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Abstract: This study examines the performance of Japanese electric power companies from 2003 to
2020. We use an observed data set from 2003 to 2015 and a forecasted data set from 2016 to 2020.
The Japanese deregulation of the industry needs to be completed by April 2020. As a method, this study
uses data envelopment analysis (DEA) environmental assessment, which measures performance from
a holistic perspective. This research adds a new analytical capability to the DEA-based assessment by
including an analytical ability to handle an “imprecise” data set. We apply the proposed approach to
investigate the performance of these companies before and after the disaster of Fukushima Daiichi
nuclear power plant (11 March 2011). All electric power companies have suffered from business
damage due to the nuclear disaster. The Japanese government has developed a policy scheme on how
to recover from the huge handling costs resulting from the disaster. Nuclear energy has been long
considered the most useful approach to handle climate change. However, many industrial nations
have changed policy direction since the nuclear disaster. The Japanese government allocates the costs
to not only Tokyo Electric Power Company, which produced the nuclear disaster, but also the other
incumbent electric power companies that own nuclear power plants. Under the current Japanese
scheme, financial conditions have been gradually recovering from the damage due to the managerial
efforts and by indirectly allocating the expenditure to consumers and tax payers.

Keywords: data envelopment analysis; data impreciseness; Japanese electric power industry

1. Introduction

Climate change due to global warming is now a major concern across the world. Climate change
refers to an increase in the average global temperature for air, sea and land. Natural events and
economic activities, including industrial development and business activities, contribute to an increase
in the average global temperature. The change is primarily caused by an increase in greenhouse
gases (GHG) such as carbon dioxide (CO2). It is necessary for us to combat the environmental
problem through international cooperation among industrial and developing nations, green technology
innovations, and managerial challenges in public and private sectors [1].

In the global trend, Japan has long been combating various industrial pollution sources including
GHG emissions [2]. In reviewing the Japanese environmental policy, we pay attention to a new Basic
Energy Plan (BEP) approved by the Japanese Cabinet on 11 April 2014. The BEP discussed a long-term
energy policy direction and its industry development. The plan attracted public attention because
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it was the first policy action on a future energy plan after the Great East Japan Earthquake and the
disaster at the Fukushima Daiichi nuclear power plant. See Goto and Sueyoshi [3] for a detailed
description of the Japanese BEP.

An important implication of the BEP is that it has confirmed the role of nuclear power generation
as a base load so that Japan can combat climate change. The BEP also emphasizes that it is necessary
for Japan to increase its use of various renewable energy sources (RES) because the disaster has been
influential on the Japanese future energy plan, in particular on the nuclear generation.

To compensate for an unavailable capacity of the nuclear power generation, Japanese electric
power companies have recently increased the amount of their generations from fossil fuel power
plants, in particular from natural gas and oil. The increased usage of these fuels puts pressure on their
corporate profits and environmental concerns on CO2 emission. Even under such unforeseeable future
situations, Japanese electric power companies currently operate under a pressure of the market reform
prepared by the government, while they need to maintain their stable electricity supplies (e.g., Goto et
al. [4], Goto and Sueyoshi, [3,5] and Goto and Takahashi [6]).

Such changes in the industry may be observed in the performance of Tokyo Electric Power
Company (TEPCO). For example, the total amount of electricity sold was 280.2 TWh (Terawatt hour)
in 2009 and was 247.1 TWh in 2015. The generation amount from fossil fuel power plants was 161.2
TWh in 2009 and was 198.2 TWh in 2015, so increasing 37 TWh during the 6 years. Meanwhile, the
total nuclear power generation was 80.9 TWh in 2009, while it became zero in 2015. Thus, the company
had to stop the nuclear generation after the disaster and the generation amount was compensated by
fossil fuels and other types of generation (e.g., renewable and water) [7]. As a result, the amount of
CO2 emission increased from 1075 in 2009 to 1236 (unit: 100,000 ton-CO2) in 2015. See [8].

A difficulty of their operations as corporate entities is summarized as an inquiry: How can the
electric power firms maintain a balance between economic prosperity and environmental protection
under governmental regulation on their operations? To handle the difficulty, this research proposes a
new use of DEA-based assessment that can be applied to the three types of production factors such as
desirable outputs, undesirable outputs and inputs in their operational components. Here, DEA stands
for “Data Envelopment Analysis”.

The purpose of this study is to document how the proposed DEA approach can measure the
performance of Japanese electric power companies from 2003 to 2020. Methodologically speaking, a
unique feature of the data set to be examined is that it consists of an observed one from 2003 to 2015
and a forecasted (imprecise) one from 2016 to 2020. The annual periods are important in planning
the future of Japanese electric power industry because all companies have suffered from business
damage due to the nuclear disaster. The Japanese government has developed a policy scheme on how
to recover from a huge amount of handling costs due to the disaster. It is important for this study to
examine their business changes and future directions.

The remainder of this research is organized as follows. Section 2 summarizes previous research
efforts related to this study. Section 3 describes the current business surroundings of the Japanese electric
power industry. Section 4 describes an approach to measure unified (operational and environmental)
efficiency. Section 5 applies the proposed method to the Japanese electric power industry. Section 6
concludes this study and highlights future extensions. Abbreviations and variables are listed at the
end of this article.

2. Literature Summary

This section consists of the three groups of previous studies. They are related to the (a) Japanese
electric power industry, (b) DEA applied to energy and climate change and (c) data impreciseness for
forecasting. These studies serve as conceptual and methodological foundations for the preparation of
this research.
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2.1. Previous Studies on Japanese Electric Power Industry

The Japanese electric power industry has been adopting government deregulation policy since
1995. In 1995, partial competition was introduced in a generation sector in the first electricity system
reform. Then, retail competition was gradually introduced and eligibility was expanded under the
second (1999) and third (2003) reforms. Before the changes, ten vertically-integrated, investor-owned
electric power companies, such as TEPCO, had supplied electricity to consumers in their regionally
monopolized business areas.

The deregulation process influenced research on the Japanese electric power industry. Before
the 1995 deregulation, there was no competition in the business of Japan’s electric power companies.
Almost no research was interested in studies on electric power companies, in particular on their
productivity, efficiency and competitiveness measures. After deregulation, many studies started
publishing their research efforts on productivity and efficiency analysis, industrial structure changes,
and impacts of market liberalization. Those works included Goto and Sueyoshi [5,9], Li et al. [10],
Sueyoshi and Goto [11–13], Goto et al. [4], Goto and Takahashi [6], Hosoe and Tanaka [14], and Wang
and Mogi [15].

Most of the previous studies applied an econometric analysis to a data set that consisted of
Japanese incumbent electric power companies. On the other hand, some studies, including Sueyoshi
and Goto [11–13], used DEA for their analyses. However, their DEA applications have not paid
attention to how to treat data impreciseness for future assessment. No research has considered the
implication of the data imprecision on the future performance of the Japanese electric power industry.
This study is the first to explore the research issue.

2.2. Previous Studies on DEA Applied to Energy and Climate Change

It is known that DEA has been used in previous research efforts on performance assessment.
However, their applications have not incorporated the proposed research scope because they need to
consider the existence of undesirable outputs (e.g., CO2 emissions) for environmental assessment.

For example, the data structure between X (inputs) and G (desirable outputs) was discussed in
previous DEA research. However, it does not fit its environmental assessment because we need to
incorporate B (undesirable outputs) as the by-products of G. Thus, the output unification between G
and B needs to be considered in this research.

Previous works on DEA contain many research efforts applied to energy and environment. For
example, as discussed in Sueyoshi et al. [16], almost 700 peer-reviewed articles have been published in
the past four decades. Sueyoshi and Goto [2] provided information on more than 800 articles on DEA
that included applications to energy and environment. Since the two literature surveys discussed most
of the previous woks on DEA environmental assessment, this research does not describe all of them,
except for noting that the number of publications has drastically increased, particularly since 2010.

To describe DEA’s popularity applied to energy areas, Table 1 summarizes the previous
publications [17–34]. Most of the works were interested in energy efficiency (EE) enhancement
by using DEA-based applications. The previous studies with environment ENV investigated the
performance assessment on environment protection efforts. Acknowledging their contributions, it is
necessary to describe that a methodological difficulty still exists in the assessments because they do not
discuss how to handle data impreciseness for future planning and its related performance evaluation.
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Table 1. Recent Studies on DEA Applied to Energy and Environment.

Reference Summary Topic

[17] Within a conventional DEA model, the study used the concept of weak and strong disposability to
measure Chinese coal-fired power plants. ENV

[18]
Proposed a method to evaluate energy efficiency performance of OECD and non-OECD countries
from 2005 to 2012. Took into account the joint inputs and sub-joint inputs to reveal the specific
information on how inputs were allocated to outputs.

