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Abstract: While an area-wide implementation of electric vehicles (EVs) and electric heat pumps (HPs)
will contribute to a decarbonization of the energy system, they represent new challenges for existing
low-voltage (LV) power grids. Hence, this study investigates potential grid congestions on the basis
of three contrasting load approaches applied to four different grid regions. Within the three load
approaches, temporal characteristics of various grid customer classes (EVs, HPs, households etc.) are
derived from highly resolved realistic load profiles. In accordance with classic grid planning, firstly
a static load approach is analyzed by applying the modeled coincidence for each consumer class
individually. Secondly, this static approach is modified by including combined coincidence factors,
taking temporal consumer class interactions into account. Finally, both static load approaches are
compared with detailed annual time series analyses by means of load flow simulations using real-life
LV grid data. The evaluation of inadmissible voltage characteristics and thermal congestions identifies
future grid extension needs depending on the considered grid region. In addition, the variation of
the applied load approach highlights the need to consider consumer-specific temporal behavior. In
fact, by neglecting temporal interactions between conventional and future grid customers, the classic
grid planning approach overestimates future grid extension needs. To counteract an oversizing of
future grid structures, this paper presents a combined consideration of EVs’ and HPs’ coincidence as
well as resulting grid consequences on the LV level.
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1. Introduction

In 2019, the European Commission announced its vision to achieve the EU’s climate neutrality by
2050 [1]. Considering the energy-related end user greenhouse gas (GHG) emissions in the European
Union [2], the transportation and residential sectors represent crucial fields of action. Thus, on the one
hand, this vision is further concretized by the European Green Deal [3], which includes, inter alia, a
90% reduction in traffic-related GHG emissions by 2050 as one cornerstone to reach this ambitious goal.
Thereby, the EU intends to accelerate the shift to sustainable mobility by an area-wide implementation
of one million (2019: 0.14 Mio.) public charging stations by 2025 [3]. In accordance with Norway’s
leading role with respect to electric vehicle (EV) numbers [4], this measure will likely result in an
increasing number of battery EVs in the EU. On the other hand, the European Commission’s vision is
supposed to be realized by increasing the residential sector’s energy efficiency [3], e.g., by an area-wide
implementation of electric heat pumps (HPs) [5,6]. In fact, a large-scale transition to electric HPs
could decrease the European residential sector’s GHG emissions by up to 30%, assuming a market
share of 100% [7]. Besides positive aspects regarding the decarbonization of the traffic and residential
sectors, these future technologies will confront the existing power system with new challenges [6].
Since most charging processes take place at home [8,9] and electrical HPs will be installed primarily in
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residential areas, these challenges will especially affect the low-voltage (LV) level. However, due to
today’s relatively low penetration of EVs and electric HPs, these potential consequences for existing
distribution grids are hard to identify by the use of actual measurements. Despite the early stage of EV-
and HP-penetration, future challenges for distribution system operators (DSOs) have to be analyzed
now in order to develop appropriate adaption strategies.

1.1. State of Research

Numerous studies analyze potential impacts of future EVs on the LV level with regards to voltage
characteristics [10–15], thermal overload of grid lines [15,16], distribution substation (DS) transformer
utilizations [12,15,17] as well as the effects on load curves of existing grid customers [11,12,18–22].
Analogously, the implementation of electric HPs and its consequences for existing (LV) grids are
investigated by several publications [6,22–26]. Navarro-Espinosa et al. (2016) [27] assess the impacts
of, inter alia, EVs and HPs on numerous LV feeders individually based on a Monte Carlo simulation
using time series, but their study lacks a combined evaluation of potential synergies. In contrast,
the following studies deal with possible grid extension needs induced by an aggregation of these
technologies and are therefore described in detail.

Mendaza et al. (2014) [28] use a static Monte Carlo simulation, in order to investigate the
capability of a rural LV grid to integrate future EV- and HP-loads. Therefore, the authors vary EVs
and HPs spatially in numerous iterations depending on various penetrations, but applying consumer
class-specific peak loads exclusively. Hülsmann et al. (2019) [29] analyze the capacity of a German
25,000-noded network to integrate these future grid customers conjunctly considering numerous
penetration levels. Based on maximum individual coincidence factors for EVs and HPs, static Monte
Carlo simulations are performed. On the other hand, Shao et al. (2013) [30] apply time series with
a resolution of one hour in order to examine the integration of a 100% penetration of EVs and HPs
into one Danish urban LV grid. Li et al. (2014) [31] analyze EV- and HP-induced voltage deviations
and voltage imbalance in one LV feeder based on daily load profiles with a time resolution of one
minute, considering several penetration levels. Similarly, Baccino et al. (2014) [32] determine possible
grid congestions in one LV grid in order to test the presented demand response algorithms. On this
account, they apply daily load profiles considering a certain number of integrated EVs and HPs (one
penetration level exclusively). Birk et al. (2018) [33] determine critical voltage characteristics and
thermal congestions caused by a penetration of EVs and HPs of 60% in a section of an urban LV grid
located in the city center by applying 15-min resolved time series. Finally, Sinha et al. (2020) [34] test
the operation flexibility of EVs and HPs combined, implemented into one LV grid. Therefore, one
penetration level of these technologies is simulated as the reference scenario, using highly resolved
load profiles and a steady-state time series analysis.

In summary, future grid congestions triggered by a combined integration of e-mobility and the
electrification of the space heating sector are examined using two different simulation approaches: On
the one hand, a static simulation approach considering one time step, mostly in the form of a stochastic
Monte Carlo simulation [28,29]. On the other hand, the majority of studies [30–34] apply time series
analyses based on time-resolved load profiles. Besides static (stochastic) Monte Carlo simulations,
classic power grid planning performed by DSOs is based on an analytical static load approach [35,36]
because of its simple and fast application. While Monte Carlo simulations model a variety of grid
conditions stochastically based on their probability of occurrence [35], analytical static simulations
apply worst-case load conditions. Therefore, the aggregated peak load of a number of grid customers
is calculated by multiplying the number of customers by the respective coincidence factor and the
average individual peak load [35]. The coincidence factor thereby takes temporal characteristics and
resulting load aggregations of numerous grid customers of one consumer class (households, EVs etc.)
into account. Both static approaches attempt to consider temporal aggregations for each consumer
class individually by the application of individual coincidence factors, whereby temporal interactions
between various consumer classes are neglected (e.g., [28,29,35]). Nevertheless, while a stochastic
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Monte Carlo simulation must be performed for a certain number of iterations [37], any analytical
static modeling approach simulating one time step offers advantages in terms of the calculation effort
compared to detailed time series analyses [38]. This becomes more important when it comes to the
large-scale simulation of numerous grid structures.

Besides the consideration of temporal consumer class interactions, recent studies differ in terms of
the analyzed grid region: While the majority fail to define the analyzed grid region (e.g., [29,31,32,34]),
urban [30,33] and rural [28] LV grids are investigated in a few studies. However, these studies exclude
the fact that real-life housing types (family houses, multi-apartment residential buildings etc.) depend
on the considered grid region, which is crucial for evaluating grid impacts especially in urban areas.

1.2. Open Research Questions and Structure of This Paper

The previous section presents the state-of-the-art research in the field of grid simulations analyzing
future impacts of EVs and HPs. Thereby, the unanswered research questions with respect to the
temporal (1) and spatial (2) components are as follows:

1. What impact does the applied load approach have on the estimation of future grid extension
needs on the LV level? Is it necessary to take realistic temporal interactions between conventional
grid customers, EVs and HPs into account? How can fast static grid simulation meet with a
detailed consideration of these consumer class interactions? Does the classic grid planning
approach comply with an increase in various grid customer classes, and is it applicable for future
grid planning?

2. What impact does the considered grid region have on the determination of grid congestions,
applying consistent simulation approaches as well as real-life grid topologies and housing types?

To answer these research questions, this paper identifies potential impacts on the LV level triggered
by projected numbers of EVs and HPs based on co-simulations. Therefore, four LV grid structures in
various regions are modeled in detail (Section 2.1) using real-life grid data. The method for modeling
time-resolved load profiles considering conventional grid customers (Section 2.2.1), future EV charging
(Section 2.2.2) as well as future electric HPs (Section 2.2.3) using the software MATLAB [39] is described
in this paper. Both grid and consumer load modeling are based on real grid and consumer data,
provided in an anonymous form and in compliance with data protection regulations by the Austrian
DSO Energienetze Steiermark GmbH [40]. Based on modeled time series, the coincidence of various
consumer classes (Section 2.3) is determined depending on the considered number of consumers. To
analyze the effects of temporal load aggregations of several grid customers, two static load approaches
(applying coincidence factors) as well as a time series-based load approach (Section 2.4) are investigated
in the form of load flow simulations using the software NEPLAN [41]. These simulation methods
are applied consistently for all LV grids, providing a uniform comparison of various grid regions
(Section 3), which are discussed in detail (Section 4).

