive for gas.

The non-linear temperature parameter δ1 and the non-linear concentration parameter δ2 are
defined as follows, respectively:

δ1 =
2βT1(Tw − T∞)

βT0
, δ2 =

2βC1(Cw −C∞)
βC0

(25)

The results of practical interest in many applications are both the surface heat and mass transfer
rates. The surface heat and mass transfer rates are expressed in terms of the local Nusselt number
Nux∗/Ra1/2

x∗ and the local Sherwood number Shx∗/Ra1/2
x∗ , defined as follows:

Nux∗

Ra1/2
x∗

= −θ′(ξ, 0) (26)

Shx∗

Ra1/2
x∗

= −φ′(ξ, 0) (27)

For the case of N = 0 (pure heat transfer), θr =∞, δ1 = 0, and δ2 = 0, Equations (16) to (17) and
(19) to (20) are reduced to those of Cheng [1], where a non-similar solution was obtained previously.
The detail derivation is as shown in Appendix A.

The analysis integrates the system of Equations (16) to (20) by the implicit finite difference
approximation together with the modified Keller box method of Cebeci and Bradshaw [22]. First,
the partial differential equation is converted to a system of five first-order equation. Then, these
first-order equations are expressed in finite difference form and solved by the iterative scheme along
with their boundary conditions. This method provides a rapid convergence rate and reduces the
numerical calculation times.

The initial size of the calculated grid is ∆η1 = 0.01, the variable grid increment parameter is set to
1.01, the maximum value of η∞ is 1 to 15 and ∆ξ = 0.001 (0 ≤ ξ ≤ 0.01), 0.01 (0.01 ≤ ξ ≤ 0.1), 0.1 (0.1 ≤ ξ
≤ 1), 1 (1 ≤ ξ ≤ 10), 10 (10 ≤ ξ ≤ 100), 100 (100 ≤ ξ ≤ 1000), 1000 (1000 ≤ ξ ≤ 10000). When the error
values of θ′w and φ′w become less than 10−5, the iteration process is stopped and the final temperature
and concentration distributions are given. The detail numerical method description is as displayed in
Appendix B.

2.2. Taguchi Method Design Program

Phase 2: We used the Taguchi experimental method to replace the single factor experiments to
find the maximum local Nusselt number and local Sherwood numbers. With the preliminary concepts
of quality engineering and related tools, the parameters can be designed. The details are described
as follows:

2.2.1. Define Ideal Function

If you can understand the ideal function of parameter design, it will help to clarify two key issues:
What are the objectives? What is the function of the parameter system designed primarily for what
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purpose? In parameter design, the most important work of engineering design personnel should
be to select the quality characteristics that really affect the function of the system, to be the object of
experimental data measurement, which must be based on the desired target, in order to select the
quality characteristics that can measure the target value of the system.

2.2.2. Selection Control Factors

Some products with the same parameters can function correctly, and some cannot. This is caused
by variations between products during manufacturing. Specific examples include variations between
electronic components, variations in setting parameters (e.g., temperature, speed, time, pressure) in
the processing process. The selection and processing of factors is an extremely important part of the
Taguchi quality engineering experiment configuration plan. Only in the presence of factors can the
experiments and analysis results be used to obtain a robust design.

The control factor is the design concept or technical parameters. To get close to the ideal target
value, the designer can freely choose the factor to find the best set value.

The Taguchi method is used to simulate three different values of six parameters, A: dimensionless
streamwise coordinate ξ (0, 2, 4), B: buoyancy ratio N (1, 5, 10), C: Lewis number Le (0.5, 1, 2), D:
viscosity-variation parameter θr (−2,∞, 2), E: the non-linear temperature parameter δ1 (0.5, 1, 2), F: the
non-linear concentration parameter δ2 (0.5, 1, 2). Details are shown in Table 1.

Table 1. Factor–Level table.

Factor
Level

1 2 3

dimensionless streamwise coordinate ξ A 0 2 4
buoyancy ratio N B 1 5 10
Lewis number Le C 0.5 1 2

viscosity-variation parameter θr D −2 ∞ 2
non-linear temperature parameter δ1 E 0.5 1 2

non-linear concentration parameter δ2 F 0.5 1 2

2.2.3. Experimental Test

The ideal function is defined, the control factor and its level are selected, followed by the original
purpose of the parameter design: parameter optimization experiments.

