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Abstract: Motor-driven equipment (ME) is one of the key components in an air-conditioning system,
which contributes to the vast majority of the total energy consumption by air-conditioning systems.
Distinguishing variable- and constant-speed equipment is important since the energy simulation
models of the two types differ. Traditionally, types of ME are known in advance, and energy
consumption data are consequently analyzed. However, in the application scenarios of energy
consumption data mining, precedent information on the ME type could be missing. Thus, this study
applies this process in reverse, providing new insight into energy consumption data of ME to
recognize variable-speed ME in an air-conditioning system. The energy consumption data of ME in
an air-conditioning system implemented in a commercial building were collected and numerically
analyzed. A proposed simple parameter, coefficient of the median, and several numerical parameters
were calculated and used to distinguish variable- from constant-speed ME. Results showed that the
energy consumption data distributions of the two types of ME differed. The proposed coefficient of
the median could successfully distinguish variable- from constant-speed ME, and it could be applied
as an important step in energy consumption data mining of air-conditioning systems.

Keywords: motor-driven equipment (ME); air conditioning; numerical analysis; variable speed;
data mining

1. Introduction

Air-conditioning systems are major sources of energy consumption in buildings [1,2]. Therefore,
energy conservation for air-conditioning systems is of primary importance in building energy saving.
In an air-conditioning system, the operation of various types of equipment is driven by motors, such as
electric chillers, fans, and pumps. Therefore, motor-driven equipment (ME) is a key component
in air-conditioning systems, especially in fluid transport subsystems. These subsystems transport
refrigerant, cooled/heated air, chilled water, condensing water, or even a glycol solution to ensure
the working cycle of the system. The energy consumed by ME makes up the vast majority of the
total energy consumption of air-conditioning systems [3]. Thus, reducing the energy costs of ME
may be an important approach to energy conservation for air-conditioning systems. Variable-speed
ME has been used in air-conditioning systems for more than 40 years [4]. By changing the working
frequency corresponding to flow-rate variations, variable-speed ME can generally cost less energy
than constant-speed ME under the same conditions [5–7].
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For air-conditioning systems equipped with both variable- and constant-speed ME, recognition
of each equipment type is vital for energy-consumption analysis, particularly for energy simulations
of ME, since the models of variable- and constant-speed ME are different [8–10]. In previous studies,
the type of ME was known in advance, and the energy consumption data of the ME were then analyzed
on the basis of known conditions [11–13]. For instance, several studies focused on the significant
benefits brought about by the application of variable-speed drive technology to various types of
ME of air-conditioning systems. For example, studies achieved comparative analyses of the energy
performance of variable-speed compressors [4,14], pumps [15–17], fans [18,19], chiller plants [20–22],
and even entire systems [23,24] against the performance of on/off-controlled constant-speed ME.
However, what about going in reverse?

Normally, variable/constant-speed ME of an air-conditioning system is clarified by the designer
during its design process. However, with the development of information technology and easy access
to operating data, data-mining research through the use of actual operating data is now an important
and effective tool for energy-saving diagnosis and operational optimization for air-conditioning
systems [25]. In the context of automatic data mining of massive energy consumption data for
energy-saving diagnosis [26–28], the codes normally have no such precedent information [29]. Instead,
all the information is expected to come from the data-mining analysis of actual energy consumption data.
It is, therefore, of great interest to investigate whether the energy consumption data of ME can reveal
the characteristics and thus determine the type of ME. In addition, if the type of ME is already known,
such an investigation could also check whether the variable-speed ME is working properly. Studies
previously demonstrated the feasibility of using the intrinsic correlations of operational data to infer
the operating state of air-conditioning systems [30]. However, more studies focused on the diagnosis
of system faults using different methods, such as neural networks [31,32], wavelet analysis [33,34],
principal component analysis [35,36], and combinatorial methods [37,38], or on making predictions
related to future data by using existing data [39,40]. The few analyses of variable-speed systems
were also based on the premise that it is known in advance whether it is a variable-speed device or
not [41,42]. The paucity of literature examining the above issue prompted us to carry out this study.