EE

[19] Discussed DEA window analysis approach and Moran’s Index were used to analyze the industrial
CO2 emission efficiency and reduction potential. ENV

[20]
Constructed a slacks-based measure DEA model and an index of total-factor energy efficiency to
investigate the energy efficiency of the 29 provincial-administrative regions in China during
1997–2011.

EE

[21] Proposed a DEA-based approach to allocate China’s national CO2 emissions and energy intensity
reduction targets over Chinese provincial industrial sectors. EE, ENV

[22] Discussed a potential of available technologies to prevent the climate change in the United States. EE

[23]
Adopted DEA to evaluate the energy efficiency in China’s coastal areas over the period of
2000–2012. Carbon dioxide, sulfur dioxide and nitrogen oxide were treated as undesirable outputs
of energy consumptions.

EE

[24] A DEA model was developed for assessing performance of PV installations and applied to a large
set of rooftop PV installations in California from 2008 to 2012. ENV

[25]
Two total factor productivities (TFP), namely energy adjusted TFP and energy and carbon dioxide
emissions adjusted TFP, were estimated using superefficiency DEA models for 30 Chinese provinces
over the period 1997–2010.

EE, ENV

[26]
Proposed a tractable method for obtaining systemic Pareto optimal allocation schemes using DEA
and three allocation of emission permits models were developed with taking account of different
real-world scenarios.

ENV

[27] Proposed network range adjusted environmental DEA and examined the impacts of carbon neutral
growth from 2020 strategy on airline environmental inefficiency. ENV

[28] Proposed a decomposition approach to measure components of CO2 emission in Chinese provinces. ENV

[29] Measured unified efficiency of fossil fuel power plants across provinces in China by non-radial
directional distance functions. EE

[30] Measured unified efficiency of Chinese fossil fuel power plants by intermediate approach and
window analysis. ENV

[31]
The non-radial directional distance function and the global data envelopment analysis method were
combined to measure the unified (technical, allocative, operational and environmental) efficiency of
Chinese service sector.

ENV

[32]

Three methodological difficulties in DEA approach was examined in applying DEA to corporate
sustainability assessment of Japanese industries: how to handle zero and/or negative values, how to
unify inputs, desirable, and undesirable outputs within a synchronized framework, and how to
identify a possible occurrence of a production limit and green technology innovation.

ENV

[33] Assessed road transportation sustainability by combining environmental impacts and
environmental concerns. ENV

[34]
Proposed a modified DEA approach that recognized the two objectives of income maximization and
pollution abatement cost minimization considering regional collaboration. The approach was
applied to measure industrial carbon allocation in China.

ENV

The abbreviations are as follows: DEA: data envelopment analysis, TEP: total factor productivities, OECD:
organization for economic co-operation and development, CO2: carbon dioxide, EE: energy efficiency and
ENV: environment.

2.3. Previous Studies on Data Impreciseness

Two groups of previous studies have explored the imprecise data within the conventional DEA
framework. Here, “conventional” means that DEA models did not incorporate B. In the first group, the
production factors used in those previous studies are X and G. See, for example, Cooper et al. [35], who
applied chance-constraint analysis to handle an imprecise DEA model that incorporated a concept of
“risk” related to future uncertainty. Sueyoshi [36] also applied the same analysis to predict the future
performance of Japanese petroleum industry; see Chen [37] and Cooper et al. [38] as well. An important
feature of the group is that all studies have considered data impreciseness as a stochastic process and
transferred it into a linear programming equivalent. However, they did not incorporate B into their
computational frameworks so that these direct applications would suffer from double standards on
satisficing G (maximization) and B (minimization). Acknowledging the importance of considering B,
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this study does not incorporate the stochastic approach as found in these previous works. Rather, we
will use a new approach (i.e., the range of a supporting hyperplane) to express data impreciseness to
avoid the double standard issue.

The second group assumed an error distribution to express the stochastic uncertainty in production
factors. For example, research on DEA under uncertainty, such as Kao and Liu [39], used a fuzzy
function to express uncertainty. Liu [40] discussed how to use DEA-based fuzzy assessment on flexible
manufacturing systems to improve their technology, competitiveness and profitability by enhancing
manufacturing effectiveness. Liu [41] further extended the fuzzy-based DEA approach by assurance
region analysis (ARA), which provided constraints on multipliers, or dual variables; see Thompson
et al. [42] on ARA. The proposed DEA approach by Liu [40,41] was promising; however, this study
cannot utilize the proposed approach because we need to incorporate B a requirement of this study.

Position (originality) of this study: Acknowledging the importance of previous efforts on data
impreciseness (e.g., corporate performance from 2016 to 2020 in this study) in energy and climate
change, this research makes four contributions to the literatures. First, this study differs from the
prior studies by incorporating an analytical capability to handle the data impreciseness into DEA
environmental assessment. The capability is important because energy policy is for future planning
with data impreciseness. Second, a unique feature of the proposed approach is that it incorporates the
upper and lower bounds on a supporting hyperplane in order to handle the data impreciseness. See
Liu [40,41] that had a similar research spirit (i.e., a use of ARA), but not considering both the existence
of B and the supporting hyperplane. Third, the proposed approach needs to consider environmental
assessment which needs to integrate G and B in a unified structure, including X. Finally, this type of
approach has been never applied to the performance assessment of Japanese electric power industry.

3. Current Business Surroundings of Japanese Electric Power Industry

As described in Section 2, the Japanese electric power industry has been conducting gradual
market liberalization since 1995. Although the Ministry of Economy, Trade and Industry (METI) tried
to facilitate institutional reforms in an efficient manner, the change still belonged to part of the global
trend of electricity market liberalization. METI issued cautions to the electric power industry on reform
advancement because the progress was slower than that of other industrial nations. However, the
situation drastically changed after the Great East Japan Earthquake in March 2011 and the Fukushima
Daiichi nuclear power accident. In the aftermath of the disaster, a system reform of the electricity
market gained momentum and started the three-step reform plan.

The first step was to establish the Organization for Cross-regional Coordination of Transmission
Operators (OCCTO) in April 2015, whose missions promoted the development of electricity transmission
and distribution networks which were necessary for cross-regional electricity uses. OCCTO also
attempted to enhance the nationwide function of maintaining the supply–demand balance of electricity
in both normal and emergency situations.

The second step was to implement full liberalization of the retail market in April 2016, which
gave regulated consumers (mainly residential users) eligibility to choose an electricity supplier among
incumbent and new entrant companies. In addition, licensing unbundling was introduced in April 2016,
under which the electricity supply was composed of three sectors with different licenses: generation,
transmission and distribution and retail. Now, anyone can enter the generation sector by notifying
METI, and retail sector entrants need to register when starting their business activities. The transmission
and distribution sector has remained in regional monopoly and is still constrained by the license and
regulation on the business.

The final step will be planned in April of 2020 to implement legal unbundling of the
transmission/distribution sector from the generation and retail sectors. The purposes of the separation
are to secure a high level of fairness for all players in the electricity generation and retail markets, and
to facilitate competition among them, because incumbent companies own all three licenses, particularly
a transmission and distribution license.
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Until now, only TEPCO has already separated the transmission and distribution business from
the other sectors. It has established a holding company, TEPCO Holdings. The company has the three
separated sub-companies, including fuel and fossil fuel power generation (TEPCO Fuel and Power
Inc.), transmission and distribution (TEPCO Power Grid Inc.), and retail businesses (TEPCO Energy
Partner Inc.). Currently, TEPCO and the other electric power companies face many business challenges
associated with costs incurred by the Fukushima’s nuclear disaster. They have also conducted
operational reforms for adapting to new technology and innovations such as energy digitalization,
de-carbonization, and distributed energy.

4. Method

4.1. Natural Disposability

This research incorporates the concept of “natural disposability”, which implies the elimination
of inefficiency within the framework of performance assessment (first priority: economic prosperity;
second priority: environmental protection) [2]. In the concept, an inefficient decision making unit
(DMU, e.g., an electric power company to be evaluated in this study) decreases some components of X
or maintains them at their current levels, but increases some components of G. It can be assumed that
the decrease of X naturally reduces B.

It is well known that the natural disposability is usually associated with an opposite concept,
referred to as “managerial disposability” in which the first priority is environment protection and the
second one is economic prosperity. The disposability requests that each DMU needs to increases X
for the increase of G and the decrease of B. This research utilizes only the natural disposability, not
the managerial disposability, because Japanese electric power companies need to pay attention to
their operational efficiencies (so, natural disposability) under the current liberalization process of the
Japanese government. See Section 3 and [2]. It is expected that they will gradually shift from the
natural disposability to the managerial one.