If arranged in full factor method to set the parameter, it will require quite a long computation time.
Therefore, this experiment selected the Taguchi method, because numerical optimization designed by
numerical simulation can reduce the computation time from 243 times to 18 times. This study selected
an L18 (21

× 37) orthogonal table.
The six factors (A, B, C, D, E, F, 6 columns) have three levels (1, 2, 3), the number of simulations is

18. The levels of these five factors appear the same and this is a balance. This method will be used to
establish the factor-level and preliminary data combinations as shown in Table 1. Select the Taguchi
L18 (21

× 37) orthogonal table via Table 1 as shown in Table 2. According to Table 2, because it is six
parameters, we select 3 to 8 rows as an operation.
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Table 2. Orthogonal table.

No.
Row

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

The measure used in science and engineering is the signal to noise ratio. For this purpose, signal
to noise ratio (S/N ratio) measured with dB is used. Minimizing quality characteristics is equivalent to
maximizing the S/N ratio, defined by

The Signal/Noise ratio:

S/N = −10 · log10
1
n

n=1∑
i=1

(
1

Y2
i

) (28)

where Yi denotes the local Nusselt (Sherwood) number in Table 5 (Table 6).

2.2.4. Analyze the Data and Determine the Best Combination

When the experimental test is completed, it is followed by the data values obtained for the
experiment, and the S/N ratio of each level of the single control factor is calculated according to the
previously defined quality characteristic mode. For understanding which one is highly robust, and for
choosing the highest level of each factor S/N ratio, the best parameter design combination is used.
On the one hand, it can be used to estimate the S/N ratio of this optimal combination, and on the
other hand, a confirmation experiment is prepared to obtain the experimental S/N ratio of the optimal
parameter design combination, as detailed in Table 4.

2.2.5. Confirmation Experiment

The purpose of the confirmation experiment is to verify the S/N ratio of the predicted optimum
condition to the original condition, and whether it has high reproducibility in the actual experiment.
If the reproducibility is good, the optimum condition is obtained. Otherwise, we must re-explore
the factors of poor reproducibility. Generally speaking, this may be due to errors in experimental
tests, the existence of a considerable degree of interaction, or the neglect of major influencing factors.
Therefore, after choosing the optimum conditions, we must confirm the experimental verification;
otherwise, we cannot prove that the presumed value of the experimental analysis is reliable. Details
are shown in Tables 5 and 6.
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3. Results and Discussion

To verify the accuracy of our current method, we compared our results with those of Cheng [1],
Yih [2] and Yih and Huang [7]. The results were very consistent, as shown in Table 3.

Table 3. Comparison of the values of −θ′(ξ, 0) for various values of ξwith N = 0 (pure heat transfer),
Le = 1, θr = ∞, δ1= 0, δ2 = 0.

ξ Cheng [1] Yih [2] Yih and Huang [7] Present Results

0 0.4437 0.4437 0.4439 0.4437
0.001 - - - 0.4440
0.01 - - - 0.4458
0.1 - - - 0.4647
1 0.5991 0.5805 0.5808 0.5807
2 0.6572 0.6370 - 0.6372
4 - - - 0.6895
6 0.7219 0.7123 - 0.7123
8 - - - 0.7250
10 0.7391 0.7330 0.7330 0.7330

100 - - - 0.7648
1000 - - - 0.7682

10,000 0.7685 0.7686 0.7685 0.7685

The numerical results are presented for the dimensionless streamwise coordinate ξ ranging
from 0 to 4, the buoyancy ratio N ranging from 1 to 10, the Lewis number Le ranging from 0.5 to 2,
the viscosity-variation parameter θr ranging from −2 to 2, the non-linear temperature parameter δ1

ranging from 0.5 to 2, the non-linear concentration parameter δ2 ranging from 0.5 to 2.
Figures 1 and 2 plot the effects of Lewis number Le and the viscosity-variation parameter

