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Abstract: Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and
fewer emissions. Therefore, to investigate SHDI deeply, a numerical study on the effect of second
injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an
excess air ratio of 1.5, five different second injection timings achieved five kinds of hydrogen mixture
distribution (HMD), which was the main factor affecting the engine performances. With SHDI,
since the HMD is manageable, the engine can achieve better efficiency and fewer emissions. When the
second injection timing was 105◦ crank angle (CA) before top dead center (BTDC), the Pmax was
the highest and the position of the Pmax was the earliest. Compared with the single hydrogen
direct injection (HDI), the NOX, CO and HC emissions with SHDI were reduced by 20%, 40% and
72% respectively.

Keywords: hydrogen direct injection; split injection; second injection timing; hydrogen mixture
distribution; combustion; emission

1. Introduction

With the improvement of the world’s industrial level, the consumption of fossil fuels is increasing
year by year and the energy crisis is increasingly intensified. At the same time, the burning of fossil
fuels also leads to a large number of harmful emissions, such as NOX, HC, PM, etc. Therefore, how to
improve the efficiency of engines and reduce fuel consumption and reduce harmful emissions has
become a technical problem for all countries. Finding clean, efficient and renewable fuels is one of the
ways to alleviate the energy crisis and environmental problems.

Hydrogen is considered one of the most promising alternatives to fossil fuels because it is widely
available and renewable. However, the pure hydrogen engine still has big technical bottlenecks to
be solved [1]. Hydrogen is more suitable as a kind of blending fuel for the spark ignition (SI) engine.
Firstly, hydrogen has lower ignition energy than gasoline. Secondly, the flame propagation speed of
hydrogen is faster, which can speed up the combustion and increase the engine efficiency [2]. Thirdly,
hydrogen has a shorter wall quenching distance, which can reduce hydrocarbon (HC) emission [3].
Hydrogen has a wider flammability limit than gasoline, so it is easier to achieve lean burn combustion
with hydrogen.

Ji et al. studied a hydrogen/gasoline engine with hydrogen injected into the intake-port and
gasoline injected into the cylinder directly [4–11]. The results show that the performance was improved
by adding hydrogen, especially under the lean burn condition [4,5]. By injecting hydrogen into the
engine, the lean burn limit can be extended and the brake mean effective pressure can be increased [6,7].
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The emissions were reduced by injecting hydrogen into the engine. The addition of hydrogen greatly
reduced HC and PM emissions but increased NOX emissions [8]. In the cold starting condition,
injecting hydrogen can reduce emissions during the cold starting process, but it will lead to an increase
of NOX emission [9]. By adding hydrogen, the idle speed and the fuel consumption can be reduced [10].
Hydrogen addition cannot improve the engine performance at high loads [11].

Huang et al. investigated the natural gas-hydrogen SI engine with mixture direct injection [12–16].
They found that, with hydrogen addition, the combustion of the engine becomes faster and the
emissions are fewer. The early flame growth is more stable and faster under the lean burn condition
after adding hydrogen.

Yu et al. have done a lot of research on a single hydrogen direct injection (HDI) SI engine in
the past few years. According to their studies, the addition of hydrogen can accelerate the flame
propagation speed in the cylinder, advance the optimal ignition advance angle and make the combustion
completer and more stable, which can significantly reduce the engine’s cycle-by-cycle variations [17–21].
With hydrogen, the engine could achieve low HC and CO emissions. Hydrogen addition increases the
combustion temperature, which leads to an increase of NOX emissions [22–24]. To solve the problem
of high NOX emission after injecting hydrogen into the engine, exhaust gas recirculation (EGR) was
used to restrain the increase of NOX [25].

In [26], Li et al. did a comparative study of homogenous hydrogen mixture and stratified hydrogen
mixture and found that the stratified hydrogen mixture had higher thermal efficiency and lower HC
and CO emissions than the homogenous hydrogen mixture, especially under the lean combustion
condition and found that the main factor affecting the performance of the hydrogen/gasoline SI engine
was the hydrogen mixture distribution (HMD). When the HMD is homogenous, the combustion
is complete and the emissions are reduced. When the HMD is stratified, the combustion can be
accelerated and efficiency is higher. To achieve lower emissions and higher efficiency, a new kind of
injection mode was found. In [27], Li et al. studied the effects of split injection of hydrogen in the
cylinder on engine performance and found that split hydrogen direct injection (SHDI) could achieve the
best performance in all kinds of hydrogen injection modes. SHDI could form a better HMD. The first
injection could form a homogenous HMD, and the second injection could form a stratified HMD. As a
result, the SHDI achieved lower emissions and higher efficiency.