This study aims to provide new insights into energy consumption data of ME, applied to the
recognition of variable-speed ME in an air-conditioning system. The energy-consumption data of ME in
an air-conditioning system operating in a commercial building were collected and numerically analyzed.
A simple indicator parameter proposed by the study, coefficient of the median, and several numerical
parameters were calculated and used to distinguish variable- from constant-speed ME. The results
deepen our understanding of energy consumption characteristics related to the ME, and they provide
insight into an important aspect of energy consumption-data mining in air-conditioning systems.

2. Methodology

2.1. ME in the Studied Air-Conditioning System

The studied air-conditioning system was installed in a five-story commercial building with an
area of 30,000 m2 located in Shenzhen, China. The system was coupled with an ice-storage system
in order to take advantage of the lower electricity price at night. As shown in Figure 1, the system
included two constant-speed chillers (Ch-1 and Ch-2) of the same brand and model, five sets of
variable-speed air-handling units (AHUs; AHU-1, AHU-2, AHU-3, AHU-4, and AHU-5) of the same
brand but different models, and nine pumps of the same brand but different models. The chillers,
AHUs, and pumps were each of different brands, all of which were newly set up in the same year
and operated properly for three years up to the time of data collection for this study. Furthermore,
the nine pumps included three condensing-water pumps (CWP-1, CWP-2, and CWP-3) to achieve
a condensing-water circle between chiller and cooling tower, three chilled-water pumps (ChWP-1,
ChWP-2, and ChWP-3) to guarantee a chilled-water loop between heat exchanger and air-handling
units at the terminal, and three glycol water pumps (GWP-1, GWP-2, and GWP-3) to transport the
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glycol solution between any two or all three of the chiller, the ice-storage tank, and the heat exchanger.
Four of the nine pumps could operate with variable speed, while the other five worked with constant
speed. However, before this study, the authors were not aware of which pumps were variable-speed
ME. This was later established on the basis of energy consumption data mining.
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Figure 1. Schematic of studied air-conditioning system.

2.2. Collection and Processing of ME Energy Consumption Data

A comprehensive energy consumption monitoring platform was established for the air-conditioning
system to monitor the electricity consumption of each component of the system. However, due to
logistics and other constraints, the energy consumption of cooling towers was not available in the
present case. Therefore, a follow-up study was employed to determine the energy consumption data of
the remaining ME, including the aforementioned nine pumps, five AHUs, and two chillers. As it was
expected that this study would be a true reflection of the use of the ME, data collection was conducted
without any planned interventions or controls. For the involved ME, the electricity consumption of each
device was recorded every hour from 19 May to 20 August 2013. Lastly, 2262 electricity consumption
items were obtained for each device.

The raw data of electricity consumption of the ME and the corresponding time downloaded
from the platform were then processed before numerical analysis. First, data with zero electricity
consumption were eliminated since they demonstrated that the ME was turned off at the time. Second,
data with duplicated time records were deleted to avoid repeated counts. Lastly, a processed electricity
consumption data list with a time record was obtained for each device.

2.3. Numerical Analysis of Energy Consumption Data

Data distribution analysis can reveal the characteristics of energy consumption data. Nevertheless,
using data distribution fitting can lead to extremely heavy computational loads, particularly with
massive amounts of data. Instead, the numerical characteristics of data are important for data
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statistics, as they can intuitively reveal the data distribution and can easily be obtained. In this study,
some commonly used parameters were introduced, including dimensional parameters such as maximal
value Emax, minimal value Emin, range Erange, mean value Emean, median value Emedian, mode Emode,
variance Evar, and standard deviation Esd, and dimensionless parameters, including coefficient of
variation Cv, coefficient of skewness Cs, and coefficient of kurtosis Ck.

Specifically, coefficient of variation Cv is defined as the ratio of standard deviation to the mean
value of data [43], calculated using Equation (1).

Cv =
Esd

Emean
. (1)

Coefficient of skewness Cs indicates the asymmetry of data distribution [44], calculated using
Equation (2).