Under natural disposability, this research incorporates a possible occurrence of congestion (UC:
undesirable congestion). The occurrence directly implies a capacity limit on transmission in a grid
system. An economic stagnation is another example of this type of congestion. The second example
may fit within the scope of this research.

4.2. Data Impreciseness

The data set of Japanese electric power companies from 2003 to 2020 is separated into an observed
data set from 2003 to 2015 and a forecasted (imprecise) one from 2016 to 2020. It is straightforward to
apply our previous DEA approach, discussed in [2], to the first data set (2003–2015). However, we need
to restructure the previous formulation to handle the second data set (2016–2020) because it contains
data impreciseness.

To discuss how to handle the second data set, let us consider a DMU (j) which has a data structure
with impreciseness. Using the three production factors (x: input, g: desirable output and b: undesirable
output) of the specific jth DMU (j = 1, . . . , n) to be evaluated, the data ranges become

x̃i j = [xL
ij, xU

ij ] for all i, g̃rj = [gL
rj, gU

rj] for all rand b̃ f j = [bL
f j, bU

f j] for all f .

where ~ expresses the data impreciseness that is specified by the upper and lower bounds. The two
superscripts (L and U) stand for the two bounds of each production factor.
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Next, this research uses another type of data range on each factor:

Rx
i = (m + s + h)−1

(
max

j

{
xi j

∣∣∣ j = 1, . . . , n
}
−min

j

{
xi j

∣∣∣ j = 1, . . . , n
})−1

,

Rg
r = (m + s + h)−1

(
max

j

{
grj

∣∣∣ j = 1, . . . , n
}
−min

j

{
grj

∣∣∣ j = 1, . . . , n
})−1

&

Rb
f = (m + s + h)−1

(
max

j

{
b f j

∣∣∣n = 1, . . . , n
}
−min

j

{
b f j

∣∣∣n = 1, . . . , n
})−1

.

(1)

It is important to note that the data ranges (1) are applicable to both deterministic and imprecise
cases because we measure just the upper and lower numbers of each factor so that we always have
Rx

i = R̃x
i , Rg

r = R̃g
r , Rb

f = R̃b
f in these data ranges, where the ranges on the left hand side are deterministic

and those of the right hand side are imprecise. Therefore, this research does not need to use the symbol
(~) on the three ranges, hereafter.

4.3. Supporting Hyperplane

To handle data impreciseness, we consider a possible range on a supporting hyperplane so that
we can shift the data impreciseness to a corresponding deterministic formulation. As a result of the
reformulation, we can solve DEA with data impreciseness by linear programming. Mathematically,
the supporting hyperplane is determined by dual variables of linear programming formulation. This
subsection is aimed to provide a visual description on how to deal with the data impreciseness.

Figure 1 depicts the upper and lower bounds of a possible supporting hyperplane with an
imprecise data set. For visual convenience, the figure considers only a single input, x̃ = [xL, xU], and a
single desirable output, g̃ = [gL, gU]. An undesirable output, b̃ = [bL, bU], is not listed in Figure 1. A
supporting hyperplane, passing on DMU{A}, locates an efficiency frontier in the data domain of x and
g. The supporting hyperplane becomes a line because there is no coordinate on b.
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Here, let us assume that the supporting hyperplane is expressed by vx̃− ug̃ + w̃b + σ = 0, where
v, u, w, and σ are unknown parameters to be estimated. The imprecise data ranges specify the ratios
among the three production components by gL/xU

≤ v/u ≤ gU/xL. In Figure 1, {B} indicates the slope
of gL/xU as a lower bound of the hyperplane and {C} indicates the slope of gU/xL as its upper bound.
Thus, the data impreciseness is expressed by the upper and lower bounds of the slope.

(a) A supporting hyperplane passes on DMU {A}. The location of x and g determine the supporting
hyperplane (line). Since the figure does not have a coordinate for b (assuming that all DMUs are
the same), the hyperplane becomes a supporting line.
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(b) The {A} locates on x in the horizontal axis and g in the vertical axis. Both locate between L (a
lower bound) and U (an upper bound).

(c) The location of {B} indicates the slope of gL/xU as a lower bound. Meanwhile, the location of {C}
indicates the slope of gU/xL as an upper bound.

(d) The data impreciseness is expressed by the upper and lower bounds of the slope of the
supporting hyperplane.

As depicted in Figure 1, the impreciseness of data components is replaced by the upper and
lower bounds of the slope of a supporting hyperplane. Of course, the proposed approach might
not be optimal, but it is a promising approach by which to handle data impreciseness without any
assumptions. Furthermore, the proposed approach may enhance computational feasibility because we
can solve the problem of data impreciseness by linear programing.

4.4. Original Formulations

This section describes mathematical formulations to measure the degree of unified (operational
and environmental) efficiency (UE).

The proposed assessment considers that there are n DMUs. The jth DMU (j = 1, . . . , n) uses

X̃ j = (x̃1 j, x̃2 j, . . . , x̃mj)
T to produce both G̃j = (g̃1 j, g̃2 j, . . . , g̃sj)

T and B̃j = (̃b1 j, b̃2 j, . . . , b̃hj)
T

. The
superscript (T) indicates a vector transpose. These column vectors are referred to as “production
factors” in this study. It is assumed that all components of the three vectors are strictly positive.

This research used the following model to measure the unified efficiency of the kth DMU under a
possible occurrence of undesirable congestion (UC):

Maximize ξ+ εs(
m∑

i=1
Rx

i dx−
i +

s∑
r=1

Rg
r dg

r )

s.t.
n∑

j=1
x̃i jλ j + dx−

i = x̃ik (i = 1, . . . , m),

n∑
j=1

g̃rjλ j − dg
r − ξg̃rk = grk (r = 1, . . . , s),

n∑
j=1

b̃ f jλ j + ξ̃b f k = b f k ( f = 1, . . . , h),

n∑
j=1

λ j = 1,

λ j ≥ 0 ( j = 1, . . . , n), ξ : URS,
dx−

i ≥ 0 (i = 1, . . . , m) & ds
r ≥ 0 (r = 1, . . . , s).

(2)

where “k” indicates the specific kth DMU to be evaluated. The subscript (j) indicates the jth DMU for j
= 1, . . . , n. The left hand side (

∑n
j=1 xi jλ j,

∑n
j=1 grjλ j,

∑n
j=1 b f jλ j) indicates an efficiency frontier and

implies a composite (or ideal) performance of the kth DMU.
Model (1) has seven unique features. First, λ = (λ1, . . . ,λn)

T is often referred to as comprising
“structural” or “intensity” variables. They are used for connecting X, G and B by a convex combination.
Second, since Model (1) includes the constraint for the sum of structural variables, the production
and pollution possibility set in Model (1) is formulated under variable returns to scale (RTS). Third,
Model (1) considers only single-sided input deviations (dx−

i = xik −
∑n

j=1 xi jλ j ≥ 0) for X in order to
attain the status of natural disposability. Fourth, a scalar value (ξ) stands for an inefficiency score that
measures the distance between two efficiency frontiers and an observed vector on G and B. Fifth, the
symbol (URS) means “unrestricted.” A scalar value εs represents a very small number that indicates
the relative importance between the inefficiency measure and the total sum of slacks. The small
number should be prescribed by a user in the manner that the efficiency score locates between zero
(full inefficiency) and one (full efficiency). This study sets εs = 0.0001. Sixth, this type of measurement
belongs to the Debreu–Farrell criterion used in the radial models [2]. Finally, the equations, or
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∑n
j=1 b f jλ j + ξb f k = b f k ( f = 1, . . . , h), drop slacks associated with B in order to incorporate a possible

occurrence of UC.
The unified efficiency under natural disposability (UEN) of the kth DMU with a possible UC

occurrence is measured by

UEN∗k = 1− [ξ∗ + εs(
m∑

i=1

Rx
i dx−∗

i +
s∑

r=1

Rg
r dg∗

r )] (3)

where the inefficiency score and all slack variables are determined on the optimality of Model (1). The
superscript (*) indicates optimality. The equation within the parentheses indicates the level of unified
inefficiency. The UEN is obtained by subtracting the level of inefficiency from unity, as specified in
Equation (2).

To mathematically discuss the importance of the upper and lower bounds of a supporting
hyperplane in absorbing data impreciseness, this study needs to prepare the following dual formulation
of Model (2):

Maximize
m∑

i=1
vixik −

s∑
r=1

urgrk +
h∑

f=1
w f b f k + σ

s.t.
m∑

i=1
vix̃i j −

s∑
r=1

ur g̃rj +
h∑

f=1
w f b̃ f j + σ ≥ 0 ( j = 1, . . . , n),

s∑
r=1

ur g̃rk +
h∑

f=1
w f b̃ f k = 1,

vi ≥ εsRx
i (i = 1, . . . , m),

ur ≥ εsR
g
r (r = 1, . . . , s),

w f : URS ( f = 1, . . . , h), &
σ : URS.