2. Methodology

2.1. Grid Topologies and Modeling

This analysis deals with the comparison of methods for the determination of potential grid
extension needs in various grid regions caused by private charging of EVs and HP loads. Therefore,
four real-life LV grids are selected for grid simulations and classified in accordance with the Degree of
Urbanization (DEGURBA) defined by the European Commission [42] as urban (densely populated),
suburban (intermediate density) and rural (thinly populated). However, we analyze the urban area
based on two LV grids, one located in the city center and one located in the city outskirts (Table 1).
The selected LV grids are each characterized by a DS (Figure 1), transforming the medium voltage
(MV) of 20 kV to a nominal voltage of 400 V (phase-to-phase) via a three-phase transformer (vector
group Dyn5). With a classic radial grid structure typical for the LV level [43], this substation supplies a
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number of feeders and points of common coupling (PCCs) via cables or overhead lines. However, the
suburban and urban grids are equipped with several grid separation points, enabling the creation of a
partial ring network structure in case of failure. The selected LV grids show significant differences
(Table 1) in terms of nominal transformer power at the DS, number of feeders, number of PCCs, degree
of cabling, admissible building density, total line length and the share of family houses (FHs).

Table 1. Grid configurations depending on the grid region.

Urban
(City Center)

Urban
(City Outskirts) Suburban Rural

Nom. transformer power [kVA] 2 × 630 630 250 100
No. of feeders 14 12 9 3
No. of PCCs 21 80 87 18

Degree of cabling [%] 100 100 91 57
Admissible building density 0.6–1.2 0.3–0.8 0.2–0.4 0.2–0.3

Total line length [km] 2.17 6.13 5.64 2.31
Share of family houses [%] 0 87.5 100 100

The latter is especially significant for the possibility of investigating private parking at home
or the installation of electric HPs. While FHs are predominant in the suburban and rural area,
the urban grid located in the city center is characterized by multi-apartment residential buildings
(MARBs) exclusively, which show limited possibility for private parking and inhibit the installation
of HPs. For the implementation of load flow simulations, the mentioned grid configurations (e.g.,
Figure 1) are modeled in detail using the software NEPLAN [41]. For this purpose, real-life line- and
transformer-specifications as well as real-life PCC-allocations of present grid customers are applied. As
a result, potential grid consequences (e.g., voltage deviations and thermal overload) are identified with
a high level of detail. In each of the four grid models, the higher voltage side of the DS is connected to
a slack node (Figure 1), providing constant voltage. Consequently, voltage deviations in the MV level
are excluded, which is taken into account when contrasting node voltages with standardized voltage
limits (e.g., Section 2.4.2).
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Figure 1. Grid model of an urban low-voltage grid located in the city outskirts.

To model future grid customers, each PCC is equipped with six load modules, representing
conventional consumer loads—present household (HO) loads, commercial businesses (CBs),
agricultural businesses (ABs), electrical water heaters (WHs)—future EV charging loads (EV) as
well as future electric HP demands (HP). All of these load modules are provided with either static load
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values or annual time series with a time resolution of one minute in order to perform long-term load
flow simulations.

2.2. Modeling of Grid Loads as Time Series

2.2.1. Conventional Consumer Loads

Spatially and time-resolved loads of conventional grid customers are modeled separately
depending on their consumer class. Therefore, consumers are classified in accordance with Austrian
Grid Codes [44] into HOs as well as CBs, ABs and WHs (Table 2). In the first step, time series of CB-,
AB- and WH-loads are modeled by means of standardized load profiles pursuant to [45], which further
classifies them into seven CB types, three AB types and six WH types.

Table 2. Number of persons (estimated) and number of conventional grid customers depending on
consumer type and grid region.

Urban
(City Center)

Urban
(City Outskirts) Suburban Rural

Estimated number of persons 509 346 231 50
Households (HOs) 331 170 88 18

Commercial businesses (CBs) 76 31 22 1
Agricultural businesses (ABs) 0 1 10 4
Electrical water heaters (WHs) 298 85 19 2

These load profiles provide annual phase-balanced active power time series for numerous
consumer classes unified for an annual energy consumption of 1000 kWh. Finally, the scale of these
unified load profiles by the real consumer’s annual energy demand provides consumer class-dependent
active and reactive power loads (a power factor of 0.98 lagging is assumed). Besides these standardized
load profiles, HO load profiles are modeled with the behavior-based load profile generator by
Pflugradt [46]. Thereby, this tool provides pre-defined HO structures, which differ in terms of the
number, age and behavior of residents. For each of the grid’s HOs, one of these pre-defined HO
structures and its according active load profile is selected randomly based on the number of persons.
While the number of persons of pre-defined HO structures is provided by the applied load profile
generator, this information is not available within the DSO’s data. Therefore, the number of persons is
estimated for each of the LV grids’ HOs by the real-time annual energy consumption and an average
energy demand of 2050 kWh per person [47]. This results in an aggregated number of 509 (urban—city
center), 346 (urban—city outskirts), 231 (suburban) and 50 (rural) persons (Table 2). After selecting the
appropriate pre-defined HO (active power) profile based on the estimated number of persons, reactive
power characteristics are taken into account depending on households’ underlying devices and their
power factor [48,49]. All the modeled time series cover one year with a time resolution of one minute,
taking seasonal as well as daily load deviations into account. Finally, all types of conventional consumer
loads (CB-, AB- and WH-loads as well as HO-loads) are aggregated for each PCC (e.g., Figure 2),
distributed symmetrically to all the grid phases and calibrated with real data acquired by long-term
measurements (described in detail in Appendix A.1). The load profile calibration using measured data
enables an (almost) exact load simulation on the DS level considering conventional grid customers
exclusively (neither EV nor HP). Nevertheless, since measured transformer loads at the DS level
include grid losses during operation, this calibration results in a slight overestimation of conventional
consumer loads. As a result, the maximum thermal utilization of the LV grids’ transformers determined
by grid simulations in the form of time series analyses exceeds the measured one by 0.57% (urban:
city center), 0.55% (urban: city outskirts), 0.64% (suburban) and 2.02% (rural). Still, the performed
load profile calibration allows for an accurate consideration of existing grid customers, required for
a detailed analysis of the LV grids’ capacity for integrating additional consumer loads, such as EVs
or HPs.
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Figure 2. Modeled time series aggregated for one point of common coupling (PCC) supplying
conventional consumers (three households), three electric vehicles charged at home as well as one
heat pump.

2.2.2. Electric Vehicle Charging Loads

In addition to conventional grid customers, this study deals with potential grid impacts caused,
inter alia, by the future supply of EVs, charged at private charging points. The European Directive
2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of
alternative fuels infrastructure [50] defines public charging infrastructure for EVs as non-discriminatory
access for all users within the European Union. However, due to a missing definition of private charging,
all charging possibilities may be defined as private charging points, which violates non-discriminatory
access, e.g., by several kinds of authorization, usage or payment. Hence, two of these private charging
EV user groups are taken into account in this study:

• Charging at home: This user group deals with EVs charged at domestic charging points
• Charging at work: EVs of this user group are charged at the enterprise parking area

Analogously to the methods applied in previous studies [12,51,52], an uncontrolled, stochastic
charging behavior is taken into account for both of them. To model this stochastic charging
behavior, the following aspects must be considered individually for each user group: the spatial
distribution of charging points, individual mobility patterns (time of charging and covered distance),
EV model specifics (battery capacity, specific energy consumption, charging efficiency and charging
power). A detailed description of the stochastic determination of these characteristics is presented in
Appendixes A.2–A.4 as well as in the authors’ recent publications [53–55].

Before modeling time series of EV charging loads, the actual charging power must be defined for
each connection between an EV and its charging point. Therefore, the available installed power of
private charging infrastructure depending on the grid area must be taken into account: Private parking
or rather charging possibilities depend significantly on the housing type, which is differentiated into
FHs and MARBs. In Austria (and a few other countries), the vast majority of HOs are integrated into
the LV level based on a three-phase connection [36], tolerating a maximum installed charging power of
11 kVA. Nevertheless, most of the charging points in MARBs are equipped with reduced charging
power [56]. Hence, charging points at FHs and at work are in this study considered to be equipped
with 11 kVA available power, whereas charging points at MARBs are considered to provide only
limited power of 3.7 kVA per charging point. Since all of the considered EV models enable charging
with 11 kVA (Appendix A.4), the actual available charging power depends solely on whether it is
charged at a FH, a MARB or at work. As a result, EVs are charged with 11 kVA in the rural (100% of
charging processes), the suburban (100%) and the urban LV grid located in the city outskirts (61.3%).
In contrast, 100% (city center) and 38.7% (city outskirts) of charging processes are supplied with
3.7 kVA by the urban LV grids (Figure 3). Assuming a uniform phase-allocation at MARBs, low-power
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charging with 3.7 kVA (usually in the form of single-phase charging) is considered as phase-balanced
three-phase charging.
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Finally, after determining the spatial distribution of private charging points (where are EVs
charged?), user group-specific mobility patterns, state-of-the-art EV model specifics (when and for
how long are they charged?) and the available charging power (with which power?), annual time
series of EV charging loads with a time resolution of one minute are modeled for each EV. Therefore,
measured charging data available for all the listed EV models (Table A5), including phase-imbalanced
active and reactive power profiles, are applied. Depending on the selected EV model (Appendix A.4),
the measured charging data are scaled according to the defined charging power, while maintaining
original (measured) power factors. For each charging event, these scaled charging curves are adapted
pursuant to the required amount of energy and added to the EV-specific annual load profile according
to the time of charging. After modeling EV charging load profiles (one year) for all EVs, active and
reactive power profiles are aggregated for each PCC (e.g., Figure 2), in accordance with the EVs’ spatial
allocation depending on the considered EV-penetration.