Cs =

1
n

n∑
i=1

(Ei − Emean)
3

Evar3/2
, (2)

where n represents the data quantity, and Ei represents the electricity consumption of i.
Coefficient of kurtosis Ck reveals the existence of extreme values in the data list [45], calculated

using Equation (3).

Ck =

1
n

n∑
i=1

(Ei − Emean)
4

Evar2 − 3, (3)

where the parameters are the same as those in Equation (2).
Additionally, a simple dimensionless parameter, coefficient of the median Cm, is proposed in the

present study, defined as the ratio of the difference between the maximum and median to the range,
calculated using Equation (4). The theoretical and practical flow underlying the proposition of Cm is
discussed in Section 4.2.

Cm =
Emax − Emedian

Erange
. (4)

The parameters mentioned above were calculated or recorded to understand the numerical
characteristics of energy consumption for each device. Afterward, the parameters were compared to
determine if their disparities could be used to directly recognize the variable-speed ME.

3. Results

3.1. ME Energy Consumption Distributions

The energy consumption distributions of the 16 ME items are shown in Figure 2. Some obvious
differences could be witnessed among the devices. Taking the nine pumps as an example, some of
the pumps consumed as much as >40 kWh electricity, such as GWP-3, while some consumed
much less electricity, e.g., ChWP-1 and CWP-2. From the perspective of distribution, for some
pumps, such as ChWP-3 and CWP-3, most of the energy consumption data were grouped near the
maximal value. The high-energy-consumption data appeared hundreds of times more often than
low-energy-consumption data did. In comparison, for other pumps, such as ChWP-1 and ChWP-2,
energy consumption data were distributed more uniformly, while for GWP-1 and GWP-2, several
different peaks could be seen in the distribution. The differences in energy consumption distribution
among the ME items may provide inspiration for the recognition of variable-speed equipment.
More detailed information on numerical analysis can be found in Section 3.2.
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Figure 2. Energy consumption data distributions of 16 motor-driven equipment (ME) items in the
case study.

3.2. Numerical Characteristics of Energy Consumption Data

The numerical parameters of the energy consumption data for each ME item were calculated,
and they are listed in Table 1. As seen, most dimensional parameters of the AHUs were generally the
lowest among all the ME, while the two chillers presented most of the highest dimensional parameters.
Additionally, sorting the devices on the basis of these dimensional parameters resulted in individual
differences. When referring to dimensionless parameters, the lowest Cs and Cv and the highest Ck were
found for AHU-5, indicating that the energy consumption data were highly concentrated near the
maximal value. In comparison, for ChWP-1, ChWP-2, GWP-1, GWP-2, AHU-1, and AHU-3, Cs and Cv

were much higher, while Ck was much lower, implying more uniform distributions.
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Table 1. Numerical characteristics of energy consumption distribution of 16 ME items in the case study.
ChWP, chilled-water pump; CWP, condensing-water pump; GWP, glycol water pump; Ch, chiller;
AHU, air-handling unit.

Equipment No. Erange Emean Esd Evar Cs Ck Emedian Emode Cv Cm

ChWP-1 12.80 7.45 3.93 15.47 −0.03 −1.21 7.20 6.90 0.53 0.49
ChWP-2 13.10 7.72 4.37 19.12 −0.07 −1.37 7.50 13.50 0.57 0.48
ChWP-3 25.90 19.97 8.23 67.80 −0.99 −0.45 24.60 26.30 0.41 0.10
CWP-1 25.20 19.69 7.14 50.91 −1.00 −0.55 24.20 24.30 0.36 0.10
CWP-2 12.60 9.70 3.58 12.84 −1.15 −0.13 11.80 12.00 0.37 0.12
CWP-3 36.50 28.12 10.64 113.23 −1.01 −0.55 35.00 35.00 0.38 0.10
GWP-1 10.80 6.37 3.02 9.15 −0.14 −1.61 6.70 9.50 0.47 0.44
GWP-2 34.40 18.26 9.56 91.41 0.03 −1.49 17.95 26.40 0.52 0.53
GWP-3 44.00 33.64 11.02 121.38 −1.25 0.16 40.30 40.70 0.33 0.14