The HMD in the cylinder was hard to measure by experiment. Numerical simulation is a good
way to investigate the principles of HMD. In recent years, many numerical studies of hydrogen blended
SI engines have been done.

Gong et al. have published several papers about a hydrogen/methanol SI engine [28–33].
With hydrogen addition, cylinder pressure increased and all are emissions reduced.

In [34], Shang et al. studied the effect of hydrogen addition to a hydrogen\n-butanol SI
engine. With more hydrogen addition, HC, CO, acetaldehyde and formaldehyde emissions were all
reduced continually.

There are few studies investigating the effects of HMD on a hydrogen\gasoline SI engine with
SHDI. In [35], we investigated the split injection proportion of SHDI and found that HMD is the
main factor affecting engine performance. To deeply investigate how SHDI achieves better engine
performance, a numerical study on the effect of second injection timing was presented. Five different
second injection timings achieved five different kinds of HMD in a SI engine with SHDI. The results
proved that SHDI can achieve better efficiency and fewer emissions.

2. Proposed Models and Validation

2.1. Computational Model

The parameters of the engine are shown in Table 1. Figure 1 shows the 3D computation model in
CONVERGE (V2.3, Convergent Science, Madison, Wisconsin, USA). The grid document is the same as
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in our former research and was tested for grid independence in [34] to ensure the accuracy and ability
of the model to meet the requirements.

Table 1. Engine specifications.

Item Characteristics

Engine Type
Four Cylinders;
Dual Injection;
Spark Ignited

Bore × Stroke 82.5 mm × 92.8 mm
Compression Ratio 9.6

Displacement Volume 1984 ml
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Figure 1. Single cylinder model.

Table 2 shows mathematical models of our model. The intake mixture was regarded as a
homogeneous mixture with a certain proportion of oxygen, nitrogen and gasoline [36]. Six inflow
boundaries were set to inject hydrogen directly [37].

Table 2. Mathematical models.

Turbulence model RNG k-ε Model
Ignition model Spark-energy Deposition Model

Combustion model SAGE Model
Heat transfer model O’Rourke and Amsden Model

The combusting mechanism was a combination of a skeleton chemical reaction mechanism
(48 components, 152 reactions) [38] and a detailed chemical reaction mechanism of hydrogen
(10 components, 21 reactions) [39].

Table 3 shows the initial parameters.
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Table 3. Initial parameters.

Combustion chamber top surface 550 K
Piston 600 K

Intake port wall 363 K
Exhaust port wall 500 K

Cylinder wall 450 K
Intake air 363 K

Cylinder inside 800 K
Inlet pressure 0.035 MPa

Outlet pressure 0.1 MPa

In this paper, five second injection timings from 75◦CA BTDC to 135◦CA BTDC were selected
under the condition of 1200 rpm, a throttle opening of 10% and an excess air ratio of 1.5. The direct
injection pressure was set at 5 MPa, and the ignition timing was set at 15◦CA BTDC.

There were two kinds of contrast tests: single HDI and pure gasoline. The 120◦CA BTDC was
proved to be the best injection timing for single HDI. Therefore, 120◦CA BTDC was selected as the
injecting timing of single HDI. For SHDI, the first hydrogen injection timing was 300◦CA BTDC and
the hydrogen mass of the two injections was the same. Under these conditions, the engine can work
stably. The hydrogen energy fraction was set at 20%.

2.2. Validation

Figure 2 and Table 4 show the experimental setup scheme and measurement instruments.
Figure 3 shows the errors between the calculations and the experiment. The condition with single

HDI was under the conditions of 1200 rpm, a throttle opening of 10%, a direct injection pressure of
5 MPa, an ignition timing of 15◦CA BTDC, a direct injection timing of 120◦CA BTDC, a hydrogen
energy fraction of 20% and an excess air ratio of 1.5.