2.2.3. Electric Heat Pump Loads

Analogous to the modeling of time-resolved EV charging loads, potential grid impacts triggered
by electric HPs depend on a spatial (where?) and a temporal (when?) component. For dealing with
the former, the same approach as for determining the spatial distribution of private EV charging points
(Appendix A.2) is applied. Therefore, the maximum number of HPs (HP-penetration of 100%) within
each LV grid is initially detected based on the respective housing type (FH or MARB). Since only FHs
allow the installation of future HPs, the maximum number of potential HPs equals the number of FHs
supplied by the according LV grid: 0 (urban—city center), 60 (urban—city outskirts), 70 (suburban)
and 15 (rural). Similar to the analysis of future EV numbers, this study analyzes potential impacts
induced by future HP-penetrations (0%, 5%, 10%, 20%, 30%, 50% and 80%). However, for defining
which FH is virtually equipped with a HP considering a certain HP-penetration, a uniform HP-share is
applied to each of the LV grid’s feeders.

For modeling the temporal component on the other hand, time-resolved HP load profiles,
pre-defined for numerous house structures (e.g., single-family house hosting 1–2 persons, house with
a solar thermal system, 300 L storage tank and gas heating etc.) are acquired also by Pflugradt [46].
Furthermore, these HP load profiles are uniformly scaled according to an average domestic space
heating demand of 14,316 kWh/a/household and an average domestic warm water demand of
2995 kWh/a/household [57,58] assuming a coefficient of performance of 3.0. Reactive power profiles are
derived by applying a constant power factor of 0.9 (lagging) [23,24,26]. Finally, considering a certain
HP-penetration, the individual HP-loads of FHs are aggregated for the supplying PCC (e.g., Figure 2)
in accordance with the spatial determination, defined in the previous step. The modeled HP load
profiles show HP-typical characteristics according to Brendan et al. (2014) [23], e.g., increased starting
current/power due to the compressor motor as well as a certain base load during operation. If an FH is
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virtually equipped with a HP, the previously modeled electric water heating loads (WH) as well as
loads for electrical space heating are neglected.

2.3. Modeling the Coincidence of Current and Future Grid Loads

The coincidence of grid customers’ electrical loads represents a crucial aspect for grid operators
regarding the planning and operation of power grids. This “is a measure of the simultaneity of peak
demands of a group of N customers” [35] and describes temporal aggregations of numerous electric
loads: Considering a certain number of grid customers, a high coincidence equals a high probability
for a power demand at the same time. Equation (1) [35] describes this correlation in the form of
the coincidence factor (CF) considering a certain number of customers (NoC). It is defined by the
ratio between the maximum of the aggregated load, max

(∑NoC
i=1 Pi(t)

)
, and the aggregated maxima of

individual loads,
∑NoC

i=1 max(Pi(t)).

CF (NoC) =
max

(∑NoC
i=1 Pi(t)

)
∑NoC

i=1 max(Pi(t))
(1)

Due to currently low EV- and HP-penetrations, real information with respect to the coincidence of
numerous charging EVs and HPs is missing. On account of this, the presented analysis provides the
coincidence of existing and future grid customers based on long-term time series with a resolution
of one minute, necessary for deriving the exact coincidence of grid customers [35]. Therefore, the
modeled load profiles of households (HOs), commercial businesses (CBs), agricultural businesses
(ABs), electrical water heaters (WHs), electric vehicles (EVs) and electrical heat pumps (HPs) are
applied for each grid respectively. Since this study investigates potential grid impacts within a time
period of one year, the maximum coincidence is stochastically modeled for this period and each NoC.
Assuming an NoC of ten units for example, ten daily load profiles of the according consumer class are
randomly selected, aggregated and divided by the aggregated maxima of these selected load profiles
for each day of the year, according to Equation (1). Finally, the year’s maximum CF (maximum of
365 daily values) is detected for each NoC and each consumer class, demonstrated in Figure 4a for the
suburban LV grid.
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Figure 4. Coincidence factor (CF) of various consumer classes modeled individually (a) and in a
combined way (b) including CF-areas predominated (>75%) by households (HOs), electric vehicles
(EVs) or heat pumps (HPs).

In addition to varying consumer classes, two different approaches for dealing with the coincidence
between these are investigated by this study: the CF-modeling for each consumer class individually
(Figure 4a) as well as the CF-consideration of various consumer classes combined (Figure 4b). The
former determines the coincidence of each consumer class on its own, neglecting the temporal
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correlation with other consumer classes (e.g., as applied in [29] using a Monte Carlo simulation). In
contrast, the latter takes temporal interactions between various consumer classes into account by
aggregating all kinds of electrical loads supplied by the power grid. Based on numerous possible
customer class compositions, the combined coincidence at a certain aggregated NoC varies within the
modeled and illustrated bandwidth (Figure 4b). In addition, Figure 4b highlights CF-areas defined by a
predominant proportion (>75%) of HOs, EVs or HPs in relation to the total aggregated NoC. As already
demonstrated by an individual CF-consideration (Figure 4a), EVs are characterized by increased
simultaneity compared to HOs and HPs. Consequently, the analysis of grid customers representing
EVs primarily requires a higher CF compared to customer groups with a predominant share of HOs
or HPs, especially at a low aggregated NoC. Based on the assumed uncontrolled charging primarily
during evening hours (Appendix A.3), a CF of (almost) one is determined even at a number of four
vehicles (Figure 4a), considering EV charging with 3.7–11 kVA and both EV user groups. Regardless of
consumer class and modeling approach, the probability of a simultaneous grid demand and thereby
the CF decreases with an increasing number of customers [35] starting from one. The application of
standardized load profiles for modeling CBs, ABs and electric WHs (Section 2.2.1) results in high
coincidence compared to other consumer classes. In fact, a more accurate modeling of their coincidence
would require more individual load profiles, e.g., measured during real-life operation.

2.4. Grid Simulations Using Load Flow Calculations

2.4.1. Load Approaches Analyzing Temporal Interactions between Various Consumer Classes

In this study, we analyze two static simulation approaches based on the modeled coincidence
(Figure 4) in combination with the aggregated peak power of modeled load profiles. On the one
hand, we investigate a static individual aggregation (SIA) of several consumer classes in accordance
with classic grid planning [35], using the consumer class-individual coincidence factors. Hence,
the electrical grid customers’ aggregated load P in this approach is calculated by accumulating the
mathematical product of the maximum power of each consumer class Pmax, class and the according
individual coincidence factor CFind, class for all the considered consumer classes (Table 3).

Table 3. Comparison of various load approaches applied for grid simulation.

Load Approach No. of Time Steps Power Determination

Static individual aggregation (SIA) 1 P =
No.o f classes∑

class=1

(
Pmax, class·CFind, class

)
Static combined aggregation (SCA) 1 P =

No.o f classes∑
class=1

Pmax,class

·CFcomb, No.o f classes

Time series analysis (TSA) 525,600 P = max

No.o f classes∑
class=1

Pclass(t)


On the other hand, a static combined aggregation (SCA) of various consumer classes is examined

within a second approach: The electrical grid customers’ aggregated load P results from the aggregation
of the maximum power of each consumer class Pmax, class multiplied by a consumer class-combined
coincidence factor CFcomb, No.o f classes. The latter is selected from the modeled CF-bandwidth (Figure 4b)
depending on the number of HOs, CBs, ABs, WHs, EVs and HPs. The maximum power of each
consumer class Pmax, class is defined by the maximum of the aggregated load profile, including a certain
number of consumers of a certain consumer class (e.g., ten households).