Ch-1 258.00 216.08 71.66 5135.15 −1.19 −0.09 255.70 264.50 0.33 0.07
Ch-2 259.80 193.17 86.76 7527.56 −0.76 −1.09 249.60 258.50 0.45 0.09

AHU-1 14.10 7.74 3.58 12.80 −0.12 −1.35 8.50 10.80 0.46 0.45
AHU-2 14.90 7.11 1.78 3.17 −1.70 4.50 7.30 7.00 0.25 0.55
AHU-3 7.50 4.44 2.23 4.95 0.06 −1.65 3.90 2.00 0.50 0.52
AHU-4 7.30 2.97 1.73 2.99 1.60 1.15 2.20 2.20 0.58 0.74
AHU-5 8.80 6.26 1.47 2.17 −2.60 6.79 6.60 6.50 0.24 0.30

3.3. Recognition of Variable-Speed ME

3.3.1. Recognition of Variable-Speed Pumps

As seen in Table 1, the values of Cv and Cm allowed for dividing the pumps into two groups:
one with comparatively high Cv and Cm, including ChWP-1, ChWP-2, GWP-1, and GWP-2, and another
with comparatively low Cm and Cv, consisting of ChWP-3, CWP-1, CWP-2, CWP-3, and GWP-3.
To highlight the two groups, a scatter matrix based on numerical parameters is shown in Figure 3.

Figure 3 clearly shows that the nine pumps were divided into two groups, as shown in row 9 and
column 5. The four red points in the top-right corner represent ChWP-1, ChWP-2, GWP-1, and GWP-2.
This high value indicated that the energy consumption data of the four pumps were not concentrated
at the extrema but were distributed fairly uniformly, which was in accordance with the operation
characteristics of variable-speed pumps. Therefore, it was assumed that ChWP-1, ChWP-2, GWP-1,
and GWP-2 were variable-speed ME, while the five other pumps were constant-speed ME.

With the information transmitted from the field, the assumption was then validated, indicating
the successful recognition of variable-speed pumps by this study.

Cm and Cs could be used to individually distinguish the two groups of pumps, as seen in row 4
combined with column 5 and row 9, respectively, while other numerical parameters failed. However,
the calculation of Cm was much easier than that of Cs. Therefore, Cm may be a good parameter to be
used as an indicator in the recognition of variable-speed pumps.

3.3.2. Verifiable Recognition of Variable-Speed AHUs and Constant-Speed Chillers

From the information transmitted on site, the five AHUs were operated with variable speed,
while the two chillers worked with constant speed. Therefore, the recognition of AHUs and chillers
could be further investigated to verify the applicability of the two indicators of Cm and Cs. The values
of Cm and Cs of each of the seven devices are visually compared in Figure 4. Interestingly, Cm could
be used to distinguish variable-speed AHUs and constant-speed chillers by using a single threshold
(0.09–0.30), whereas Cs failed to facilitate recognition despite its applicability for pumps. The possible
reason for this is discussed in Section 4.2.

The results presented thus far support the idea that proposed parameter Cm could be a good
indicator in the recognition of variable-speed equipment.
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4. Discussions

4.1. Feature Selection of Numerical Characteristics of Energy Consumption Data

The above-mentioned results demonstrated that Cm, a numerical characteristic of the energy
consumption data of an air-conditioning system, can be used to recognize whether pumps, chillers,
and AHUs operate with variable speed. To verify and assess its effectiveness, feature selection was
performed to compare the relevance of different numerical characteristics to determine whether the
equipment worked with variable speed.