θr[θr > 0(gas), θr < 0(liquid)] on the dimensionless temperature profile and the dimensionless
concentration profile with ξ = 4, N = 10, δ1 = 2, δ2 = 2, respectively. On the one hand, for the
case of θr > 0 (gas), for a fixed Le, it is observed that both the dimensionless temperature profile and
the dimensionless concentration profile increase, thus decreasing the dimensionless wall temperature
gradient as well as the dimensionless wall concentration gradient. This is due to the fact that for
the case of θr > 0, the flow velocity tends to decrease with the assistance of Equations (16) and (21).
Therefore, the dimensionless wall temperature and concentration gradients are reduced. On the other
hand, for the case of θr < 0 (liquid), at a given Le, not only the dimensionless temperature profile,
but also the dimensionless concentration profile is decreased. Therefore, both the dimensionless wall
temperature and concentration gradients have the tendency to increase.
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In Figure 2, for θr = −2 and Le = 0.5, it is observed that the dimensionless wall temperature
gradient is large. However, in Figure 3, for θr = −2 and Le = 2, it was found that the dimensionless
wall concentration gradient is large. From Equation (23), Le = α/D, we can find that the increase in the
Le leads to an increase in the thermal boundary layer thickness δT and a decrease in the concentration
boundary layer thickness δC.
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Figures 4 and 5 show the effects of the non-linear temperature parameter δ1 and the non-linear
concentration parameter δ2 on the dimensionless temperature profile and the dimensionless
concentration profile with ξ = 4, N = 10, Le = 0.5, θr = −2, respectively. In Figures 4 and 5,
for δ1 = 2 and δ2 = 2, it is observed that the dimensionless wall temperature gradient and the
dimensionless wall concentration gradient are large. From Equation (16), as δ1 and δ2 become larger,
the flow velocity becomes larger, and thus both the dimensionless wall temperature and concentration
gradients increase.
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The orthogonal table values of the local Nusselt number, the local Sherwood number, the local
Nusselt number signal/noise ratio and the local Sherwood number signal/noise ratio are shown in
Table 4. Using the values of the orthogonal table and the Taguchi analysis, we can obtain the Nusselt
(Sherwood) number signal/noise ratio and mean value, as illustrated in Table 5 (Table 6). From the
local Nusselt number and the signal/noise ratio, data can be obtained from the A factor is the level 3,
B factor is the level 3, C factor is the level 1, D factor is the level 1, E factor is the level 2 or 3, and F
factor is the level 3. From the local Sherwood number and the signal/noise ratio, data can be obtained
from the A factor is the level 3, B factor is the level 3, C factor is the level 3, D factor is the level 1, E
factor is the level 3, and the F factor is the level 3.

The results obtained using the Taguchi method are superior to the original combination of
parameter settings. Using ξ (4), N (10), Le (0.5), θr (−2), δ1 (1 or 2), δ2 (2) in comparison with the highest
value in the orthogonal table ξ (4), N (10), Le (0.5), θr (−2), δ1 (1), δ2 (1), the results show for the case of
ξ (4), N (10), Le (0.5), θr (−2), δ1 (1), δ2 (2) and ξ (4), N (10), Le (0.5), θr (−2), δ1 (2), δ2 (2), that the local
Nusselt numbers are 3.8318 and 3.8636, respectively. For ξ (4), N (10), Le (0.5), θr (−2), δ1 (1), δ2 (1), the
local Nusselt number is 3.4053. Using ξ (4), N (10), Le (2), θr (−2), δ1 (2), δ2 (2) in comparison with the
highest value in the orthogonal table ξ (4), N (10), Le (2), θr (2), δ1 (2), δ2 (2), the results show that the
local Sherwood number is 5.1156 for the case of ξ (4), N (10), Le (2), θr (−2), δ1 (2), δ2 (2). For ξ (4),
N (10), Le (2), θr (2), δ1 (2), δ2 (2), the local Sherwood number is 3.2799. It is known from the above
verification by the Taguchi method that, for the cases of ξ (4), N (10), Le (0.5), θr (−2), δ1 (2), δ2 (2) and
ξ (4), N (10), Le (2), θr (−2), δ1 (2), δ2 (2), the best data are obtained.