Despite similarities between these two static simulation approaches (SIA and SCA), they differ
significantly with regards to the consideration of temporal overlaps between considered electrical
consumer classes. This difference is demonstrated by a simple load determination, considering 32 HOs
(with a peak load of 2 kVA each), three CBs (3 kVA each), seven ABs (2 kVA), three electric WHs
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(5 kVA), 45 EVs (11 kVA) and 21 electrical HPs (10 kVA), resulting in an aggregated peak load of
807 kVA. The SIA applying individual coincidence factors of 0.195, 0.96, 0.756, 0.973, 0.339 and 0.262
(Figure 4a) results in an aggregated peak load of 269.1 kVA. In contrast, a combined consideration of
grid customers’ coincidence (SCA) of 0.181 (highlighted in Figure 4b) results in an aggregated peak
load of 146.1 kVA (−46%). In addition to these static load approaches, a real-life simulation approach
on the basis of modeled annual time series with a time resolution of one minute is applied. Using
this time series analysis (TSA), the electrical grid customers’ aggregated load P is identified by the
maximum of aggregated load profiles including all consumer classes (Table 3). While the TSA enables
the implementation of time-resolved reactive power profiles (Section 2.2), constant power factors (PF)
are applied in order to determine the reactive power demand in the SIA- and SCA-approach. Therefore,
an average PF of 0.955 (lagging) is estimated considering existing grid loads based on long-term
measurements at the DS (Figure A1) and applied for consumer classes HO, CB, AB and WH. Similarly,
the reactive power demand of EVs is determined by measured charging data (applied for modeling
time series of EV charging loads) including 15 varying EV models. These measured charging data
demonstrate, that for most EV models, the power factor strongly differs between constant-current-phase
(average PF of 0.995, leading) and constant-voltage-phase (0.280, leading) during the charging process.
Consequently, an annual average PF including all the modeled time series of EV charging is detected
(0.971, leading) and applied for the SIA- and SCA-approach. Due to missing measurement data
regarding electrical HPs, a PF of 0.9 (lagging) [23,24,26] is assessed, analogous to the modeled time
series (Section 2.2.3). For a combined aggregation of various consumer classes in the SCA-approach,
an average PF weighted by individual numbers of consumer classes is applied in a simplified manner
(e.g., the combined consideration of two HOs, two EVs and one HP results in a PF of 0.993, lagging).

2.4.2. Evaluation of Grid Reinforcement Needs

To examine the future need for grid extensions in various LV grids, induced by EVs and/or HPs, the
mentioned load approaches are analyzed by determining grid loads at certain grid locations (Figure 5)
including the DS and each feeder separately. Therefore, both static load approaches require the number
of grid customers (for identifying the according CF) and the aggregated peak load of each consumer
class, depending on the considered point of load determination. The aggregated load calculated at
these locations is distributed to all involved PCCs (points of load application in Figure 5) according to
their contribution to the feeders’ or distribution substation’s peak load. In the TSA-approach, time
series are modeled for each of the involved grid customers and aggregated for each time step in
accordance with the point of load application. To evaluate inadmissible voltage characteristics caused
by future EV- and HP-numbers, voltage deviations are detected at the distribution substation’s LV
side (DS1; Figure 5) as well as at the farthest grid node in each feeder (e.g., F1; Figure 5). Furthermore,
detected voltage deviations are examined regarding the compliance with EN 50,160 [59], which defines
an admissible voltage range of ±0.1 per unit (pu) compared to the nominal voltage. In fact, this
permitted voltage range is shared by the MV and LV levels conjunctly. However, pursuant to the
voltage range partitioning presented in [60], a voltage range of only [−0.065 pu; +0.045 pu] is available
on the LV level.

As a result, this admissible voltage range is taken into account to evaluate the number of critical
grid nodes with respect to inadmissible voltage deviations. Besides voltage characteristics, potential
needs for grid reinforcement measures are additionally derived based on the thermal utilization of
feeders (e.g., F1; Figure 5) and the thermal utilization of the distribution substation’s transformer (DS1).
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Figure 5. Grid locations of load determination, load application, voltage detection and the detection of
thermal overload.

3. Results

This study deals with potential grid impacts caused by future grid customers by analyzing three
varying load approaches and four different grid regions. Therefore, the results of performed grid
simulations in the form of load flow calculations are classified accordingly: Firstly, deviating results in
terms of voltage characteristics and thermal overload considering the analyzed load approaches are
presented (Section 3.1). Secondly, this study provides an estimation of future grid expansion needs
depending on the grid region, the applied load approach and the considered EV- and HP-penetration
(Section 3.2).

3.1. Comparison of Various Load Approaches

To demonstrate the influence of the applied load approach, voltage deviations (Figure 6) and
thermal utilizations (Figure 7) are contrasted considering the LV grids’ distribution substation (DS1)
and feeders (F1, F2 etc.). Due to the fact that it has the highest number of EVs and HPs, the load
approach comparison is demonstrated using the suburban LV grid’s simulation results. Therefore, three
degrees of existing and future grid customers are investigated taking various EV- and HP-penetration
levels into account: conventional consumers only (CC), conventional consumers in combination with
EVs (CC and EV) as well as conventional consumers in combination with EVs and HPs (CC, EV and
HP). The evaluated voltage deviations in the suburban LV grid (Figure 6) considering these different
degrees of consumer classes differ significantly with the applied load approach. The SIA-approach
results in minimal voltages (feeder F4) of 0.955 pu (CC), 0.933 pu (CC and EV) and 0.915 pu (CC, EV
and HP), exceeding the defined voltage limit of 0.935 pu even at an EV-penetration of 5%. Additionally,
a voltage decrease of 0.017 pu (CC), 0.018 pu (CC and EV) and 0.022 pu (CC, EV and HP) is detected
at the LV side of the distribution substation (DS1). As a result, one (CC and EV) or rather three
feeders (CC, EV and HP) face inadmissible voltage reductions caused by charging EVs or rather EVs in
combination with HPs.

In contrast, the SCA- and TSA-approaches show rather similar impacts on voltage deviations,
all complying with the admissible voltage range: While conventional consumers only (CC) causes a
minimal voltage (F4) of 0.964 pu (SCA) and 0.968 pu (TSA), these values decrease to 0.961 pu (SCA)
and 0.954 pu (TSA) supplying 5% EVs or rather to 0.951 pu (SCA) and 0.948 pu (TSA) supplying 5%
EVs and HPs (Figure 6). Using the SCA-approach, the following voltages are detected at DS1: 0.989 pu
(CC), 0.988 pu (CC and EV) and 0.988 pu (CC, EV and HP).
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Figure 6. Comparison of various load approaches regarding voltage deviations at the distribution
substation (DS1) as well as at feeders (F1–F9) considering an EV- and HP-penetration of 5% supplied
by the suburban LV grid.

Otherwise, voltages of 0.992 pu, 0.991 pu and 0.990 pu are triggered at DS1 by these grid loads
applying the TSA load approach. In addition to CC-, EV- and HP-caused voltage deviations, we
discover a maximal thermal utilization in the LV grid’s most critical feeder (F4) of 40.4% (CC), 61.3%
(CC and EV) and 73.0% (CC, EV and HP) presuming the SIA-approach. The SCA load approach on the
other hand results in a thermal load of 36.3%, 38.2% and 50.4%. Finally, a maximal thermal utilization
of 29.4%, 38.2% and 41.4% is determined based on the TSA-approach (Figure 7).

Energies 2020, 13, x FOR PEER REVIEW 12 of 30 

 

 

Figure 6. Comparison of various load approaches regarding voltage deviations at the distribution 

substation (DS1) as well as at feeders (F1–F9) considering an EV- and HP-penetration of 5% supplied 

by the suburban LV grid. 

Otherwise, voltages of 0.992 pu, 0.991 pu and 0.990 pu are triggered at DS1 by these grid loads 

applying the TSA load approach. In addition to CC-, EV- and HP-caused voltage deviations, we 

discover a maximal thermal utilization in the LV grid’s most critical feeder (F4) of 40.4% (CC), 61.3% 

(CC and EV) and 73.0% (CC, EV and HP) presuming the SIA-approach. The SCA load approach on 

the other hand results in a thermal load of 36.3%, 38.2% and 50.4%. Finally, a maximal thermal 

utilization of 29.4%, 38.2% and 41.4% is determined based on the TSA-approach (Figure 7). 

 

Figure 7. Comparison of various load approaches regarding the thermal utilization of the distribution 

substation’s transformer (DS1) as well as feeders (F1–F9) considering an EV- and HP-penetration of 

5% supplied by the suburban LV grid. 

Analogously, the evaluation of the suburban LV grid’s transformer (DS1) illustrates a similar 

trend: 74.7% (CC), 97.3% (CC and EV) and 114.1% (CC, EV and HP) are detected using the SIA-

approach; 48.9%, 56.5% and 57.1% using the SCA-approach; and 41.9% (CC), 57.2% (CC and EV) and 

59.1% (CC, EV and HP) using the TSA-approach. Besides differences regarding the most critical grid 

locations—e.g., feeder F4 (voltage) and the transformer at the DS (thermal overload)—we analyze the 

correlation between load approach-induced deviations and the number of additional grid customers 

in the grid. Therefore, we determine the normalized root mean square deviation (NRMSD) between 

the static load approaches (SIA and SCA) and the time series analysis (TSA) as a function of numerous 

EV- and HP-penetration levels: Equations (2) and (3) show the NRMSD’s exact calculation regarding 

Figure 7. Comparison of various load approaches regarding the thermal utilization of the distribution
substation’s transformer (DS1) as well as feeders (F1–F9) considering an EV- and HP-penetration of 5%
supplied by the suburban LV grid.