The feature selection method was originally based on a set of criteria or calculation methods
to filter out feature fields for removal; then, the effectiveness of the remaining features was ranked
relative to a specific target [46]. In this article, none of the 10 numerical characteristics mentioned
above were removed. Instead, feature selection was used to find the most meaningful feature for the
recognition and prediction of the target attribute from the 10 numerical characteristics of the energy
consumption data. The feature selection considered one numerical parameter at a time to verify the
performance of each parameter in recognizing and predicting the target attribute. The effectiveness
value of each characteristic was calculated as (1 − p), where p is the p-value of an appropriate statistical
test of association between the candidate characteristic and the target attribute. In this investigation,
all numerical characteristics were continuous variables, while the target attributes were categorical
variables. Therefore, the numerical characteristics were set as observation variables, target attributes
were set as control variables, and p-values based on the F-statistic were used. The idea was to perform
a one-way analysis-of-variance (ANOVA) F-test for each characteristic to test whether the different
categories of Y (representing the control variables) had the same means as the different categories of X
(representing the observation variables). The p-value based on the F-statistic was calculated as p-value
= Prob{F(J − 1, N − J) > F}, where F(J − 1, N − J) is a random variable that follows F-distribution with
degrees of freedom J − 1 and N − J, respectively; N is the total number of cases; J is the number of
target-attribute categories, and

F =

J∑
j=1

N j(x j − x)
2
/(J − 1)

J∑
j=1

(N j − 1)s2
j /(N − J)

, (5)

where Nj represents the number of cases with Y = j; x j represents the sample mean of characteristic X

for target class Y = j; x represents the grand mean of characteristic X; x =
J∑

j=1
N jx j/N, and s2

j represents

the sample variance of characteristic X for target category Y = j. If the denominator in Equation (5) for
a characteristic was zero, the p-value was set as 0 for that characteristic.

If the calculation result of (1 − p) was larger than 0.95, denoting that the observation variable had
strong correlation with the control variable, the tested numerical parameter was deemed effective for
the recognition and prediction of the target attribute, and vice versa.

Table 2 lists the calculated ANOVA F-test p-values for the ten numerical characteristics ranked
by their effectiveness relative to the attribute of variable-speed operations. The (1 − p) values of Cm,
Emedian, Emean, Emode, Erange, and Esd reached or exceeded the threshold for “effective” (0.95). However,
Emedian, Emean, Emode, Erange, and Esd were dimensional characteristics; thus, the value strongly depended
on the equipment and/or the system. For example, we could not infer or predict that equipment with
different types, models, or specifications had the same target attribute only on the basis of the same
values of Emedian, Emean, Emode, Erange, or Esd for energy consumption data. Therefore, the remaining
dimensionless characteristic, Cm, was the only valid indicator that could be used for the recognition of
variable- and constant-speed operation for different types of equipment in the present study.
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Table 2. Feature selection of numerical characteristics of energy consumption data in terms of
recognizing constant/variable-speed ME.

Rank Numerical Characteristic Effectiveness 1 (1 − p) Value

1 Cm Effective 1.000
2 Emedian Effective 0.963
3 Emean Effective 0.959
4 Emode Effective 0.959
5 Erange Effective 0.952
6 Esd Effective 0.950
7 Evar Marginal 0.904
8 Cv Ineffective 0.872
9 Cs Ineffective 0.864
10 Ck Ineffective 0.485

1 Numerical characteristics labeled as effective, marginal, or ineffective on the basis of (1 − p) value: (1 − p) ≥ 0.95,
effective; 0.95 > (1 − p) ≥ 0.9, marginal; 0.9 > (1 − p), ineffective.

With the above results and discussion, the effective applicability of proposed characteristic Cm

was confirmed both practically and mathematically.