Table 7 lists the values of the local Nusselt number and the local Sherwood number for various
values of θr, Le, δ1, δ2, N, ξ. As the θr increases from −2 to 2, the local Nusselt number and the local
Sherwood number decrease. This is because for the case of θr > 0 (gas), both the dimensionless surface
temperature and concentration gradients decrease, as shown in Figures 2 and 3. As the Lewis number
Le increases from 0.5 to 2, the local Nusselt number decreases. This is due to the fact that a larger
Lewis number Le is associated with a thicker thermal boundary layer thickness, as shown in Figure 2.
The thicker the thermal boundary layer thickness, the smaller the local Nusselt number. However,
the concentration boundary layer thickness becomes thin, as shown in Figure 3. The thinner the
concentration boundary layer thickness, the greater the local Sherwood number. With an increase in
the non-linear temperature parameter δ1 and the non-linear concentration parameter δ2 from 0.5 to 2,
the local Nusselt number and the local Sherwood number increase. That is because when increasing the
non-linear temperature and concentration parameters, both the dimensionless wall temperature and
concentration gradients increase, as shown in Figures 4 and 5. With the help of Equations (26) to (27),
the greater the dimensionless wall temperature (concentration) gradient, the greater the local Nusselt
(Sherwood) number. Generally speaking, both the local Nusselt number and the local Sherwood
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number increase when the buoyancy ratio N increases from 1 to 10. This is due to the fact that the
increase in the value of N tends to increase the buoyancy force, accelerating the flow and thereby the
thermal boundary layer thickness and concentration boundary layer thickness become thin. Increasing
the value of the dimensionless streamwise coordinate ξ enhances the local Nusselt number as well as
the local Sherwood number. This is because the increase in the value of ξ decreases both the thermal
boundary layer thickness and the concentration boundary layer thickness.

Table 4. The orthogonal table values of the local Nusselt number, the local Sherwood number, the local
Nusselt number signal/noise ratio and the local Sherwood number signal/noise ratio.

Local Nusselt
Number

Local Sherwood
Number

Nusselt Number
Signal/Noise Ratio

Sherwood Number
Signal/Noise Ratio

ξ (0), N (1), Le (0.5), θr
(−2), δ1 (0.5), δ2 (0.5) 0.8350 0.5318 −1.5663 −5.4850

ξ (2), N (5), Le (1), θr (∞),
δ1 (1), δ2 (1) 1.8222 1.8222 5.2119 5.2119

ξ (4), N (10), Le (2), θr (2),
δ1 (2), δ2 (2) 2.0431 3.2799 6.2058 10.3172

ξ (0), N (1), Le (1), θr (∞),
δ1 (2), δ2 (2) 0.8249 0.8249 −1.6720 −1.6720

ξ (2), N (5), Le (2), θr (2), δ1
(0.5), δ2 (0.5) 1.1946 1.8768 1.5445 5.4684

ξ (4), N (10), Le (0.5), θr
(−2), δ1 (1), δ2 (1) 3.4053 2.1418 10.6431 6.6156

ξ (0), N (5), Le (0.5), θr (2),
δ1 (1), δ2 (2) 1.2268 0.8008 1.7755 −1.9295

ξ (2), N (10), Le (1), θr (−2),
δ1 (2), δ2 (0.5) 2.7425 2.7425 8.7629 8.7629

ξ (4), N (1), Le (2), θr (∞),
δ1 (0.5), δ2 (1) 1.0284 1.6311 0.2432 4.2496

ξ (0), N (10), Le (2), θr (∞),
δ1 (1), δ2 (0.5) 1.4264 2.3055 3.0848 7.2553

ξ (2), N (1), Le (0.5), θr (2),
δ1 (2), δ2 (1) 0.9341 0.6082 −0.5921 −4.3191

ξ (4), N (5), Le (1), θr (−2),
δ1 (0.5), δ2 (2) 2.5299 2.5299 8.0621 8.0621

ξ (0), N (5), Le (2), θr (−2),
δ1 (2), δ2 (1) 1.3666 2.2349 2.7128 6.9852

ξ (2), N (10), Le (0.5), θr
(∞), δ1 (0.5), δ2 (2) 3.0232 1.9203 9.6093 5.6674

ξ (4), N (1), Le (1), θr (2), δ1
(1), δ2 (0.5) 0.8731 0.8731 −1.1787 −1.1787

ξ (0), N (10), Le (1), θr (2),
δ1 (0.5), δ2 (1) 1.3533 1.3533 2.6279 2.6279

ξ (2), N (1), Le (2), θr (−2),
δ1 (1), δ2 (2) 1.2208 1.9748 1.7329 5.9105

ξ (4), N (5), Le (0.5), θr (∞),
δ1 (2), δ2 (0.5) 2.0527 1.3105 6.2465 2.3487

average value 1.6613 1.7090 3.5252 3.6055
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Table 5. The results of the local Nusselt number and signal/noise ratio orthogonal table simulation.