Analogously, the evaluation of the suburban LV grid’s transformer (DS1) illustrates a similar trend:
74.7% (CC), 97.3% (CC and EV) and 114.1% (CC, EV and HP) are detected using the SIA-approach;
48.9%, 56.5% and 57.1% using the SCA-approach; and 41.9% (CC), 57.2% (CC and EV) and 59.1% (CC,
EV and HP) using the TSA-approach. Besides differences regarding the most critical grid locations—e.g.,
feeder F4 (voltage) and the transformer at the DS (thermal overload)—we analyze the correlation
between load approach-induced deviations and the number of additional grid customers in the grid.
Therefore, we determine the normalized root mean square deviation (NRMSD) between the static
load approaches (SIA and SCA) and the time series analysis (TSA) as a function of numerous EV- and
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HP-penetration levels: Equations (2) and (3) show the NRMSD’s exact calculation regarding voltage V
deviations (referring to an admissible voltage range of 6.5 pu) and thermal utilization U deviations
(referring to a maximal thermal load of 100%) including all feeders.

NRMSDVoltage =

√
1

No. o f f eeders ·
∑No. o f f eeders

i=1 (VTSA −VSIA or SCA)
2

Admissible voltage range o f 6.5 pu
(2)

NRMSDUtilization =

√
1

No. o f f eeders ·
∑No. o f f eeders

i=1 (UTSA −USIA or SCA)
2

Admissible maximal thermal load o f 100%
(3)

Figure 8 demonstrates load approach-induced NRMSDs compared to the TSA for the suburban LV
grid depending on the considered EV- and HP-penetration. The NRMSD analysis for the urban LV grid
in the city center (Figure A5), the urban grid in the city outskirts (Figure A6) as well as the rural LV grid
(Figure A7) is demonstrated in Appendix A.5. It points out that the static load approaches differ when
it comes to the grid simulation of numerous different grid customer classes and penetration levels:
Considering the supply of conventional consumers (CC)—HOs, CBs, ABs and electrical WHs—only
(EV- and HP-penetration of 0%), the estimation using the SIA-approach deviates by 19.64% (voltage)
and 12.12% (utilization) from the according thresholds (6.5 pu and 100%) compared to the time series
analysis (Figure 8). In contrast, the application of the SCA load approach results in an NRMSD of
7.93% and 3.93%.
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Figure 8. Load approach-induced normalized root mean square deviations (NRMSDs) compared to
the TSA in terms of voltage characteristics and thermal utilization considering the suburban LV grid.

Both voltage- and utilization-NRMSD show very similar trajectories as a function of increasing EV-
and HP-penetrations. Nevertheless, they differ significantly depending on the applied load approach.
On the one hand, the SCA- and TSA-approaches provide very similar results rather independent
of the EV- and HP-penetration (Figure 8): The determined NRMSDVoltage fluctuates between 4.62%
(5% EV- and HP-penetration) and 24.62% (80% EV-penetration), and the NRMSDUtilization fluctuates
between 1.98% (5% EV-penetration) and 12.77% (80% EV- and HP-penetration). On the other hand, the
NRMSD between the SIA- and the TSA-approach increases decisively when considering an additional
customer class: While the simulation of conventional grid customers in combination with future EVs
(CC and EV) results in maximal NRMSDVoltage and NRMSDUtilization of 30.77% (20% EV-penetration)
and 23.72% (80%), these values increase to 86.15% and 59.44% (both at 80% EV- and HP-penetration)
when including additional HPs (CC, EV and HP).

3.2. Comparison of Different Grid Regions

In addition to the load approach analysis, we analyze future grid extension needs in four different
grid regions. Therefore, the share of critical feeders with respect to inadmissible voltage characteristics
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(dropping below 0.935 pu) and thermal overloads (exceeding 100%) is determined for each LV grid
and each load approach (Figures 9 and 10), considering CC and EVs (a) as well as CC, EVs and HPs (b).
The evaluation of inadmissible voltage deviations shows a clear influence of the considered grid region
in particular. The urban LV grid located in the city center shows no impacts on voltage characteristics,
neither with regard to the applied load approach nor with regard to the degree of grid customer classes
(Figure 9). The urban grid located in the city outskirts faces critical voltage decreases starting with 10%
(SIA), 80% (SCA) and 30% (TSA) EV- and HP-penetration. Still, the supply of conventional consumers
in combination with EVs (without HPs) can be provided even for high EV numbers (Figure 9b),
applying the SCA or TSA. Using the SIA, this provision is limited to an EV-penetration of 10% in 8.3%
(one) of all feeders. Initial voltage problems also occur even at low penetration levels in at least one of
the suburban grid’s feeders: 5% (SIA) and 30% (SCA and TSA) penetration supplying CC and EV and
5% (SIA), 30% (SCA) and 20% (TSA) integrating additional HP-loads (Figure 9). Similarly, the rural
LV grid is strongly affected by future EV- and HP-numbers with respect to critical voltage deviations.
While only 10% (SIA and TSA) and 20% (SCA) of EVs can be supplied, the integration of additional
HPs is restricted to 10% (SCA and TSA) or even impeded completely (SIA).
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Figure 9. Share of critical feeders in terms of inadmissible voltage deviations caused by CC and EV (a)
as well as CC, EV and HP (b) considering various load approaches, grid regions and penetration levels.

Furthermore, the SIA-approach determines thermal overloads caused by CC and EVs in at least
one feeder in the urban grid located in the city outskirts (80% EV-penetration) and the suburban one
(50%). The supply of CC, EVs and HPs on the other hand triggers grid line overloads at 30% (outskirts),
20% (suburban) and 80% (rural) EV- and HP-penetration (Figure 10). Using the SCA- or TSA-approach,
thermal problems only occur in one feeder in the suburban LV grid at 80% (CC and EV) and 50% (CC,
EV and HP) penetration.

In addition to critical voltage characteristics and thermal overloads, we investigate the maximal
thermal utilization of the LV grids’ DS depending on the supplied grid customers (Figure 11): CC and
EV (a) or CC, EV and HP (b). The urban (city center) grid’s transformer shows a maximal thermal load
of 75.8% (SIA), 46.1% (SCA) and 28.2% (TSA) supplying CC and EV and thereby the compliance with
its nominal transformer capacity (Table 1). Since the investigated urban grid structure impedes the
installation of HPs, no additional loads are added in the CC, EV and HP scenario.
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and EV (a) as well as CC, EV and HP (b) considering various load approaches, grid regions and
penetration levels.

The urban grid located in the city outskirts faces grid restrictions (only) when applying the static
individual load aggregation (SIA) and considering CC, EV and HP. In fact, the supply of these EV-
and HP-numbers results in a maximal transformer load of 114.80% (SIA), 66.44% (SCA) and 71.91%
(TSA). Without integrated HPs, the maximal transformer load decreases to 94.6% (SIA), 55.8% (SCA)
and 58.1% (TSA). In the suburban LV grid on the other hand, the congestion of the transformer’s
capacity depends strongly on the applied load approach: While the SIA-approach results in a maximal
thermal utilization of 106.0% (CC and EV) and 130.8% (CC, EV and HP) powering a penetration of 10%,
the SCA- (66.5% and 72.8%) and TSA-approach (66.8% and 69.7%) estimate this scenario differently
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(Figure 11). An integration of numerous EVs (80% penetration) creates a maximal thermal utilization
of 225.1% (SIA), 179.5% (SCA) and 172.4% (TSA) in the suburban grid’s DS, whereas the installation
of additional electric HPs increases this load to 298.9%, 187.7% and 211.9%. Despite lower nominal
capacity (Table 1), the rural grid’s transformer shows quite similar results in this respect (Figure 11):
Initial thermal restrictions are triggered by 20% (CC and EV) and 10% (CC, EV and HP) applying the
static individual load aggregation (SIA). Using the static combined load approach (SCA), these EV- and
HP-numbers induce a maximal thermal utilization of 71.7% and 80.7%. Furthermore, the performed
time series analyses (TSAs) indicate utilizations of 74.3% (CC and EV) and 82.0% (CC, EV and HP)
compared to the nominal transformer power.

4. Discussion

By means of static (SIA and SCA) and time series-based (TSA) load flow calculations, we analyze
the impacts of the following factors on the identification of future grid extension needs on the LV level:

• The consideration of temporal load aggregations of various grid consumer classes in the form of
three load approaches;

• The investigated grid region, including realistic housing types, affecting the available charging
power and HP-numbers.