4.2. Construction Process of Cm

Initially, we also attempted to address the issue of recognition by using theoretical reasoning by
implementing the intrinsic correlations of operational data. Variable-speed ME can better adjust to
state changes than constant-speed ME can, thus making its operation more energy-efficient. However,
for actual air-conditioning systems, it is not possible to simply use energy consumption data to determine
that the comparatively low-energy-consumption ME is running at variable speed, or the comparatively
high-energy-consumption ME is running at constant speed. Even if there are two identical devices
used in parallel, it is possible that constant-speed ME may simply run for a shorter time than other
ME through on–off control, resulting in lower energy consumption. Similarly, variable-speed ME may
simply run longer, resulting in higher energy consumption. Furthermore, the energy consumption
comparison across different brands, types, and models of ME is much more complex. It is also the
case in real air-conditioning systems that the same type of ME consumes the same amount of energy,
which obviously makes it impossible to distinguish between constant- and variable-speed operating
states by using a comparison of their energy consumption. In addition, due to different resistance or
loads in the system (or in the loop within the system), coupled with the fact that the operation of ME
may be influenced by the different thermal, vibration, and electromagnetic environments, as well as
by the power quality at the workplace, it is difficult to use energy consumption data to determine
constant- or variable-speed ME via theoretical reasoning. Therefore, this study attempted to address
this issue by investigating the distribution of energy consumption data.

Theoretically, there are at least three typical scenarios for the distribution of energy consumption
data. The first scenario is symmetrical distribution, such as standard normal distribution that rarely
occurs in real data. Instead, energy consumption data in real air-conditioning systems are either
positively skewed (i.e., with a positive value of Cs) or negatively skewed (i.e., with a negative value
of Cs).

Apparently, the energy consumption distributions of constant-speed operating equipment
(i.e., ChWP-3, CWP-1, CWP-2, CWP-3, GWP-3, Ch-1, and Ch-2) in Figure 2 typically presented
a negative skew; thus, their Cs values were negative, as listed in Table 1. However, it can also be seen
from Table 1 that some variable-speed operating equipment (i.e., ChWP-1, ChWP-2, GWP-1, AHU-1,
AHU-2, and AHU-5) had negative Cs values. Thus, Cs cannot easily and effectively distinguish variable-
from constant-speed ME. Cs essentially measures the symmetry of distribution [47] or, more generally,
characterizes the relationship between Emean and Emedian [48]. A positive Cs indicates that Emean is larger
than Emedian, while a negative Cs implies the opposite. Additionally, a close-to-zero Cs reflects the
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relative closeness of Emean and Emedian. Since all pumps were equipped on system-circulation loops,
they tended to receive the same or similar linkage-control strategies/commands for operation to meet
the system’s flow-rate demands. Therefore, during the running period, the relationships between
Emean and Emedian fell into two distinct groups according to variable- and constant-speed operations.
This difference could be precisely captured by Cs. Nevertheless, other ME, especially terminals such as
the AHUs in this study, are mainly regulated on the basis of the cooling demands of specific spaces.
Compared with pumps, AHUs are generally not controlled in linkage; thus, the relationships between
Emean and Emedian are intricate and difficult to characterize using Cs. This explains the disparity between
the capability of Cs in distinguishing variable- from constant-speed operations for pumps and other
ME (AHUs and chillers).

As demonstrated in Figure 2, the energy consumption of equipment working with a constant
speed was generally fixed, and the distribution of energy consumption was thus concentrated near
maximal value Emax over the running period. On the contrary, the distribution of energy consumption
for variable-speed equipment was dispersed rather than focused around Emax. Therefore, the difference
between maximal value Emax and the measure of central tendency, which was a simpler and more
intuitive parameter, could compensate for the above shortcomings of Cs. Furthermore, with respect
to the selection of the indicator of central tendency, among the three options of mode, Emode, median
Emedian, and mean Emean, actual energy consumption may have multiple modes, while the mean is
sensitive to extremes (including outliers). Therefore, median Emedian, a better measure for skewed
data like energy consumption data, was chosen to eliminate these adverse effects. Then, considering
the different numerical scales of energy consumption for different types, models, or specifications of
equipment, the previous Emax–Emedian was divided by the range Erange of energy consumption data to
obtain dimensionless parameter Cm. The process described so far is exactly what was investigated at
the theoretical and practical level when proposing the coefficient of the median Cm in the present study.

4.3. Scope of Application of Cm and Contributions of This Study

The contributions of this research and applicability of Cm are summarized as follows:

• The successful recognition of variable- and constant-speed ME using the proposed Cm in this
paper addresses the research gap related to the reverse identification of equipment type through
mining the energy consumption data of air-conditioning systems.