Level

Factor Nusselt Number Signal/Noise Ratio

A B C D E F

1 1.1605 −0.5055 4.3527 5.0579 3.4201 2.8156
2 4.3782 4.2589 3.6357 3.7873 3.5449 3.4745
3 5.0370 6.8223 2.5873 1.7305 3.6107 4.2856

Delta 3.8765 7.3278 1.7654 3.3274 0.1906 1.4700
Ranking 3 3 1 1 2 or 3 3

Level Mean Value

1 1.1722 0.9527 1.9129 2.0167 1.6607 1.5207
2 1.8229 1.6988 1.6910 1.6963 1.6624 1.6517
3 1.9888 2.3323 1.3800 1.2708 1.6607 1.8115

Delta 0.8166 1.3796 0.5329 0.7459 0.0017 0.2908

Table 6. The results of the local Sherwood number and signal/noise ratio orthogonal table simulation.

Level

Factor Sherwood Number Signal/Noise Ratio

A B C D E F

1 1.2970 −0.4158 0.4830 5.1419 3.4317 2.8619
2 4.4503 4.3578 3.6357 3.8435 3.6475 3.5618
3 5.0691 6.8744 6.6977 1.8310 3.7372 4.3926

Delta 3.7721 7.2902 6.2147 3.3109 0.3055 1.5307
Ranking 3 3 3 1 3 3

Level Mean Value

1 1.3419 1.0740 1.2189 2.0260 1.6405 1.6067
2 1.8241 1.7625 1.6910 1.6358 1.6530 1.6319
3 1.9611 2.2906 2.2172 1.4654 1.8335 1.8884

Delta 0.6192 1.2166 0.9983 0.5606 0.1930 0.2817

Table 7. Values of the local Nusselt number and the local Sherwood number for θr, Le, δ1, δ2, N, ξ.

θr Le δ1 δ2 N ξ −θ
′

(ξ, 0) −φ
′

(ξ, 0)

−2 0.5 2 2 10 4 3.8636 2.4121
∞ 0.5 2 2 10 4 3.3111 2.1000
2 0.5 2 2 10 4 2.6395 1.7231
−2 0.5 2 2 10 4 3.8636 2.4121
−2 1 2 2 10 4 3.5199 3.5199
−2 2 2 2 10 4 3.0895 5.1156
−2 0.5 0.5 2 10 4 3.8158 2.3856
−2 0.5 1 2 10 4 3.8318 2.3945
−2 0.5 2 2 10 4 3.8636 2.4121
−2 0.5 2 0.5 10 4 3.2093 2.0246
−2 0.5 2 1 10 4 3.4411 2.1616
−2 0.5 2 2 10 4 3.8636 2.4121
−2 0.5 2 2 1 4 1.5862 0.9761
−2 0.5 2 2 5 4 2.8348 1.7652
−2 0.5 2 2 10 4 3.8636 2.4121
−2 0.5 2 2 10 0 2.4868 1.5524
−2 0.5 2 2 10 2 3.5712 2.2296
−2 0.5 2 2 10 4 3.8636 2.4121

4. Conclusions

The conclusion of the first phase is as follows:
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1. As the viscosity-variation parameter θr increases from −2 (liquid) to 2 (gas), both the local Nusselt
number and the local Sherwood number decrease.

2. Increasing the Lewis number from 0.5 to 2 decreases the local Nusselt number, but increases the
local Sherwood number.

3. The local Nusselt number and the local Sherwood number increase with the increase in the
non-linear temperature parameter δ1 and the non-linear concentration parameter δ2.

4. When the buoyancy ratio N increases from 1 to 10, the local Nusselt number and the local
Sherwood number are increased.

5. As the dimensionless streamwise coordinate ξ increases from 0 to 4, the local Nusselt number
and the local Sherwood number increase.