The analyzed load approaches—static individual aggregation (SIA), static combined aggregation
(SCA) and time series analysis (TSA)—vary in terms of the consideration of temporal interactions
between numerous consumer classes: While the SIA-approach assumes a temporal aggregation of all
consumer classes’ peaks, the other two take consumer class-specific peak periods into account, either
by “combined” coincidence factors (SCA) or stochastically modeled time series (TSA). On both the
DS-transformer level as well as the feeder level, grid analyses based on the static load aggregation
applying an individual coincidence (SIA) result in an overestimation of aggregated maximal loads,
compared to the SCA- and TSA-approach. Neglecting temporal consumer class interactions, peak
loads of all consumer classes are summed up, resulting in increased voltage decreases (Figure 6) and
thermal utilizations (Figure 7). As a result, even the simulation of existing grid customers only (0%
penetration) in the form of HOs, CBs, ABs and WHs reveals much higher transformer load (e.g.,
74.7% in the suburban grid) compared to that measured during real-life operation (42.0%). This
high degree of deviation between modeled and measured loads, even when evaluating present-day
grid conditions, highlights the need to calibrate modeled grid customer loads with real-life data
(Appendix A.1). The TSA benefits from this calibration and thereby allows for an exact consideration of
current consumer loads. On this account, the TSA provides this study’s “true” results as a benchmark
for static load approaches.

Besides conventional consumer loads, deviations between the SIA and the TSA become more
considerable with an increasing number of supplying grid customer classes and with increasing EV-
and/or HP-penetrations. In fact, the more grid customers are taken into account for grid simulations,
the more temporal peak load aggregations between EVs, HPs and conventional consumers (CC) are
assumed by the SIA-approach. While deviations compared to the TSA-approach slightly increase
(thermal utilization) or even decrease (voltage) with raising EV-numbers (CC and EV), the inclusion of
an additional consumer class varying in terms of temporal load characteristics, e.g., in the form of
electric HPs (CC, EV and HP), enhances this effect (Figure 8). Considering EV charging with 3.7 kVA
and 11 kVA in combination with electrical HPs, the presented SIA-approach differs by up to 86.15%
(voltage) and 59.44% (thermal loads) with reference to the defined thresholds and compared to a grid
simulation based on time series. Consequently, these load approach deviations result in a significantly
higher extent of calculated grid reinforcement needs: Except for the urban LV grid located in the city
center, all grid regions face initial inadmissible voltage deviations as well as thermal overload at much
lower EV- and HP-penetrations and thereby at a much earlier stage.
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The load aggregation applying a “combined” coincidence factor (SCA) on the other hand
corresponds more precisely to detailed long-term TSAs (Figure 8). Due to a missing load profile
calibration, deviations compared to the TSA cannot be prevented completely in the reference scenario
(excluding EVs and HPs), although they are decreased significantly compared to the ones between
the SIA and TSA. More importantly, deviations compared to the TSA show reduced dependence on
the number of varying grid customer classes (demonstrated by two cases: CC and EV as well as CC,
EV and HP) in contrast to the SIA-approach. Despite a low NRMSD including all grid components,
increasing penetration levels reveal substantial differences between the SCA and TSA in single feeders.
Due to the missing calibration of conventional consumer loads, the SCA-approach results in slightly
higher grid loads compared to the TSA considering CC only. As a result, the majority of feeders follow
this trend when considering additional EV- and HP-numbers: Supplying an EV- and HP-penetration
of 20% (Figure 12a) and 50% (Figure 12b), the SCA identifies slightly higher voltage drops in most
feeders relative to the TSA-approach. Considering for example a penetration of 50%, the TSA reveals
inadmissible voltage characteristics in one (CC and EV) or three feeders (CC, EV and HP) respectively,
whereas the SCA-approach detects these in three or four feeders (Figure 9) respectively. However, the
SCA-approach reveals slightly decreased grid loads and, thereby, lower voltage deviations in feeder F2
and F4 (Figure 12) compared to the TSA. This finding is based on the stochastic nature applied for
modeling consumer load profiles and their coincidence.
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substation (DS1) as well as at feeders (F1–F9) considering an EV- and HP-penetration of 20% (a) and
50% (b) supplied by the suburban LV grid.

As described in Section 2.3, the latter is modeled by selecting individual load profiles randomly
(according to the number of supplied consumers) from a pool of all the modeled time series and
by aggregating them for each iteration (365) representing each day of the year. According to
probability theory’s urn problem, the number of possible combinations when drawing r individual

load profiles from a pool of n load profiles is calculated by the binominal coefficient
(

n
r

)
[61]. Since

the SCA-approach uses a combined consideration of grid customers’ coincidence, theoretically the
number of possible load profile combinations of each grid customer class (HO, CBs etc.) must be
multiplied. Therefore, to determine all possible load profile combinations in feeder F2 supplying
32 HOs (out of 231), three CBs (88), seven ABs (22), three WHs (10), eleven EVs (160) and five HPs
(70), a number of 1.46 × 1075 combinations must be considered. Hence, the maximum coincidence
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may be underestimated in single feeders based on a limited number of 365 iterations applied for this
study. As a result, the SCA- (zero feeder) and TSA-approach (one feeder) reveal a different share of
inadmissible voltage characteristics in the suburban LV grid considering an EV- and HP-penetration of
20%, demonstrated in Figures 9b and 12a. This stochastic nature also affects the SIA-approach and its
accuracy when determining the maximum coincidence of individual consumer classes. Furthermore,
with an increasing EV- and HP-penetration, the number of grid consumers (and classes) rises, which
enhances this stochastic effect. Based on the disproportional impact of large deviations on the NRMSD,
it is very sensitive to outliers [62]. As a result, this stochastic nature influences the NRMSD in both static
load approaches, especially at higher penetration levels: While the SCA’s slight underestimation of grid
loads in single feeders compared to the TSA results in increasing NRMSDs, the SIA’s overestimation of
grid loads is reduced, which triggers a decrease in the NRMSD (Figure 8). Apart from the suburban
region, the urban (city outskirts) and rural LV grids are both affected by this issue, causing an
underestimation of aggregated grid loads and, thereby, voltage problems in single feeders by the
SIA compared to the TSA-approach. In order to solve this problem, yet avoiding having to run all
possible combinations, the number of iterations could be increased until certain criteria are fulfilled,
e.g., the standard error of the mean is below a defined limit [37], completely decoupled from the
number of analyzed grid customers. However, even with 365 iterations the described effect only
leads to minor differences. In general, deviations between static and time series simulations in terms
of voltage estimations can result from a uniform spatial distribution of static loads to the feeder’s
(or substation’s) grid nodes [35]. In this study, this aspect is counteracted by spatially allocating the
calculated aggregated static load according to the PCC’s contribution to the aggregated feeder (or
substation) load (Section 2.4.1). Nevertheless, small deviations between the analyzed load approaches
will remain, even with high numbers of iterations, due to this effect.

Besides an investigation into various load approaches, the presented results allow an estimation
of grid extension needs induced by future EVs and HPs considering four different grid regions. In fact,
the analyzed urban LV grid in the city center shows little impacts, based on the assumed charging
power of 3.7 kVA (three-phase) available at MARBs and their lack of potential for installing electric
HPs. This insight correlates with the findings of Birk et al. (2018) [33], in which, inter alia, the impact
of EV charging with 3 kW on a city center LV grid is found to be nonexistent. Furthermore, even
the urban LV grid located in the city outskirts faces little impacts regarding inadmissible voltage
deviations (the TSA-approach identifies critical voltage only in one feeder starting at an EV- and
HP-penetration of 30%) and thermal overload (neither grid lines nor transformer) applying the SCA-
or TSA-approach. On the contrary, EV charging with 11 kVA in combination with the supply of electric
HPs in the suburban and rural regions triggers inadmissible voltage deviations and/or transformer
loads at the DS even at low EV- and HP-penetrations. For example, a penetration of 20% EVs and
HPs combined already results in thermal congestions in suburban and rural DS transformers, while
preventing thermal overload in grid lines—both similarities to Hülsmann et al. (2019) [29]. In addition,
these penetration levels cause inadmissible voltage deviations in the suburban and rural LV grid,
comparable with the findings of Mendaza et al. (2014) [28]. Apart from region-specific grid structures
(e.g., degree of cabling, number of PCCs etc.), these results demonstrate the significance of considering
realistic housing types (e.g., available charging power and possibility of installing HPs) for evaluating
future grid extension needs on the LV level. Furthermore, they clarify that EV charging with a reduced
power of 3.7 kVA (neglecting HPs) enables a grid-friendly integration of numerous vehicles, presuming
a balanced phase-allocation. Otherwise, further simulations dealing with imbalanced grid conditions
caused by an area-wide implementation of single-phase charging EVs must be performed. Of course,
potential incentives for EV users aimed at low-power charging (e.g., tariff-based charging) must be
addressed in addition. Moreover, a variation of available state-of-the-art charging power and its
impacts on existing power grids are crucial for detailed grid planning.