As shown in the figures, the simulation results are in good agreement with the experimental data.
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Table 4. Information on testing instruments.

Measuring Project Measurement Error Production Type

Speed ≤ ± 1 rpm CW160
Brake power ≤ ± 0.4 kW CW160

Fuel consumption of gasoline ≤ ± 0.01 g/s Ono Sokki DF-2420 flow meter
Hydrogen volumetric flow meter ≤ ± 0.2% DMF-1-1AB

Crank angle position ≤ ± 0.01◦CA Ono Sokki DS 9028
Heat release rate ≤ ± 1% Ono Sokki DS 9028

Cylinder pressure ≤ ± 0.3 bar Ono Sokki DS 9028
Flow pressure of intake air ≤ ± 0.1 kPa BOSCH flow meter

Excess air coefficient ≤ ± 0.15 LSU4.2 oxygen sensor
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3. Results and Analysis

3.1. Hydrogen Mixture Distribution

Figure 4 shows the change of the HMD at ignition timing with different second injection
timings. The HMD of single HDI is rich in a small zone in the cylinder, and the HMD of SHDI is
more homogenous.
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Hydrogen addition improves the efficiency of the engine in three main aspects: accelerating the
ignition, accelerating the combustion rate and completing combustion [22]. Single HDI cannot do well
in all aspects at the same time. Therefore, single HDI must balance the aspects to have high efficiency.
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As shown in Figure 4, the HMD of single HDI is rich near the spark plug, which can accelerate the
ignition but cannot do well in other aspects. However, the HMD of SHDI is not only rich near the
spark plug but also homogenous in other zones. By injecting hydrogen twice, SHDI can do well in all
aspects. The rich mixture near the spark plug can accelerate the ignition, and the homogenous HMD
can accelerate the combustion rate and complete the combustion. Since the first injection formed a
more homogenous hydrogen mixture, the second injection should form a rich zone near the spark plug.
As shown in the figure, early injection timing made the mixture too homogenous and late injecting
timing made the mixture too rich on one side of the cylinder. As a result, there is a best second injection
timing. In this work, it was 105◦CA BTDC.

The too rich HMD of single HDI would cause high emissions. When it is combusting, the zone
with rich mixture would have higher temperature and produce lots of NOX emissions. Furthermore,
the CO and HC emissions cannot be burned completely since the hydrogen is too rich in a small
zone and cannot do well in completing the combustion. However, SHDI reduces a great deal of
emissions compared to single direct hydrogen injection. On the one hand, more homogenous HMD
would reduce the peak temperature, which reduces NOX emissions. On the other hand, with SHDI,
the hydrogen affects a large zone in the cylinder to complete the combustion, which leads to low HC
and CO emissions. In brief, SHDI can achieve low emissions.

3.2. Combustion

Figure 5 shows the change in cylinder pressure with different second injection timings.
With hydrogen addition, the cylinder pressure increases obviously. Hydrogen addition improves the
engine efficiency in three main ways: accelerating the ignition, speeding up the combustion rate and
completing the combustion [22]. As the second injection timing advances, the cylinder pressure climbs
to the highest value measured with a second injection timing of 105◦CA BTDC. This is because early
injecting timing would make the mixture too homogenous and late injecting timing would make the
mixture too rich on one side of the cylinder. Since the best injection timing was set for single HDI,
the pressure curve is higher than some pressure curves of SHDI but lower than the pressure curves for
the second injection timings of 90◦CA BTDC, 105◦CA BTDC and 120◦CA BTDC. Split hydrogen direct
injection can form better HMD.Energies 2020, 13, x FOR PEER REVIEW 9 of 19 
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Figure 5. The change in cylinder pressure with different second injection timings.
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Figures 6 and 7 show the change of Pmax and the position of Pmax with different second injection
timings. When the second injection timing is 105◦CA BTDC, Pmax is the highest and the position of
Pmax is the earliest. Compared with gasoline, at the second injection timing of 105◦CA BTDC, the Pmax

increases by 33% and the position of the Pmax advances by 9◦CA. With the second injection timing of
105◦CA BTDC, the Pmax increases by 2.3% and the position of Pmax advances by 1.2◦CA compared to
single HDI.Energies 2020, 13, x FOR PEER REVIEW 10 of 19 
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Figure 8 shows the change in the heat release rate with different second injection timings. The heat
release rate with hydrogen is more concentrated and advanced. As shown in Figure 8, the ignition with
single HDI is the fastest. However, the most advanced maximum heat release rate is achieved by SHDI
with a second hydrogen injection timing of 105◦CA BTDC. This means that single hydrogen direct
injection can only do well in accelerating the ignition, and SHDI can further speed up the combustion
rate to improve the efficiency.
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3.3. Emissions