The second phase is to invoke the Taguchi experimental method to replace the traditional
single-factor experimental method. All parameter optimization design aims to find the maximum
local Nusselt number and the local Sherwood number. The larger the local Nusselt number and local
Sherwood number, the greater the amount of heat and mass will be that are taken away from the
truncated cone. The number of experiments can be greatly reduced, effectively saving the computer
simulation time. Computer numerical simulation shows that the maximum values of the local Nusselt
number is 3.8636 for the case of ξ (4), N (10), Le (0.5), θr(−2), δ1(2), δ2(2), and the local Sherwood
number is 5.1156 for the case of ξ (4), N (10), Le (2), θr(−2), δ1(2), δ2(2). It is very easy for engineers
to use the numerical solution presented in this article to obtain the local values of heat and mass
transfer characteristics.
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Nomenclature

a constant
C concentration
D mass diffusivity
f dimensionless stream function
g gravitational acceleration
K permeability of the porous medium
Le Lewis number
N buoyancy ratio
NuX∗ local Nusselt number
p pressure
RaX∗ local Rayleigh number
r local radius of the vertical truncated cone
ShX∗ local Sherwood number
T temperature
u Darcy velocity in the x-direction
v Darcy velocity in the y-direction
x streamwise coordinate
X∗ distance measured from the leading edge of the vertical truncated cone
X0 distance of the leading edge of vertical truncated cone measured from the origin
y transverse coordinate
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Nomenclature

Greek symbols
α equivalent thermal diffusivity
βC0 coefficient of concentration expansion
βC1 coefficient of concentration expansion
βT0 coefficient of thermal expansion
βT1 coefficient of thermal expansion
γ viscosity-variation constant
δ half angle of the truncated cone
δ1 the non-linear temperature parameter
δ2 the non-linear concentration parameter
δC concentration boundary layer thickness
δT thermal boundary layer thickness
η pseudo-similarity variable
θ dimensionless temperature
θr viscosity-variation parameter
µ variable viscosity
ξ dimensionless streamwise coordinate
ρ density
φ dimensionless concentration

stream function
Subscripts
w condition at the wall
∞ ambient

Appendix A

Continuity Equation:
∂(ru)
∂x

+
∂(rv)
∂y

= 0 (A1)

Momentum (Darcy) Equation:

µ · v = −K(
∂p
∂y − ρg sin δ)

µ · u = −K(
∂p
∂x + ρg cos δ)

(A2)

Energy Equation:

u
∂T
∂x

+ v
∂T
∂y

= α(
∂2T
∂y2 ) (A3)

Concentration Equation:

u
∂C
∂x

+ v
∂C
∂y

= D(
∂2C
∂y2 ) (A4)

Non-Boussinesq approximation:

ρ = ρ∞

[
1−βT0(T− T∞) −βT1(T− T∞)

2
−βC0(C−C∞) −βC1(C−C∞)

2
]

(A5)

Boundary conditions:
y = 0 : v = 0, T = TW, C = CW
y→∞ : u = 0, T = T∞, C = C∞

(A6)

Dimensionless non-similarity variables:

ξ = x∗
x0

= x−x0
x0

, η =
y
x∗Ra1/2

x∗ , f(ξ,η) = ψ

α·r·Ra1/2
x∗

, θ(ξ,η) = T−T∞
Tw−T∞

,

φ(ξ,η) = C−C∞
Cw−C∞

, Rax∗ =
ρ∞g cosδ·βT0K(Tw−T∞)

µ∞
·

x∗
α

(A7)
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From Equations (A2) and (A3), if we do the cross-differentiation ∂(µ · u)/∂y− ∂(µ · v)/∂x:

∂ (µ·u)
∂y

−
∂ (µ·v)
∂x

=
∂
∂y

[
−K

(
∂p
∂x

+ ρg cos δ
)]
−
∂
∂x

(−K·
∂p
∂y

)

∵ Boundary layer approximation:

v� u,
∂
∂x
�
∂
∂y

∴
∂ (µ·u )

∂y
= −g cos δK(

∂ρ
∂y

) . . . . (A8a)

From Equation (A5):

∂ρ
∂y

=
∂
∂y
{ρ∞[1−βT0(T− T∞) −βT1(T− T∞)

2
−βC0(C−C∞) −βC1(C−C∞)