(4)

where vi (i = 1, . . . , m), ur (r = 1, . . . , s), w f (f = 1, . . . , h), and σ are all dual variables related to the first,
second, third, and fourth groups of constraints in Model (2), respectively. Each dual variable indicates
the level of an increase in unified inefficiency due to a unit increase in each production factor. Paying
attention to w f : URS ( f = 1, . . . , h) in Model (4), we can identify that the slope of a supporting
hyperplane is determined by the sign of w f ( f = 1, . . . , h).

The degree of UEN of the kth DMU is measured by the following equation:

UEN∗k = 1− (
m∑

i=1

v∗i x̃ik −

s∑
r=1

u∗r g̃rk +
h∑

f=1

w∗f b̃ f k + σ∗), (5)

because the objective value of Model (2) equals that of Model (4) on optimality.

4.5. Handling Data Impreciseness

A major problem of formulations from (2) to (4) is that they include stochastic variables (~) due
to the data impreciseness. As a result, we cannot solve them by linear programming. As depicted
in Figure 1, we need to change the impreciseness into the upper and lower bounds of the slop of a
supporting hyperplane. For the purpose, this study incorporates multiplier restriction into Model (3)
in such a manner that these estimates represent the range of a supporting hyperplane.

To simplify our discussion hereafter, we consider the supporting hyperplane in a simple case (i.e.,
a single component of each factor). The hyperplane becomes vx̃− ug̃ + w̃b + σ = 0, as discussed in
Sueyoshi and Goto [1]. The ratios between factors become ∂g̃/∂x̃ = v/u and ∂g̃/∂̃b = w/u. Since
they have the lower and upper bounds, these factor ratios are expressed by the two conditions
gL/xU

≤ v/u ≤ gU/xL and gL/bU
≤ w/u ≤ gU/bL.



Energies 2020, 13, 490 10 of 24

The extension to the case of multiple components of X, G and B indicates the following equations:

gL
r /xU

i ≤ vi/ur ≤ gU
r /xL

i (i = 1, . . . , m & r = 1, . . . , s) and
gL

r /bU
f ≤ w f /ur ≤ gU

r /bL
f (r = 1, . . . , s & f = 1, . . . , h) (6)

After incorporating Equations (6), Model (4) becomes

Maximize
m∑

i=1
vixik −

s∑
r=1

urgrk +
h∑

f=1
w f b f k + σ

s.t.
m∑

i=1
vixi j −

s∑
r=1

urgrj +
h∑

f=1
w f b f j + σ ≥ 0 ( j = 1, . . . , n),

0 ≤
m∑

i=1
vixik −

s∑
r=1

urgrk +
h∑

f=1
w f b f k + σ ≤ 1,

s∑
r=1

urgrk +
h∑

f=1
w f b f k = 1,

the same equations (6),
vi ≥ εsRx

i (i = 1, . . . , m),
ur ≥ εsR

g
r (r = 1, . . . , s),

w f : URS ( f = 1, . . . , h) &
σ : URS.

(7)

In Model (7), estimated values (xi j, yrj, b f j) are used as the three production factors. For example, their
forecasted average values are used in Model (7). See Figure 1.

The level of UEN on the kth DMU is measured by

UEN∗k = 1− (
m∑

i=1

v∗i xik −

s∑
r=1

u∗rgrk +
h∑

f=1

w∗f b f k + σ∗), (8)

where all dual variables are determined by the optimality of Model (7).
It is important to note two concerns regarding Model (7). One of them is that the data impreciseness

on X, G and B is replaced by the upper and lower bounds on multiplier ratios as formulated by Model
(7). Such a reformulation indicates a new formulation for DEA-based assessment. The other concern
is that we incorporate the additional constraint (0 ≤

∑m
i=1 vixik −

∑s
r=1 urgrk +

∑h
f=1 w f b f k + σ ≤ 1) in

Model (7) to maintain the efficiency requirement (0: Full inefficiency and 1: Full efficiency).

4.6. Forecasting

This study extends the proposed analytical capability for handling the data impreciseness for
forecasting. The extension is important because the forecasted data usually contain the impreciseness.
After applying a forecasting method, the performance of the jth DMU in the specific tth period contains
the predicted three production factors (xi jt for all i, grjt for all r, and b f jt for all f ). Here, the above
symbol indicates a forecasted value on each factor. Given the forecasted values (e.g., an average
between forecasted upper and lower bounds) on the three factors (i.e., 2016–2020 in this study), we
reorganized Model (7) by incorporating the tth period to express a time horizon (t = 2016–2020).

5. Empirical Study of Japanese Electric Power Companies

5.1. Assessment Process

This research is interested in examining the performance of Japanese electric power companies
from 2003 to 2020 using an observed data set from 2003 to 2015 and a forecasted data set from 2016 to
2020. To attain the research objective, we used three data sets: (a) The observed data set from 2003 to
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2015 for DEA assessment, (b) 2015 data for a methodological comparison, and (c) the forecasted data
for 2016 and 2020. The forecasted data need to handle the data impreciseness.

The three tasks have the following different research purposes: The first case (2003–2015) examines
the influence of OCCTO by measuring the operations of Japanese electric power companies until
April 2015. They had to develop their electricity transmission and distribution networks which were
necessary for cross-regional electricity uses. The OCCTO attempted to enhance the nationwide function
of maintaining the supply–demand balance of electricity in both normal and emergency situations.
The second case (2015 data) examines the methodological validity of the proposed approach that
newly incorporates an analytical capability to handle the data impreciseness. The last case (2016-2020)
examines the influence of full liberalization of the retail market implemented in April 2016 which has
provided regulated consumers (mainly residential users) with the eligibility to choose an electricity
supplier among incumbent and new entrant companies. The plan will be completed in April of
2020 by implementing legal unbundling of the transmission/distribution sector from generation and
retail sectors.

Figure 2 explains how we apply the proposed approach for the assessment of the Japanese electric
power industry. First, this study classifies an observed data set (2003–2015) into two sets, one of which
is used as a validation sample (only 2015). The other (2003–2014) is used as an observed data set.
We use the validation sample (2015) for the methodical comparison between Model (2) without data
impreciseness and Model (7) with data impreciseness. Since the year (2015) is observed and given to
us, Model (2) can drop the data impreciseness while Model (7) handles the data (2015) as an imprecise
data set for our comparison. The sample sets (2003–2015) are used for forecasting from 2016 and 2020
in this study.

(a) The observed data set contains observations from 2003 to 2015. The forecasted data set contains
estimated observations from 2016–2020.

(b) The observations in 2015 are used for methodological comparison between the two cases: (2015
as an observed data set and 2015 as an estimated data set). The comparison provides us with
information on how the proposed approach can improve the level of DEA performance assessment.

(a) Inputs are total assets and operating expenses; desirable outputs are total revenue and total
enterprise value; and an undesirable output is CO2 emissions.

(b) The observations on each factor are divided by the mean to standardize the scale so that they
are unit-less.
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Figure 2. Methodological comparison and forecasting.

Figure 3 visually specifies regions from north to south where energy utility firms provide electricity.
There are ten electric power firms in Japan. Okinawa Electric Power Company is excluded from the
data sample because it is much smaller than the other nine utilities in terms of their business scales.
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Table 2 presents a TEPCO data set from 2003 to 2015 as an illustrative example of Japanese electric
power companies. We obtained the data set from Japan’s Federation of Electric Power Companies and
the annual reports of the energy utility company. The observations on each factor are divided by each
mean to standardize their scales. The adjustment is important in avoiding the case where a large data
usually dominates a computation process, thus producing unreliable results.

Table 2. Tokyo Electric Power Company (2003–2015): An Example of Japanese Electric Power Companies

Total Assets Operating
Expenses Total Revenue Total Enterprise

Value CO2 Emissions

2003 3.0170 2.5329 2.5671 3.1517 2.8503
2004 2.9422 2.5330 2.6164 3.2910 2.4469
2005 2.9266 2.5888 2.6915 3.4564 2.4043
2006 2.9024 2.6494 2.7603 3.4528 2.1870
2007 2.9325 3.0377 2.8497 3.0952 2.8346
2008 2.9173 3.3116 3.0648 3.1035 2.7046
2009 2.8393 2.6861 2.6169 3.0096 2.4088
2010 3.2016 2.8195 2.8060 2.8866 2.4626
2011 3.4022 3.1840 4.1533 2.1241 2.7875
2012 3.2833 3.5493 3.6189 2.1383 3.1640
2013 3.2271 3.6924 4.4804 2.0839 3.1684
2014 3.0829 3.7313 4.0774 1.9185 2.9085
2015 2.9621 3.2740 3.6454 1.9468 2.7696

An important finding in Table 2 is that TEPCO has drastically reduced in corporate value from
2011 after the Great East Japan Earthquake generated a huge tsunami that caused damage to the
northern part of Japan in March 2011, causing an exceptional disaster at the Fukushima Daiichi nuclear
power plants. Since then, the electric utility firm has been operating as a public entity controlled by the
Japanese government.