Besides the abovementioned limitations due to a time period of one year and the need to investigate
additional EV charging characteristics, further studies should focus on the simulation of a higher
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number of LV grids per region, enabling a more general comparison of different grid regions and their
capacity for integrating future grid customers. Furthermore, in this study only certain grid lines and
bus bars are examined in terms of voltage characteristics and thermal overload, assuming a uniform
spatial distribution of EV- and HP-penetrations. Still, based on local aggregations of EV charging loads
or HP-loads, certain feeders may require grid reinforcements at an earlier stage. On the other hand,
voltage evaluation in accordance with the EN 50,160 [59] is based on the calculation of ten-minute
means, from which 95% must comply with defined limits in each week. Compared to this study, which
assesses inadmissible voltage characteristics according to their minimum during one year considering
a time resolution of one minute, this would provide more room for EV- and/or HP-induced voltage
deviations. However, the authors will address the highlighted aspects by means of further research
projects and will publish new findings in this field.

5. Conclusions

The performed grid simulations clarify the range of potential grid restrictions induced by future
EVs and electric HPs, depending on two aspects: the applied load approach and the considered grid
region. The former’s variation demonstrates the need to include consumer-specific temporal behavior
and thereby load aggregations along with other grid customers. Since the analyzed classic grid
planning approach (SIA) is based on consumer class individual coincidence factors, it overestimates
future grid extension needs, assuming the temporal aggregation of all consumer classes’ peak loads.
In fact, this issue becomes more important with an increasing number of varying consumer classes
(households, EVs, HPs etc.). Consequently, this classic grid planning approach is inadmissible
for identifying future grid congestions, unless it is adapted to comply with future grid customers.
Therefore, this paper presents the modeling of applicable coincidence factors based on highly resolved
time series using a combined load aggregation of conventional grid customers, EVs and electric
HPs. Applying the modeled combined coincidence factors (SCA), temporal load aggregations of
various consumer classes are estimated in a realistic way, allowing their application in future grid
planning. Nevertheless, slight deviations remain compared to detailed time series analyses (TSAs)
using calibrated consumer loads. This finding highlights the need to integrate measured consumer
data into future grid planning procedures.

As for the second aspect, this paper demonstrates significant differences in terms of the considered
grid region, applying real-life grid structures and realistic housing types. While urban LV grids
(located in the city center and in the city outskirts) show increased capacity for integrating future grid
customers, suburban and rural grids face inadmissible voltage deviations and/or transformer loads
even at low EV- and HP-penetrations. Consequently, when it comes to the evaluation of grid extension
needs induced by future grid customers, various grid regions must be evaluated individually including
real-life grid structures and housing types. Furthermore, this work points out that EV charging with
11 kVA triggers future grid extension requirements even at low EV numbers, whereas the reduction of
charging power enables a grid-friendly integration of numerous EVs.
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Appendix A

Appendix A.1. Calibration of Modeled Time Series Representing Conventional Consumer Loads

The time-resolved calibration of conventional consumer loads uses measured active
(PDS, measurement) and reactive power profiles (QDS, measurement) from each distribution substation (DS).
Figure A1 demonstrates these time series with a time resolution of one minute.
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Figure A1. Measured load profiles and calibration parameter (CP), including active and reactive power,
considering the suburban LV grid’s distribution substation (DS).

The correlation between measured and modeled active and reactive power time series is determined
on the DS level by a time-resolved calibration parameter CP(t) calculated with Equations (A1) and (A2).

CPP(t) =
PDS, measurement(t)∑No. o f PCC

PCC=1 PPCC,modelled(t)
(A1)

CPQ(t) =
QDS, measurement(t)∑No.o f PCC

PCC=1 QPCC,modelled(t)
(A2)

The calibration of modeled conventional consumer load profiles with real measured data
demonstrates the need to use real-time load profiles: On the one hand, modeled HO- and CB-loads
are decreased (CF < 1) in most of the time steps during the day. One the other hand, this calibration
increases modeled electrical WH-loads significantly during the night (CF > 1), which is based on
the usage of standardized, averaged load profiles considering this consumer class. Finally, these
time-resolved calibration parameters are applied to adapt modeled conventional consumer load
profiles to each time step t and each PCC according to Equations (A3) and (A4).

PPCC(t) = PPCC,modelled(t)·CPP(t) (A3)

QPCC(t) = QPCC,modelled(t)·CPQ(t) (A4)

Appendix A.2. Modeling the Spatial Distribution of EV Charging Points

To model the spatial distribution of privately charged EVs individually for each LV grid, we
initially determine the total number of vehicles (corresponding to an EV-penetration of 100%) for each
PCC and both user groups. The LV grids’ total number of vehicles charging at home is determined
according to Equation (A5) based on the estimated number of persons per household (Table 2) in
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combination with a grid region-dependent degree of mobility (DoM) [63]. The DoM represents the
correlation between the number of passenger vehicles and the number of persons (Table A1).

No. o f vehicles charging at homePCC = No. o f personsPCC·DoM + No. o f ABPCC (A5)

In Equation (A5), we additionally assume one vehicle per agricultural business (AB) taking
domestic EV charging at farms into account. Furthermore, the number of vehicles charging at work
is estimated for each PCC on the basis of available parking possibilities (one EV per parking lot) at
commercial businesses (CBs), identified by the use of Geographic Information System (GIS) data [64].
However, since CBs in the considered LV grids are small- and medium-sized enterprises exclusively,
these parking possibilities and thereby the total number of employees charging at work are rather low
(Table A1) compared to domestic charging at home. For example, despite the existence of CBs in the
rural grid and the urban grid located in the city center, they show no possibility of installing potential
charging points at work.

Table A1. Degree of mobility (DoM) and number of vehicles depending on the grid region.

Urban
(City Center)

Urban
(City Outskirts) Suburban Rural

Degree of mobility (DoM) [%]. [63] 47.7 47.7 61.6 61.6
No. of vehicles charging at home 243 152 153 34
No. of vehicles charging at work 0 5 17 0

To analyze potential grid impacts induced by future EV-numbers, we simulate several
EV-penetration rates (0%, 5%, 10%, 20%, 30%, 50% and 80%), which represent the share of EVs
in relation to the total number of passenger vehicles. Of course, the EV-penetration may differ spatially
within a certain LV grid or a certain feeder depending on demographic, (age, gender etc.), sociological
(income, level of education etc.) and psychological aspects (motives, attitudes etc.) [20]. Therefore,
after determining the total number of vehicles and defining the considered EV-penetration rate, it has
to be decided which of the LV grid’s passenger vehicles are electrified and require a supply by the local
power grid. However, to enable a feeder-specific analysis of potential grid restrictions, in this study the
selected EV-penetration rate is applied to each feeder uniformly. In other words, the number of EVs
supplied by a certain grid feeder equals its number of vehicles multiplied by the EV-penetration rate.

Furthermore, these EVs are distributed to the feeder’s PCCs in accordance with their total number
of vehicles: Starting with the PCC at the end of each feeder, EVs are “added” one by one to PCCs closer
to the DS until the feeder’s number of supplying EVs is reached. If all vehicles allocated to a certain
PCC are electrified, this PCC is skipped for further EV-allocations. The selected allocation method
results in a slightly higher EV density at the end of the feeder, providing rather critical analyses of
future EV-induced grid impacts.

Appendix A.3. Modeling Realistic Mobility Patterns of Passenger Vehicles

Independent of the spatial component, a time-resolved modeling of EV charging loads requires
detailed knowledge about user group-specific mobility patterns, including the time of charging and
the driven mileage. Since this study deals with uncontrolled charging of numerous EV users (without
any temporal coordination of EV charging or price-triggered charging etc.), the following assumptions
are made: While domestically charged EVs are connected to the power grid for recharging after their
final trip of the day, EVs are charged at work during morning periods after their arrival at the parking
lot. For modeling these uncontrolled charging characteristics, the hour-resolved probability density of
the time of arrival at home and at work (Figure A2) is acquired by real-life traffic analysis [53–55,65].
The histograms of the time of arrival demonstrate clear peak periods between 14:00 and 18:00 (at
home) and between 6:00 and 10:00 (at work). Considering uncontrolled EV charging, the majority
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of vehicles are connected to the grid during these periods of the day. Furthermore, the cumulative
distribution function (CDF) of the time of arrival is approximated for both user groups by using a
linear interpolation between hourly resolved sample points (Figure A4).
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In addition to the time of charging, the modeling of EV charging load profiles requires the
determination of traveled distances for each day of the year. Considering EVs charged at home, we
apply statistical data concerning the mobility indicator, the number of trips per day and the share of
trips covered by motorized individual transport (MIT) in the form of standard normal distributions,
acquired by traffic surveys [66], considering various regions, seasons and weekdays (Table A2).

Table A2. Mean (µ) and standard deviation (σ) of the standard normal distribution considering the
mobility indicator, the number of trips per day as well as the share of trips covered by motorized individual
transport (MIT) depending on season, weekday and grid region (urban–suburban–rural) [66].