2]}

Then
∂ρ
∂y

= −ρ∞[βT0
∂T
∂y

+ 2βT1 (T− T∞)
∂T
∂y

+ βC0
∂C
∂y

+ 2βC1 (C−C∞)
∂C
∂y

] . . . . (A8b)

Inserting Equation (A8b) into Equation (A8a), we obtain

∂
∂y

(µ · u) = ρ∞g cos δ ·K
[
βT0
∂T
∂y

+ 2βT1(T− T∞)
∂T
∂y

+ βC0
∂C
∂y

+ 2βC1(C−C∞)
∂C
∂y

]
(A8c)

Integrating Equation (A8c) once and via Equations 1
µ = 1

µ∞
[1 + γ(T− T∞)] and

y→∞ : u = 0, T = T∞, C = C∞ .

u = [1 + γ(T− T∞)]
(
ρ∞g cosδK
µ∞

)
·

[
βT0(T− T∞) + βT1(T− T∞)

2 + βC0(C−C∞) + βC1(C−C∞)
2
] (A9)

From Equation (A7) ξ =
x∗
x0

= x−x0
x0

, ∂x
∗

∂x = 1

∂ξ
∂x

=
∂ξ
∂x∗
·
∂x∗

∂x
=
∂ξ
∂x∗

=
1
x0

=
ξ

x∗
. . . .
∂ξ
∂y

= 0 (A10a)

From Equation (A7) η =
y
x∗Ra1/2

x∗

∂η
∂x

=
∂η
∂x∗

=
∂
∂x∗

( y
x∗

Ra1/2
x∗

)
= −

η

2x∗
. . . . (A10b)

∂η
∂y

=
1
x∗

Ra1/2
x∗ . . . . (A10c)

From (A1), we have ru = ∂ψ
∂y , rv = − ∂ψ∂x

∴ ru =
∂
∂y

(
αr·Ra1/2

x∗ ·f
)
, u = α·Ra1/2

x∗ ·

(
∂f
∂η
·
∂η
∂y

)
=
α·Rax∗

x∗
·f′,

Substituting Equation (A7) into Equation (A9), with the help of 1
µ = 1

µ∞
[1 + γ(T− T∞)], θr = −

1
γ(Tw−T∞)

,
we obtain

α·Rax∗

x∗ ·f
′ =

(
1− θθr

)[
ρ∞g cosδβT0K·(Tw−T∞)x

µ∞α
·
α
x ·θ+

ρ∞g cosδβT1K·(Tw−T∞)x
µ∞α

·(Tw − T∞)·αx ·

θ2 + Rax·
βc0(Cw−C∞)
βT0(Tw−T∞)

·
α
x ·φ+ Rax·

βc1(Cw−C∞)
βT1(Tw−T∞)

·(Cw −C∞)·αx ·φ
2
]

let δ1 =
2βT1(Tw−T∞)

βT0
, δ2 =

2βC1(Cw−C∞)
βC0

, N =
βC0(Cw−C∞)
βT0(Tw−T∞)

(A10)
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Thus,

f′ =
(
1−

θ

θr

)
·

(
θ+

δ1
2
·θ2 + N·

δ2
2
·φ2

)
From Equation (A3) u ∂T∂X + v ∂T∂y = α

(
∂2T
∂y2

)

u =
α·Rax∗

x∗
·f′ (A11a)

v = − 1
r
∂Ψ
∂x = − 1

r
∂
∂x∗

(
α r Ra1/2

x∗ f
)
·
∂x∗
∂x

= −αr

[
∂r
∂x∗ Ra1/2

x∗ + r ∂∂x∗
(
Ra1/2

x∗
)
+ rRa1/2

x∗
(
∂f
∂ξ
∂ξ
∂x∗ + ∂f

∂η
∂η
∂x∗

)]
= −

α·Ra1/2
x∗

x∗
[
( ξ

1+ξ + 1
2 )·f +

(
ξ ∂f∂ξ −

1
2 ·ηf′

)] (A11b)

∂T
∂x

=
∂T
∂x∗
∂x∗

∂x
=
∂T
∂x∗

= (Tw − T∞)
(
∂θ
∂ξ
∂ξ
∂x∗

+
∂θ
∂η
∂η
∂x∗

)
=

Tw − T∞
x∗

(
ξ
∂θ
∂ξ
−

1
2
ηθ′

)
(A11c)