Research expectation: Before our DEA application, we expected that the company performed
insufficiently after the nuclear disaster and would have a difficulty in improving the business status in
future performance assessment. Such an expectation has initiated this study.
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5.2. Primary Study

The production factors of the Japanese electric power companies include (i) inputs, comprising
(i-1) total assets and (i-2) the amount of operating expenses; (ii) desirable outputs, comprising (ii-1)
total revenues and (ii-2) total enterprise values; and (iii) an undesirable output, which is the amount of
CO2 emissions. The observed annual periods are from 2003 to 2015.

Table 3 summarizes the descriptive statistics of all nine electric power companies during the
annual periods (2003–2015). They are divided by the mean to standardize their scales. Due to a space
limit, this study lists only four annual periods (2003, 2007, 2011 and 2015) along with the averages
of all electric power firms. Here, the average of each observed factor implies that the sum of these
observations is divided by the number of annual periods (2003–2015). The statistics provide a whole
view on the data set.

Table 3. Descriptive Statistics (2003–2015): Average.

Year Production Factors Hokkaido Tohoku Tokyo Chubu Hokuriku Kansai Chugoku Shikoku Kyushu

2003

Total Assets 0.3081 0.8566 3.0170 1.2973 0.3442 1.4689 0.5657 0.3014 0.8667
Operating Expenses 0.2541 0.7618 2.5329 1.0135 0.2310 1.2149 0.4847 0.2701 0.6687

Total Revenue 0.2805 0.7817 2.5671 1.0937 0.2383 1.2869 0.4971 0.2766 0.7126
Total Enterprise Value 0.3354 1.0125 3.1517 1.5885 0.4159 1.7286 0.6231 0.3611 0.9467

CO2 Emissions 0.3428 0.7892 2.8503 1.2855 0.2653 0.8192 0.8302 0.2306 0.5355

2007

Total Assets 0.3270 0.8255 2.9325 1.1765 0.3326 1.3778 0.5671 0.3064 0.8500
Operating Expenses 0.3004 0.9169 3.0377 1.2195 0.2639 1.3615 0.5634 0.3008 0.7610

Total Revenue 0.2947 0.8644 2.8497 1.2049 0.2529 1.3497 0.5659 0.3030 0.7558
Total Enterprise Value 0.3593 0.9420 3.0952 1.5014 0.3933 1.5779 0.6911 0.4095 0.9648

CO2 Emissions 0.3760 0.8916 2.8346 1.4491 0.4149 1.2322 0.9651 0.2568 0.7641

2011

Total Assets 0.3489 0.8702 3.4022 1.2072 0.3050 1.4958 0.6039 0.2949 0.9232
Operating Expenses 0.3695 0.9683 3.1840 1.3751 0.2839 1.6202 0.6196 0.3184 0.9395

Total Revenue 0.3337 0.8039 4.1533 1.2532 0.2658 1.3655 0.6086 0.2945 0.7627
Total Enterprise Value 0.3224 0.7138 2.1241 1.0259 0.2909 1.3179 0.6189 0.3162 0.7054

CO2 Emissions 0.3502 0.9232 2.7875 1.4856 0.4151 1.4730 0.9251 0.3520 0.9636

2015

Total Assets 0.3964 0.8628 2.9621 1.1376 0.3277 1.4447 0.6378 0.3029 0.9705
Operating Expenses 0.3947 1.0188 3.2740 1.3871 0.2781 1.5609 0.6453 0.3374 0.9554

Total Revenue 0.3767 1.0118 3.6454 1.4415 0.2680 1.5710 0.6324 0.3217 0.9336
Total Enterprise Value 0.4081 0.9231 1.9468 1.1165 0.3074 1.5220 0.6829 0.3177 1.0054

CO2 Emissions 0.4293 0.9360 2.7696 1.3294 0.4168 1.4576 0.9277 0.3861 0.9366

Ave.

Total Assets 0.3477 0.8505 3.0490 1.1928 0.3240 1.4501 0.5892 0.3012 0.8956
Operating Expenses 0.3305 0.9198 3.0454 1.2637 0.2654 1.4545 0.5865 0.3016 0.8326

Total Revenue 0.3094 0.8805 3.2268 1.2579 0.2602 1.3996 0.5789 0.2958 0.7910
Total Enterprise Value 0.3576 0.8855 2.7430 1.2637 0.3512 1.5251 0.6532 0.3395 0.8812

CO2 Emissions 0.3791 0.8880 2.6998 1.3773 0.3378 1.2647 0.9299 0.2986 0.8248

At the first step of this primary study, we pooled data from 2003 to 2015 into a single data set and
applied Model (2). In this case, Model (2) did not incorporate data impreciseness because they were
observed data. Table 4 summarizes the unified efficiency (UEN) measures of the nine electric power
companies from 2003 to 2015. Figure 4 visually describes the annual shift of their unified efficiencies.
As summarized in Table 4 and Figure 4, they performed well until 2010, but they declined after 2011
when the disaster of the Fukushima Daiichi nuclear power plants occurred on March 11 2011. As
depicted in Figure 4, since the occurrence, Japanese electric power companies have suffered from the
damage due to the nuclear disaster.
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Table 4. Unified Efficiency of Electric Power Companies: Pooled Data (2003–2015).

Year Hokkaido Tohoku Tokyo Chubu Hokuriku Kansai Chugoku Shikoku Kyushu

2003 1.000 0.963 1.000 1.000 1.000 1.000 0.988 1.000 0.990
2004 1.000 0.921 0.990 1.000 1.000 0.990 1.000 1.000 0.961
2005 0.954 0.943 1.000 1.000 1.000 0.984 0.995 0.977 0.930
2006 0.989 0.966 1.000 1.000 0.992 0.982 1.000 1.000 0.931
2007 0.926 0.960 1.000 1.000 1.000 0.966 1.000 1.000 0.931
2008 0.813 0.953 1.000 0.977 1.000 0.974 0.975 1.000 0.896
2009 0.889 0.916 0.923 0.928 1.000 0.957 0.960 1.000 0.888
2010 0.931 0.906 0.924 0.899 1.000 0.937 1.000 1.000 0.864
2011 0.860 0.777 1.000 0.832 0.879 0.818 0.923 1.000 0.704
2012 0.717 0.801 0.892 0.838 0.855 0.785 0.896 1.000 0.686
2013 0.754 0.938 1.000 0.916 0.862 0.905 0.955 1.000 0.872
2014 0.841 1.000 0.989 1.000 0.892 0.927 0.936 0.997 0.863
2015 0.881 0.983 0.954 1.000 0.851 0.968 0.927 0.984 0.908
Avg. 0.889 0.925 0.975 0.953 0.948 0.938 0.966 0.997 0.879
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5.3. Handling Imprecise Data from 2015

Using the data set shown Table 3, this study have considered two approaches to handle imprecise
data, as depicted in Figure 2. First, we used data for the nine electric power companies in 2015 only.
In this case, all observations did not have data impreciseness, so we dropped the symbol (~) in the
formulation of Model (2). Second, we used a forecasting technique (e.g., exponential smoothing) to
estimate the performance of the nine utility firms in 2015 by using the data set from 2003 to 2014.
Exponential smoothing was used in this comparison to smooth the constants between 0 and 1 for
forecasting. We used 0.1 and 0.9 for the prediction. Thus, we obtained their upper and lower bounds
on the performance estimates of the nine electric power firms in 2015. We applied Model (7) to the
predicted data set from 2015. The purpose of this comparison is to examine whether any difference
occurs between the data with and without data impreciseness.

Exponential Smoothing: The forecasting method is specified here. The forecasted three production
factors become the following equations:

Fxi jt = αxi jt + (1− α)Fxi jt−1 (i = 1, . . . , m, j = 1, . . . , n & t = 2004, . . . , 2015),
Fgrjt = αgrjt + (1− α)Fgrjt−1 (r = 1, . . . , s, j = 1, . . . , n & t = 2004, . . . , 2015)
Fb f jt = αb f jt + (1− α)Fb f jt−1 ( f = 1, . . . , h, j = 1, . . . , n & t = 2004, . . . , 2015)

(9)

In Equation (9), the symbols Fx, Fg, and Fb on the left-hand side indicate the forecasted values of
the three factors in the tth period. This study used the mean between the upper and lower bounds
of each factor to determine the unified efficiency from the forecasted data. The right-hand side
indicates those in the t = 1 period and observed data in the tth period. The initial value of each factor
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(Fxi j2003, Fgrj2003, Fb f j2003) was calculated by the average of the factor during the former half period
(i.e., from 2003 to 2008). The value α (0 < α < 1) is referred to as a “smoothing constant.” Thus, the
forecasting for the tth period is simply the weighted sum of the observations and the predicted values
from the first to the last period. To enhance the computational tractability, this study has used Stata
ver.14 econometric software, which incorporates a single exponential smoothing method.