• The involved ME in this study had diverse components and brands and thus exhibited different
distributions and scales of energy consumption data. Nevertheless, since differences in energy
consumption scales were eliminated and made dimensionless in the development of parameter
Cm, the method and results were not expected to be influenced by the specific brands, types,
models, or power ratings of ME. Consequently, the proposed Cm is supposed to have versatility in
general air-conditioning systems other than the specific example of this study.

• In addition, even if the constant- or variable-speed nature of the ME is already known, such an
investigation could also diagnose if the variable-speed ME is working properly. In terms of
diagnosis, by calculating the actual Cm value for a certain period of time and comparing it with the
Cm value of the corresponding design conditions, it is possible to determine whether the operation
of the ME is in accordance with the original design or to reflect on whether the design scheme
is reasonable.

• The distinguishing results can provide essential information for the subsequent analysis of
energy/cost saving potential by optimizing algorithms for different types of ME under their
respective practical constraints. Moreover, the proposed Cm can also be of potential use to enhance
the automatic processing of data, to reduce the direct involvement of field professionals, and to
fundamentally support the automatic computer processing of massive amounts of air-conditioning
system energy consumption data.
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4.4. Limitations

However, this pilot study has the following limitations:

• The data involved in this study came from the case system’s energy consumption monitoring
platform. Therefore, there were no corresponding data available on the platform, such as the
water flow rate of pumps, air volume of AHUs, cooling capacity of chillers, or related frequency
data of inverters, which could be employed to verify the recognition results of the present case.
In addition, energy consumption data were collected at an interval of 1 h, which seemed somewhat
long for analysis in this paper, since constant-speed ME might accomplish several on/off cycles or
the variable-speed ME might change its speed of rotation several times. This was due to the local
preferential tariff for the ice-storage air-conditioning system, where the minimal interval between
two adjustments for the ME was 1 h, including on/off control or changes in operating speed related
to changes in energy consumption [49]. Therefore, the above limitations had negligible impact
on our study, as the probed results demonstrated the effectiveness of the proposed indicator
parameter in the recognition of variable-speed ME.

• The proposed coefficient of the median Cm could effectively recognize variable- and constant-speed
operation modes for ME in the current study. Theoretically, the value of Cm ranges from 0 to 1.
However, as stated in Section 4.2, the operation of real-world ME is influenced by the device
and by the system to which it belongs, as well as by the thermal, vibration, and electromagnetic
environments and the power quality of the environment in which it is located; hence, it is
difficult to theoretically conclude a threshold value for recognition. On the basis of results to
date, the confidence interval of the Cm value for ME running at constant speed ranged from 0.07
to 0.13 with 99% confidence, while the confidence interval of the Cm value for ME operating at
variable speed ranged from 0.37 to 0.63 in this pilot study. Further study is warranted to collect
more energy consumption data from different ME types and to theoretically investigate factors
influencing Cm so as to give a more precise threshold value.

5. Conclusions

This study collected the energy consumption data of ME in an air-conditioning system in a
commercial building. Numerical analysis was conducted to investigate the data characteristics of
different ME types and to recognize variable-speed components. An indicator parameter, coefficient of
the median Cm, was introduced. Results showed that the energy consumption data distributions of
variable- and constant-speed ME were quite different. Coefficients of skewness Cs and of the median
Cm could be used to distinguish variable- from constant-speed pumps. However, only proposed
characteristic Cm could be used to successfully distinguish all different types of ME in terms of constant-
and variable-speed operation. Moreover, the effective applicability of Cm was further mathematically
confirmed by using a feature selection method.

Regardless of the small sample size of this study, the successful recognition of variable- and
constant-speed ME using the proposed characteristic in this paper addresses the research gap related
to the reverse identification of equipment type. The results are also of potential use for enhancing the
automatic processing of data, reducing the direct involvement of field professionals, and supporting
the foundation for the automatic computer processing of massive amounts of air-conditioning system
energy consumption data.
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