∂T
∂y

= (Tw − T∞)
∂θ
∂η
∂η
∂y

=
(Tw − T∞)Ra1/2

x∗

x∗
·θ′,

∂T
∂y

∣∣∣∣∣
y=0

=
(Tw − T∞)Ra1/2

x∗

x∗
·θ′ (ξ, 0) (A11d)

∂2T
∂y2 =

∂
∂y

(
∂T
∂y

)
=

(Tw − T∞)·Rax∗

x∗2
·θ′′ (A11e)

Substituting Equation (A11a) to Equation (A11e) into Equation (A3), we obtain

α·Rax∗

x∗ ·f
′
·
Tw−T∞

x∗
(
ξ ∂θ∂ξ −

1
2ηθ

′
)
−
α·Ra1/2

x∗

x∗
[
( ξ

1+ξ + 1
2 )·f + ξ

∂f
∂ξ −

1
2ηf′

]
·
(Tw−T∞)Ra1/2

x∗

x∗ ·θ′

= α
(Tw−T∞)·Rax∗

(x∗)2 ·θ′′

Then

θ′′ + (
ξ

1 + ξ
+

1
2
) · fθ′ = ξ(f′ ·

∂θ
∂ξ
− θ′ ·

∂f
∂ξ

) (A11f)

From Equation (A4) u ∂C∂x + v ∂C∂y = D( ∂
2C
∂y2 )

∂C
∂x

=
∂C
∂x∗
∂x∗

∂x
=
∂C
∂x∗

= (Cw −C∞)
(
∂φ
∂ξ
∂ξ
∂x∗

+
∂φ
∂η
∂η
∂x∗

)
=

Cw −C∞
x∗

(
ξ
∂φ
∂ξ
−

1
2
ηφ′

)
(A12a)

∂C
∂y

= (Cw −C∞)
∂φ
∂η
∂η
∂y

=
(Cw −C∞)Ra1/2

x∗

x∗
·φ′ (A12b)

∂C
∂y

∣∣∣∣
y=0

=
(Cw−C∞)Ra1/2

x∗

x∗ ·φ′ (ξ, 0),

∂2C
∂y2 = ∂

∂y

(
∂C
∂y

)
=

(Cw−C∞)·Rax∗

x∗2 ·φ′′
(A12c)

Putting Equations (A11a)–(A11b) and Equation (A12a) to Equation (A12c) into Equation (A4), we get

α·Rax∗

x∗ ·f
′
·
Cw−C∞

x∗
(
ξ
∂φ
∂ξ −

1
2ηφ

′
)
−
α·Ra1/2

x∗

x∗
[
( ξ

1+ξ + 1
2 )·f + ξ

∂f
∂ξ −

1
2ηf′

]
·
(Cw−C∞)Ra1/2

x∗

x∗ ·

φ′ = D
(Cw−C∞)·Rax∗

(x∗)2 ·φ′′ , let Le = α
D

(A12d)

Therefore 1
Leφ

′′ + ( ξ
1+ξ + 1

2 ) · fφ
′ = ξ(f′ · ∂φ∂ξ −φ

′
·
∂f
∂ξ )

Nux∗ =
h·x∗

k =
qw·x

∗

(Tw−T∞)k
=
−k ∂T∂y |y=0 ·x∗

(Tw−T∞)k
= Ra

1/2

x∗ [−θ
′(ξ, 0)]

Shx∗ =
hm·x∗

D = mw·x∗
(Cw−C∞)D

=
−D ∂C∂y |y=0 ·x∗

(Cw−C∞)D
= Ra

1/2

x∗ [−φ
′(ξ, 0)]
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Then
Nux∗

Ra
1/2

x∗

= [−θ′(ξ, 0)] and
Shx∗

Ra
1/2

x∗

= [−φ′(ξ, 0)] (A13)

Appendix B

The Keller-box method involves four key steps, which are described below:

(B.1) Reducing the 5th-order partial differential equation system to five first order equations.
(B.2) Writing the finite difference equations by using the central differences.
(B.3) Linearizing the resulting algebraic equations with Newton’s method.
(B.4) Expressing them in matrix–vector form and utilizing the block-tridiagonal elimination to solve the

linear system.
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