Table 5 summarizes the two estimated values for the production factors of the nine electric power
companies for 2015. The data columns in Table 5 summarize observed data for the nine electric utility
firms in 2015. The columns with α = 0.1 and α = 0.9 indicate the forecasted data with the two
smoothing constants, both of which were measured by the exponential smoothing technique.

Table 5. Observed and Predicted Values by Exponential Smoothing (2015).

Hokkaido Tohoku Tokyo

Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9

Total Assets 0.3964 0.3443 0.3920 0.8628 0.8503 0.8677 2.9621 3.0515 3.0980
Operating Expenses 0.3947 0.3275 0.3963 1.0188 0.9187 1.0707 3.2740 3.0560 3.7256

Total Revenue 0.3767 0.3052 0.3573 1.0118 0.8770 1.0605 3.6454 3.2186 4.1095
Total Enterprise Value 0.4081 0.3552 0.3935 0.9231 0.8882 0.9281 1.9468 2.8040 1.9356

CO2 Emissions 0.4293 0.3814 0.4574 0.9360 0.8883 0.9850 2.7696 2.7069 2.9341

Chubu Hokuriku Kansai

Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9

Total Assets 1.1376 1.1985 1.1811 0.3277 0.3244 0.3184 1.4447 1.4506 1.5231
Operating Expenses 1.3871 1.2646 1.6165 0.2781 0.2656 0.2856 1.5609 1.4585 1.8394

Total Revenue 1.4415 1.2528 1.5704 0.2680 0.2604 0.2774 1.5710 1.3945 1.6520
Total Enterprise Value 1.1165 1.2841 1.0568 0.3074 0.3564 0.2955 1.5220 1.5285 1.4518

CO2 Emissions 1.3294 1.3829 1.3907 0.4168 0.3364 0.4038 1.4576 1.2644 1.6050

Chugoku Shikoku Kyushu

Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9 Data α = 0.1 α = 0.9

Total Assets 0.6378 0.5858 0.6412 0.3029 0.3015 0.3005 0.9705 0.8910 0.9822
Operating Expenses 0.6453 0.5854 0.6663 0.3374 0.3004 0.3348 0.9554 0.8281 1.0693

Total Revenue 0.6324 0.5778 0.6657 0.3217 0.2955 0.3246 0.9336 0.7848 0.9581
Total Enterprise Value 0.6829 0.6521 0.6498 0.3177 0.3420 0.2969 1.0054 0.8779 0.9761

CO2 Emissions 0.9277 0.9323 0.9621 0.3861 0.2941 0.4022 0.9366 0.8235 1.0965

(a) The data is originally observed in 2015.
(b) The selected smoothing constants 0.1 and 0.9 do not necessarily correspond to the lower and upper

bounds of each production factor estimates. The forecasting produces the data impreciseness in
the production factor estimates (X, G and B).

Table 6 lists the unified efficiency measures for the nine electric power companies that were
measured by Model (2) and applied to the observed data set in 2015. In this case, we did not incorporate
the data impreciseness in Model (2). The last column of the table indicates those measures from Model
(7) that were applied to the data set with impreciseness.

Table 6. Unified efficiency measures on electric power companies using 2015 data.

UEN

Model (2) Model (7)

Hokkaido 1.000 0.929
Tohoku 1.000 0.803
Tokyo 1.000 0.811
Chubu 1.000 0.771

Hokuriku 1.000 0.961
Kansai 1.000 0.783

Chugoku 1.000 0.823
Shikoku 1.000 1.000
Kyushu 1.000 0.855
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Table 6 indicates two important implications. The first result produced from Model (2) measures
the UEN measures of Japanese electric power companies under a possible occurrence of UC. Model
(2) was applied to an observed data set for the nine companies in 2015. The problem is that all firms
produce unity (1.000) in their UEN measures. The result is “unacceptable” as a result of a performance
assessment because no difference can be found in their efficiency measures. The second result from
Table 6 was measured by Model (7), which computed the UEN measures under the same condition.
The model used a forecasted data set in 2015 for the nine companies for our comparative study. The
data set was obtained by the exponential smoothing method that was applied to the data sets from
2003 to 2014. As listed in the last column, Shikoku Electric Power Company reached unity in UEN,
but the others did not attain the unity, rather indicating some level of inefficiency. As mathematically
discussed in Section 4, Model (7) incorporates multiplier restrictions to deal with data impreciseness so
that it can reduce the number of efficient DMUs as a by-product of eliminating data impreciseness.
Thus, we confirm that Model (7) outperforms Model (2) in terms of efficiency measurement.

Computational note: Model (2) does not need any forecasted values. Meanwhile, Model (7) needs
estimated values. The lower and upper bounds (L and U) on the multipliers are due to Equation (9).

(a) For our methodological comparison, we use Model (2) without data impreciseness. The dual
formulation of (2) becomes Model (4). Both produce the same unified efficiency measures.

(b) Model (2) measures the degree of unified efficiency under natural disposability (UEN) under a
possible occurrence of UC (e.g., an economic difficulty). The model uses an observed data set on
the electric power companies from 2015. The result is listed in the second column.

(c) Model (7) measures the degree of UEN under UC. This model uses an estimated data set for 2015
on the electric power companies. The data set is obtained by the exponential smoothing method
applied to the data from 2003 to 2014. The result is listed in the last column.

(d) As listed in the second column under Model (2), all firms exhibited unity (1.000) in their UEN
measures. This result is unacceptable because we cannot classify them for their ranks.

(e) As listed in the last column, electric power companies (i.e., Shikoku) reached unity, but the others
were showing some level of inefficiency. Model (7) incorporates a multiplier restriction to handle
the data impreciseness. As a result of such a restriction, they can reduce the number of efficient
DMUs from nine to one.

5.4. Forecasted Performance Assessment from 2016 to 2020

To obtain the forecasted values of each production factor from 2016 to 2020, this research applied
the double-exponential smoothing technique to the data set. Double-exponential smoothing conducts
the same procedure described in Equations (9), but the smoothing was applied to the smoothed
(predicted) series obtained from the (single) exponential smoothing.

The procedure for an input (x), for example, becomes

Fxd
ijt = αFxi jt + (1− α)Fxd

ijt−1 (i = 1, . . . , m, j = 1, . . . , n & t = 2004, . . . , 2020). (10)

where the superscript d stands for the double-exponential. In Equation (9), Fxd
ijt on the left-hand side

indicates the double-exponential smoothing forecast values for x in the tth period. The initial value
Fxd

ij2003 is obtained by fitting a linear regression with a time trend using the first half of the observations
in the data set from 2003 to 2008.

Computational note: The proposed procedure can be applied to the other production factors (g, a
desirable output and b, an undesirable output). Here, let us express the average of each factor of the jth
DMU by the bar (−). Then, xi jt = (xL

ijt + xU
ijt)/2, grjt = (gL

rjt + gU
rjt)/2 and b f jt = (bL

f jt + bU
f jt)/2, where

the upper and lower bounds are due to Equation (10). These forecasted average values are used as the
estimates of production factors in Model (7).
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Table 7 summarizes the forecasted values on X, G and B of the nine electric power companies in
the case of α = 0.1 and 0.9, along with the average (listed as “estimated”) between the two forecasted
values. Table 8 summarizes the unified efficiency measures of the nine electric power companies
from 2016 to 2020. We applied Model (7) to the forecasted data set in Table 7, in the column named
“estimated”. In this case, each specific period was selected from 2016 to 2020. Note that the table
summarizes their unified efficiency measures after we pools all data from 2016 to 2020. The predicted
observations during the five years are treated as cross-sectional data. Figure 5 exhibits an annual shift
of their unified efficiency measures. Table 9 summarizes the unified efficiency measures of the electric
utility companies whose data sets are all pooled from 2016 to 2020.