Figure 9 shows the change of NOX emissions with different second injection timings.
The temperature impacts NOX emissions significantly. Since the flame temperature of hydrogen is
higher than gasoline, the NOX emissions increase by 140% with hydrogen addition compared to
gasoline [22]. Since the HMD of SHDI is more homogenous, the maximum temperature is less than that
of single HDI [27]. Therefore, the NOX emissions with SHDI are fewer by an average of 20% compared
to single HDI. As the second injection timing advances, the NOX emissions fluctuate in a narrow band.
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Figure 10 shows the change in the conditions of NOX emissions and the change in temperature
after combustion with different second injection timings, which could indicate a similarity between
NOX emissions and temperature. With single HDI, the peak temperature is obviously higher, and the
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NOX emissions are greater than those of SHDI. With SHDI, the homogenous HMD could reduce the
size of the high temperature zone and produce fewer NOX emissions than single HDI.Energies 2020, 13, x FOR PEER REVIEW 14 of 19 
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Figure 10. The change in the conditions of NOX emissions and the change in temperature after
combustion with different second injection timings.

Figures 11 and 12 show the change in CO and HC emissions with different second injection
timings. Due to completed combustion with hydrogen addition, CO and HC emissions are obviously
reduced [22]. Since the HMD of single HDI is too rich and cannot affect most of the zone in the cylinder,
single HDI cannot make full use of hydrogen to limit CO and HC emissions. However, the HMD of
SHDI is more homogenous and hydrogen can affect the majority zone of the cylinder. As a result, SHDI
produces fewer CO and HC emissions than does single HDI [27]. Compared with single HDI, CO and
HC emissions with SHDI are respectively reduced by 40% and 72%. As the second injection timing
advances, the CO and HC emissions continue to decline. When the second injection timing is 135◦CA
BTDC, the CO and HC emissions respectively decrease by 20% and 40% compared to the second
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injection timing of 75◦CA BTDC. As the injection of hydrogen makes the HMD more homogenous
earlier, the hydrogen can affect a larger zone.Energies 2020, 13, x FOR PEER REVIEW 15 of 19 
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4. Conclusions

In this study, by building a model that was validated in CONVERGE, the effects of second
injection timing on HMD, combustion and emissions were investigated. With SHDI, the engine
can simultaneously increase its efficiency and reduce emissions without additional cost. The main
conclusions are as follows.

1. SHDI can form a better HMD. The HMD of SHDI is not only rich near the spark plug but also
homogenous in other zones. Therefore, combustion can be accelerated and completed. As a
result, SHDI can achieve better engine performance.
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2. With hydrogen addition, cylinder pressure increases obviously. The best second injection timing
is 105◦CA BTDC. This is because early injecting timing would make the mixture too homogenous
and late injection timing would make the mixture too rich on one side of the cylinder. When the
second injection timing is 105◦CA BTDC, Pmax is the highest and the position of Pmax is earliest of
all values measured.

3. NOX emissions increase by 140% after hydrogen addition compared to gasoline. NOX emissions
with SHDI are reduced by an average of 20% compared to single HDI. The main reason is that the
HMD of SHDI is more homogenous and the maximum temperature is lower compared to single
HDI. As the second injection timing advances, the NOX emissions change a little.

4. CO and HC emissions are respectively reduced by 60% and 95% after hydrogen addition compared
to gasoline. This is because the HMD of SHDI is more homogenous than that of HDI and hydrogen
can affect the majority zone of the cylinder. Compared with single HDI, the CO and HC emissions
with SHDI are respectively reduced by 40% and 72%. As the second injection timing advances,
the CO and HC emissions continue to decline. When the second injection timing is 135◦CA BTDC,
the CO and HC emissions respectively decrease by 20% and 40% compared to the emissions
associated with a second injection timing of 75◦CA BTDC.
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