Mobility Indicator [%] Number of Trips per Day Share of Trips Covered by MIT

µ: summer workday 85.1–83.0–80.0 3.58–3.44–3.32 34.9–54.8–57.7
µ: summer Saturday 81.8–77.3–72.7 3.39–3.35–3.37 33.8–48.4–53.6
µ: summer Sunday 73.5–61.0–66.1 3.02–2.89–2.88 32.2–41.6–43.9

µ: transition workday 86.1–83.0–84.5 3.47–3.39–3.25 41.5–50.7–55.5
µ: transition Saturday 82.7–77.3–76.8 3.29–3.30–3.30 40.2–44.8–51.8
µ: transition Sunday 74.4–61.0–69.8 2.93–2.85–2.82 38.3–38.5–42.2
µ: winter workday 80.6–81.7–82.5 3.41–3.38–3.43 36.6–44.0–55.9
µ: winter Saturday 77.4–76.1–75.0 3.23–3.29–3.48 35.5–38.9–51.9
µ: winter Sunday 69.7–60.0–68.1 2.88–2.84–2.97 33.8–33.4–42.5

σ: summer 35.6–37.6–40.0 1.77–1.80–1.68 47.7–49.8–49.4
σ: transition 34.6–37.6–36.1 1.63–1.79–1.69 49.3–50.0–49.7
σ: winter 39.5–38.6–38.0 1.68–1.63–1.91 48.2–49.6–49.7

The mobility indicator is defined as the share of mobile persons out of the total number of persons
and is applied to define whether a vehicle leaves its charging point at home for a trip on a certain day.
While EVs charged at home may perform several trips per day, a mobility indicator of 100% and a
constant number of trips per day covered by MIT of one is assumed for each workday considering EVs
charging at work. Still, despite the annual modeling of mobility patterns, potential periods of the year
with no EV charging (holidays, sick leave, vehicle service etc.) are neglected. In addition, the traffic
surveys used [66] provide user group-specific statistical data with regards to the covered distance per
trip homewards and to work depending on the grid region and weekday (Table A3).
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Table A3. Share of trips in % according to the covered distance depending on the EV user group,
weekday and grid region (urban–suburban–rural) [66].

Covered Distance Homeward—Weekday Homeward—Saturday Homeward—Sunday To Work—Weekday

<0.5 km 0.9–2.3–1.9 2–1.6–2.4 1.1–2.7–1.7 3.3–3.6–6
0.5–1.0 km 4.4–4.6–5.5 2.3–7.5–5.9 2.5–5.1–4.7 5.3–4–6.2
1.0–2.5 km 13–13.8–11.4 11.3–12.4–17.6 8.6–12.5–13.9 11.7–11.7–8.6
2.5–5.0 km 27.7–20.3–20.4 28.2–24.4–19.6 23.8–20.1–19.4 29.3–13.6–14.9
5.0–10 km 24.8–21.1–19.5 22.7–19.7–16.2 21.9–15.4–20.1 25.9–20.1–15.4
10–20 km 16.2–18.9–19.6 20.8–16.9–18.1 22.4–18.8–22.2 15.8–22–19.9
20–50 km 9–14.4–16.1 6.8–12.5–15.1 12.3–13.6–11.7 6.4–20.8–22
>50 km 4–4.6–5.6 5.9–5–5.1 7.4–11.8–6.3 2.3–4.2–7

Evidently, the probability density of covered distances per trip indicates very similar distributions
regarding homeward trips and trips to work. The majority of trips (e.g., 95.4% homewards and 95.8%
to work on a workday in a suburban region) are characterized by distances of less than 50 km, which
can easily be supplied by state-of-the-art EV models (Table A5). The applied data with regards to the
time of arrival and the covered distance show high similarity to those presented by Lojowska et al.
(2012) [51]. Furthermore, we apply these statistical data in order to approximate the CDF of covered
distances by log-normal distributions for each weekday and each user group (Table A4). Assuming no
trips to work on Saturdays and Sundays, only workdays are relevant for this user group.

Table A4. Mean (µ) and standard deviation (σ) of the log-normal distribution of covered distances per
trip derived from statistical data (Table A3) [66], depending on the EV user group, weekday and grid
region (urban–suburban–rural).

Homeward—Weekday Homeward—Saturday Homeward—Sunday To Work—Weekday

µ 1.86–1.96–2.05 1.94–1.88–1.90 2.17–2.13–2.02 1.67–2.1–2.07
σ 1.14–1.27–1.31 1.19–1.29–1.37 1.21–1.47–1.31 1.13–1.32–1.50

Based on the prepared statistical mobility data, annual driving performances are individually
modeled for each EV of both user groups (Figure A3) by a probabilistic predictive approach according
to [19,53–55,67]. Therefore, we initially examine for each day of the year the occurrence of a trip
(home)—by applying a random number (1. RN) and the CDF (1) of the mobility indicator of MIT—as
well as whether it is a workday or not (work). If so, the time of arrival at home after the final trip of
the day or the time of arrival at the workplace’s parking lot is determined by applying additional
random numbers (2. RN and 6. RN) and the prepared mobility data in the form of CDFs (2 and 6),
demonstrated in Figure A4. In the next step, the number of trips—3. RN and (3)—and the share of trips
covered by MIT—4. RN and (4)—are defined and applied to calculate the number of trips covered by
MIT. Considering EV charging at work, the number of trips covered by MIT equals one on workdays
and zero on Saturdays and Sundays. Finally, the covered distance is determined for each MIT-trip
by using 5. RN and 7. RN as well as (5) and (7). Since this study deals with grid impacts caused by
private charging at home and at work, public (re-)charging during the day is neglected. As a result,
the complete electric energy demand is supplied exclusively by private charging points at home or at
work, depending on the considered user group.
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Figure A4. Probabilistic determination of time of arrival (a) and covered distance (b) based on real
mobility data.

Therefore, the daily trips’ covered distances are aggregated to identify the total distance each EV
has covered on this day. Assuming charging at work solely, the stochastically determined work-trip’s
distance is multiplied by two, taking round trips (work–home–work) into account. In the end, this
probabilistic approach provides the time of charging as well as the covered distance of each EV for
both user groups, for each day of the year.

Appendix A.4. EV Model Specifics

Besides realistic mobility patterns, the time-resolved modeling of EV loads requires the
consideration of several EV model specifics. Since both EV user groups (charging at home and
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charging at work) deal with passenger vehicles, numerous commercial EV models are taken into
account. Therefore, Germany’s 15 most registered EV models are picked for this study, based on the
number of registrations in the year of 2019 [68]. Finally, state-of-the-art EV model specifics (Table A5)
are acquired for each of them: the frequency of occurrence [68], battery capacity, specific energy
consumption and charging efficiency [69].

Table A5. Specifics of EV models applied for modeling EV charging loads.

EV Model Frequency (%) [68] Battery Capacity (kWh) [69] Specific Energy Consumption
(kWh/km) [69] Charging Efficiency (-) 1 [69]

1 19.0 41 0.203 0.828
2 16.8 75 0.209 0.838
3 15.0 27.2 0.184 0.708
4 8.6 34.9 0.173 1.000
5 7.3 17.6 0.183 1.000
6 6.4 95 0.237 1.000
7 6.3 64 0.195 0.866
8 4.5 40 0.221 1.000
9 4.1 17.6 0.183 1.000
10 3.2 28 0.147 0.906
11 2.9 27 0.191 1.000
12 1.6 90 0.276 0.893
13 1.5 90 0.240 1.000
14 1.3 18.7 0.177 1.000
15 1.3 40 0.281 0.853

1 In the case of an efficiency of 1.0, charging losses are included in the energy consumption.

Since the listed specific energy consumption was measured at an ambient temperature of 20 ◦C [69],
the impact of ambient temperature is estimated for all EV models equally considering summer (mean
temperature of 18.8 ◦C [70], increase of 1.6%), transition (mean temperature of 10.5 ◦C [70], increase
of 13.1%) and winter periods (mean temperature of 2.7 ◦C [70], increase of 28.3%) based on Tober
(2016) [71]. Besides individual EV specifics, measured EV charging profiles of all the listed EV models
including phase-imbalanced active and reactive power are applied to model annual charging profiles.
These real-life charging curves enable the consideration of realistic charging characteristics, e.g., the
EV-model-specific transition from constant-current-phase to constant-voltage-phase. Analogous to the
probabilistic determination of mobility patterns (Figure A4), the individual vehicle model (including
vehicle specifics) is selected for each EV by applying the EV models’ frequency of occurrence (Table A5)
in the form of the CDF (approximated by linear interpolation) in combination with random numbers.
Based on the determined specific energy consumption and charging efficiency of a certain EV model in
combination with the predefined daily covered distance, the energy demand supplied by the grid is
calculated and limited to the battery capacity eventually. Considering state-of-the-art EV models and
the trend towards increasing charging power (even at private charging points at home or at work),
charging with 11 kVA is technically feasible for each of the selected EV models. Nevertheless, the
actual available charging power might be limited by restricted power installed at the interconnected
charging point at home or at work.

Appendix A.5. Supplementary Results: Deviations between Static and Time Series-Based Load Approaches

In addition to load approach deviations in the suburban LV grid demonstrated in Section 3.1,
Figures A5–A7 show the remaining analyzed grid regions.
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