We identify three main findings from Tables 8 and 9 and Figure 5. First, we cannot find any
major difference between the two tables, indicating that the specific year and the pooled years do not
produce a major difference in their computation of Model (7). As depicted in Figure 5, the Japanese
electric power companies, e.g., Hokuriku, have improved their efficiency measures. The Hokuriku
Electric Power Company showed a decreasing trend in 2016–2020. Second, the Shikoku Electric Power
Company outperformed the others. Like Hokuriku, this power company is relatively small compared
to the others; thus, it is expected that the firm controls the input measures (e.g., operation expenses) so
that it could attain a high level of efficiency status. Finally, we expected TEPCO to perform very poorly
because of the influence of the nuclear disaster. However, the performance of the firm was not the
worst, rather being in the middle of the industry. See the results from the observed and forecasted data
sets, as depicted in Figures 4 and 5; this is a surprising result.

Here, it is important to discuss concerning why TEPCO have performed relatively well needs
to be discussed here. There are three rationales on the matter. First, the company covers Kanto area,
including Tokyo and other large cities like Yokohama (the second largest city next Tokyo). Tokyo is
the center of Japanese business, politics and all other activities. The company covers more than 30
million peoples. After the nuclear disaster, all electric power firms have suffered from declines of share
prices, but have gradually regained their economic successes due to the new economic, energy and
industrial strategies of the Japanese government since 2012. As a result, TEPCO can enjoy its scale
merit in a recovery process from the nuclear disaster. Second, the Japanese government has created a
policy scheme to allocate the huge loss from the nuclear disaster to not only TEPCO but also all the
other incumbent electric power companies that own nuclear power plants. They have increased their
electric tariffs so that they have gradually recovered from the financial damage by the support scheme
through which they indirectly collect the costs from consumers and tax payers. Finally, the Japanese
government has estimated a huge financial support for TEPCO over 20 to 30 years (approximately
$203.4 billion in total that is calculated by the exchange rate with 108.14 Japanese Yen per US dollar) to
avoid the bankruptcy. The decision protected Japanese banks that had been supporting the operation
of TEPCO. See [43,44] that provide detailed description on the three rationales.



Energies 2020, 13, 490 18 of 24

Table 7. Forecasted Measures of Electric Power Companies (2016-2020).

Total Assets Operating Expenses Total Revenue Total Enterprise Value CO2 Emissions

Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9

Hokkaido
2016 0.4014 0.4018 0.4010 0.4192 0.4464 0.3921 0.3763 0.3572 0.3955 0.4071 0.3925 0.4216 0.4315 0.4569 0.4061
2017 0.4075 0.4095 0.4056 0.4266 0.4636 0.3896 0.3889 0.3636 0.4141 0.4163 0.3976 0.4350 0.4253 0.4679 0.3826
2018 0.4137 0.4172 0.4101 0.4339 0.4807 0.3871 0.4014 0.3701 0.4328 0.4256 0.4027 0.4485 0.4190 0.4788 0.3592
2019 0.4198 0.4249 0.4147 0.4412 0.4978 0.3846 0.4140 0.3765 0.4514 0.4349 0.4078 0.4619 0.4128 0.4898 0.3358
2020 0.4259 0.4326 0.4192 0.4486 0.5150 0.3821 0.4265 0.3830 0.4700 0.4441 0.4129 0.4754 0.4065 0.5007 0.3123

Tohoku
2016 0.8472 0.8381 0.8563 1.0757 1.1696 0.9818 1.0070 1.0330 0.9810 0.8682 0.8118 0.9247 0.9502 1.0077 0.8926
2017 0.8424 0.8348 0.8499 1.0762 1.2085 0.9438 1.0019 1.0548 0.9489 0.8626 0.7996 0.9257 0.9369 1.0246 0.8492
2018 0.8376 0.8315 0.8436 1.0766 1.2474 0.9058 0.9967 1.0766 0.9168 0.8570 0.7873 0.9267 0.9236 1.0414 0.8058
2019 0.8327 0.8282 0.8373 1.0771 1.2864 0.8678 0.9915 1.0984 0.8847 0.8514 0.7751 0.9277 0.9103 1.0583 0.7624
2020 0.8279 0.8249 0.8310 1.0775 1.3253 0.8298 0.9864 1.1202 0.8526 0.8458 0.7629 0.9287 0.8971 1.0751 0.7190

Tokyo
2016 2.9444 3.0497 2.8391 3.4316 3.9434 2.9199 3.6413 4.0301 3.2524 2.0696 2.1996 1.9396 2.7352 2.8547 2.6158
2017 2.8808 3.0454 2.7163 3.3201 4.0796 2.5606 3.4968 4.1366 2.8569 2.0372 2.1401 1.9342 2.6667 2.8708 2.4627
2018 2.8172 3.0411 2.5934 3.2086 4.2158 2.2013 3.3522 4.2430 2.4615 2.0047 2.0807 1.9287 2.5982 2.8869 2.3095
2019 2.7537 3.0368 2.4705 3.0970 4.3520 1.8421 3.2077 4.3495 2.0660 1.9723 2.0213 1.9233 2.5297 2.9030 2.1563
2020 2.6901 3.0325 2.3476 2.9855 4.4882 1.4828 3.0632 4.4559 1.6706 1.9398 1.9618 1.9178 2.4611 2.9192 2.0031

Chubu
2016 1.0867 1.0751 1.0984 1.4202 1.6308 1.2097 1.4280 1.5025 1.3535 1.0429 0.9216 1.1643 1.3810 1.4887 1.2733
2017 1.0571 1.0549 1.0592 1.3568 1.6842 1.0294 1.3996 1.5365 1.2627 1.0424 0.8722 1.2126 1.3622 1.5072 1.2173
2018 1.0274 1.0348 1.0200 1.2934 1.7376 0.8492 1.3712 1.5704 1.1719 1.0419 0.8229 1.2609 1.3434 1.5256 1.1613
2019 0.9977 1.0147 0.9808 1.2299 1.7910 0.6689 1.3428 1.6044 1.0812 1.0414 0.7736 1.3093 1.3246 1.5440 1.1052
2020 0.9680 0.9945 0.9416 1.1665 1.8444 0.4886 1.3143 1.6383 0.9904 1.0410 0.7243 1.3576 1.3058 1.5624 1.0492

Hokuriku
2016 0.3153 0.2952 0.3354 0.2976 0.3231 0.2722 0.2762 0.2909 0.2614 0.3116 0.3054 0.3178 0.4537 0.4798 0.4275
2017 0.3169 0.2906 0.3433 0.2992 0.3324 0.2661 0.2752 0.2958 0.2546 0.3144 0.3004 0.3283 0.4700 0.5015 0.4384
2018 0.3185 0.2859 0.3511 0.3009 0.3417 0.2601 0.2743 0.3008 0.2479 0.3171 0.2954 0.3387 0.4862 0.5232 0.4493
2019 0.3201 0.2812 0.3590 0.3025 0.3510 0.2540 0.2734 0.3057 0.2411 0.3198 0.2904 0.3492 0.5025 0.5449 0.4602
2020 0.3217 0.2765 0.3668 0.3041 0.3603 0.2480 0.2725 0.3106 0.2343 0.3226 0.2855 0.3597 0.5188 0.5665 0.4710
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Table 7. Cont.

Total Assets Operating Expenses Total Revenue Total Enterprise Value CO2 Emissions

Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9 Estimated α = 0.1 α = 0.9

Kansai
2016 1.4039 1.4280 1.3798 1.5807 1.8160 1.3455 1.5352 1.5563 1.5140 1.4618 1.3459 1.5777 1.4891 1.6417 1.3366
2017 1.3679 1.4216 1.3143 1.4972 1.8679 1.1266 1.5159 1.5764 1.4555 1.4764 1.3186 1.6342 1.4545 1.6945 1.2145
2018 1.3320 1.4152 1.2488 1.4137 1.9198 0.9077 1.4967 1.5965 1.3969 1.4909 1.2912 1.6906 1.4199 1.7474 1.0924
2019 1.2961 1.4088 1.1833 1.3302 1.9716 0.6888 1.4774 1.6166 1.3383 1.5055 1.2638 1.7471 1.3852 1.8002 0.9702
2020 1.2601 1.4025 1.1178 1.2467 2.0235 0.4699 1.4582 1.6367 1.2797 1.5200 1.2365 1.8036 1.3506 1.8531 0.8481

Chugoku
2016 0.6349 0.6319 0.6379 0.6849 0.7421 0.6277 0.6506 0.6930 0.6083 0.7104 0.7113 0.7095 0.9692 1.0409 0.8975
2017 0.6375 0.6375 0.6376 0.6880 0.7661 0.6099 0.6469 0.7101 0.5836 0.7290 0.7216 0.7363 0.9632 1.0591 0.8673
2018 0.6402 0.6430 0.6374 0.6911 0.7900 0.5921 0.6431 0.7273 0.5589 0.7475 0.7319 0.7631 0.9571 1.0772 0.8371
2019 0.6428 0.6486 0.6371 0.6942 0.8140 0.5744 0.6393 0.7444 0.5342 0.7661 0.7423 0.7900 0.9511 1.0953 0.8069
2020 0.6455 0.6541 0.6368 0.6973 0.8379 0.5566 0.6355 0.7615 0.5095 0.7847 0.7526 0.8168 0.9451 1.1134 0.7767

Shikoku
2016 0.3046 0.3042 0.3049 0.3460 0.3521 0.3398 0.3264 0.3326 0.3201 0.3473 0.3608 0.3338 0.3730 0.3751 0.3710
2017 0.3059 0.3048 0.3070 0.3509 0.3595 0.3422 0.3283 0.3383 0.3184 0.3583 0.3664 0.3502 0.3699 0.3837 0.3560
2018 0.3073 0.3055 0.3090 0.3558 0.3669 0.3446 0.3303 0.3439 0.3167 0.3693 0.3720 0.3666 0.3667 0.3924 0.3410
2019 0.3086 0.3061 0.3111 0.3607 0.3743 0.3470 0.3322 0.3495 0.3150 0.3803 0.3776 0.3830 0.3635 0.4011 0.3259
2020 0.3099 0.3067 0.3132 0.3656 0.3818 0.3494 0.3342 0.3551 0.3133 0.3913 0.3832 0.3994 0.3603 0.4097 0.3109

Kyushu
2016 0.9455 0.9261 0.9648 0.9560 1.0452 0.8668 0.9113 0.9047 0.9179 0.9677 0.9008 1.0347 0.9658 1.1289 0.8026
2017 0.9435 0.9283 0.9586 0.9253 1.0739 0.7768 0.9103 0.9191 0.9016 0.9830 0.9022 1.0637 0.9195 1.1714 0.6676
2018 0.9415 0.9305 0.9525 0.8947 1.1026 0.6868 0.9094 0.9335 0.8853 0.9982 0.9037 1.0927 0.8733 1.2140 0.5326
2019 0.9395 0.9327 0.9463 0.8641 1.1313 0.5968 0.9085 0.9480 0.8690 1.0135 0.9052 1.1218 0.8271 1.2565 0.3976
2020 0.9375 0.9349 0.9401 0.8334 1.1600 0.5068 0.9075 0.9624 0.8527 1.0287 0.9067 1.1508 0.7808 1.2990 0.2626
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Table 8. Unified Efficiency of Electric Power Companies (2016–2020).

2016 2017 2018 2019 2020 Avg. S.D.

Hokkaido 0.9206 0.9281 0.9354 0.9424 0.9492 0.9351 0.0113
Tohoku 0.8372 0.8543 0.8711 0.8874 0.8937 0.8687 0.0233
Tokyo 0.8192 0.8764 0.9085 0.9420 0.9838 0.9060 0.0628
Chubu 0.8461 0.8964 0.9350 0.9375 0.9421 0.9114 0.0408

Hokuriku 0.8944 0.8793 0.8659 0.8543 0.8443 0.8676 0.0199
Kansai 0.8327 0.8884 0.9427 0.9954 1.0000 0.9318 0.0716

Chugoku 0.8326 0.8478 0.8648 0.8801 0.8638 0.8578 0.0181
Shikoku 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
Kyushu 0.8510 0.8851 0.9222 0.9582 0.9886 0.9210 0.0551

Avg. 0.8704 0.8951 0.9162 0.9330 0.9406 0.9111 0.0337
S.D. 0.0586 0.0458 0.0444 0.0503 0.0599 0.0441 0.0249

Avg. and S.D. re average and standard deviation, respectively. Model (7) uses estimated values measured by
Equation (9). All are treated separately in this data analysis.
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Tohoku 0.8202 0.8413 0.8622 0.8829 0.8937 0.8600 0.0300
Tokyo 0.7975 0.8385 0.8822 0.9301 0.9683 0.8833 0.0685
Chubu 0.8316 0.8617 0.8884 0.9152 0.9421 0.8878 0.0434

Hokuriku 0.8580 0.8532 0.8493 0.8464 0.8443 0.8502 0.0055
Kansai 0.8223 0.8805 0.9372 0.9726 1.0000 0.9225 0.0716

Chugoku 0.8152 0.8348 0.8515 0.8576 0.8638 0.8446 0.0197
Shikoku 0.9648 0.9741 0.9830 0.9918 1.0000 0.9827 0.0139
Kyushu 0.8359 0.8736 0.9144 0.9542 0.9886 0.9133 0.0611

Avg. 0.8480 0.8733 0.8985 0.9205 0.9389 0.8958 0.0376
S.D. 0.0508 0.0438 0.0442 0.0501 0.0587 0.0437 0.0246

Avg. and S.D. re average and standard deviation, respectively. Model (7) uses estimated values measured by
Equation (10). All are pooled together in this data analysis.
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6. Conclusions

This study examined the performance of Japanese electric power companies from 2003 to 2020
where we used an observed data set on 2003–2015 and a forecasted data set on 2016–2020. As a method,
this study used DEA environmental assessment. An important feature incorporated into the approach
was originally designed to handle a production process among X, G and B. The approach unified
them into a holistic assessment without an assumption on a production function among them. This
study newly added an analytical capability to the DEA-based assessment by including a capability
to handle an “imprecise” data set for “future prediction”. It is easily imagined that the forecasting is
usually associated with data impreciseness. It is also true that most of data may be structured under
the impreciseness.

As an important application, this study applied the proposed approach to investigate the Japanese
electric power industry, including after the disaster of Fukushima Daiichi nuclear power plants. All
the electric power firms have suffered from huge damage in their operations in 2011 due to the nuclear
disaster. The Japanese government has developed a policy scheme for recovering the huge amount of
nuclear accident handling costs due to the nuclear disaster, which has allocated the costs to not only
TEPCO but also the other incumbent electric power utility companies that own nuclear power plants.
Under the scheme, they have increased their electric tariffs so that their financial conditions have been
gradually recovering from the damage by their managerial efforts and allocating the expenditure
indirectly to consumers and tax payers. A policy issue to be discussed in future is how to minimize
the total expenditures so that it can reduce people’s financial burdens. For the purpose, the efficiency
measurement is important as documented in this research.

We have the five research tasks, all of which were not sufficiently explored in this study. They
become the future extensions of this study which are specified as follows: First, this study considers
only the amount of CO2 emission as an undesirable output because its reduction is the main interest
of the world. However, it is true that we need to consider the other types of GHG emissions (e.g.,
NOx: Nitrogen Oxides). Unfortunately, we had a difficulty in data accessibility on those undesirable
outputs, so not incorporating them in this study. Second, the Japanese government still believes the
nuclear power energy is necessary for the future industrial development and the reduction on GHG
emissions. However, is it an appropriate policy direction? Such a policy question, including part of
Japanese fuel mix strategy, needs to be discussed from future energy perspectives. Third, this study
needs to discuss how to conduct various statistical tests based upon the proposed DEA environmental
assessment on data impreciseness. Such analyses on the data impreciseness and forecasting will be
an important future research task. Fourth, we need to extend this study by empirically applying the
proposed approach to examine the influence of BEP. Finally, it is necessary for us to apply the proposed
approach to the industrial assessment in not only Japan but also the other industrial nations.

In conclusion, it is hoped that this study makes a contribution on energy. We look forward to
seeing future extensions as summarized above.
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Abbreviations

ARA Assurance Region Analysis
BEP Basic Energy Plan
CO2 Carbon Dioxide
DEA Data Envelopment Analysis
DMU Decision Making Unit
DTS Damages to Scale
EE Energy Efficiency
ENV Environment
GHG Greenhouse Gas
IPCC Intergovernmental Panel on Climate Change
KWh Kirowatt hour
METI Ministry of Economy, Trade and Industry
NOx Nitrogen Oxides
OCCTO Organization for Cross-regional Coordination of Transmission Operators
RES Renewable Energy Sources
RTS Returns to Scale
UE Unified Efficiency
UEN Unified Efficiency under Natural disposability
UEM Unified Efficiency under Managerial disposability
UC Undesirable Congestion
URS Unrestricted
TEPCO Tokyo Electric Power Company
TWh Terawatt hour
Variable
X A column vector of m inputs
G A column vector of s desirable outputs
B A column vector of h undesirable outputs
ξ an inefficiency score
dx

i an unknown slack variable of the ith input
dg

r an unknown slack variable of the rth desirable output
db

f an unknown slack variable of the f th undesirable output
λ an unknown column vector of intensity (or structural) variables
εs a prescribed small number
vi a dual variable related to the ith input
ur a dual variable related to the rth desirable output
w f a dual variable related to the f th undesirable output and
σ a dual variable obtained from the constraint that the sum of λ j is unity
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