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Abstract: In this paper, a peer-to-peer (P2P) renewable energy trading mechanism for microgrids
when energy suppliers are equipped with storage devices is studied. A dynamic energy storage
management strategy based on the local trading price is proposed and each supplier decides the
amount of energy to be sold and stored in real time. An iterative auction algorithm is presented to
obtain the market equilibrium and optimal energy allocation schedule. The economic analysis of
introducing energy storage devices in this trading market is further studied. Numerical examples of
two 7 × 24-h energy trading scenarios with 20 consumers and 20 solar energy producers are used to
illustrate the feasibility of this proposed trading mechanism, with sensitivity analysis of different
parameters on social welfare. A comparison of the hourly optimal local trading price of these two
markets is demonstrated to explain the dynamic process. It is found that in those days with high solar
radiation, compared with the market with no storage device, the total cost for buyers in the market
when storage devices are used shows a decline of 1.52% and the total profit for sellers shows an
increase of 1.27%, which leads to a substantial relative improvement of 118.94% in the overall social
welfare. Moreover, a brief economic analysis shows that the advantage of using energy storage in
this example is guaranteed after five years of operation. Longer operation time does not mean more
benefits considering the deterioration of battery packs and increase of operation and maintenance
costs, and the profit reaches its maximum value at the 15th year.

Keywords: peer-to-peer (P2P); renewable energy trading; microgrid; energy storage management;
iterative auction algorithm; economic analysis

1. Introduction

A microgrid is a small-scale smart grid that integrates various advanced technologies such as
distributed energy resources (DERs), energy storage systems (ESSs), demand side management (DSM),
smart power electronics, and modern information and communication techniques [1]. It has emerged as
a disruptive yet promising technology for future energy development [2]. Different from conventional
energy systems that are characterized by centralized energy generation and unidirectional energy flows,
a microgrid provides an open and flexible framework for developing and utilizing energy resources
and facilitates the transformation of the current power grid from a centralized, producer-centered
network to one that is more distributed and consumer-interactive [3,4]. Distributed energy suppliers
(DESs) and end-users (EUs) within a microgrid can conduct peer-to-peer (P2P) energy trading directly
and autonomously based on their personal preferences without the intervention of a third party,
which increases the overall efficiency, reduces the operation cost, and brings benefits to the entire
microgrid community.
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However, unlike the top-down pricing model adopted by conventional energy systems, there still
lacks an effective energy trading mechanism where energy suppliers and users can be actively involved
in the trading process. The allocation of energy, price regulation, and dynamic decision making are
still some challenges that need to be addressed. To this day, many efforts in these aspects have been
made, and existing studies can be categorized into two groups: game theory-based and auction-based.

Game theory (cooperative and non-cooperative) has been recognized as a powerful mathematical
tool in energy trading management for its ability to capture the possible outcomes and resulting
equilibrium of competitive market participants [5]. A contribution-based energy trading mechanism
was designed in [1], where the surplus energy was gathered and distributed to consumers based
on their historical contribution level. The decision-making problem among the distributors and
consumers was described as a non-cooperative game. An energy trading mechanism based on game
theory was proposed in [6], where sellers set the selling price and buyers chose the best seller by
considering energy price and transmission cost to minimize their energy bills. A coalitional game theory
based on the asymptotic Shapley value to determine the electricity pricing schemes was proposed
in [7]. The number of market participants and statistical demand and supply information were the
only parameters required in their model, and simulation results validated the asymptotic analysis.
An energy trading framework that modeled the decision-making process of electricity suppliers and
consumers was presented in [8] with simulation results to verify the effectiveness of the proposed
scheme. A cake-cutting game that discriminated the energy price among different EUs was proposed
in [9]. Properties of the cake-cutting game and a socially optimal solution were studied and validated.

As an important non-cooperative game, the Stackelberg game in particular has been utilized
to study the hierarchical interactions within a microgrid or among different microgrids by dividing
the market participants into leaders and followers according to the sequence of their actions [10].
A non-cooperative Stackelberg game between residential units and a shared facility controller was
discussed in [11], in which the shared facility controller worked as a leader to determine the buying price
and residential units reacted in response to the buying price to optimize their payoffs. The existence
of a strategy-proof and unique Stackelberg equilibrium was proven. A Stackelberg game in a DSM
problem between utility companies and EUs that maximized the utility function of both sides was
presented in [12]. A distributed algorithm that converges to the Stackelberg equilibrium with local
information was further developed. The Stackelberg game can be further divided into the single-leader
multi-follower model and the multi-leader multi-follower model based on the number of participants in
the decision. A single-leader multi-follower Stackelberg game model for energy sharing management
within microgrids was proposed in [13]. Ref. [14] presented a multi-leader multi-follower Stackelberg
game model for real-time energy trading and simulation results showed the effectiveness of this model.

On the other hand, the auction-based theory has also been widely researched and utilized in
fluctuant energy trading markets for solving energy trading problems among different participants
without knowledge of the market parameters. The trading price and allocation of energy are real-time,
market-based, and directly determined as long as the ask quotes match the bid quotes under preset
conditions. A decentralized electricity trading model for microgrids that use the continuous double
auction mechanism was discussed in [15]. Market participants adjusted their quotes continuously
according to transaction outcomes that use adaptive aggressive strategy. A localized electricity
trading model among plug-in hybrid electric vehicles (PHEVs) was proposed in [16]. The electricity
trading price and quantity were determined based on an iterative double auction algorithm. Another
decision-making process for PHEVs in a power market was studied in [17]. The trading price between
the PHEVs and the smart grid was determined using a strategy-proof double auction. A real-time
reverse auction game theory model for microgrid market operations was presented in [18]. A double
auction mechanism for energy trading in microgrids between buying and selling agents was studied
in [19].

The uncertainties brought by DERs may lead to a significant mismatch between energy supply
and demand with the widespread deployment of these resources. For example, in a microgrid with
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photovoltaic (PV) solar panels, the energy supply is greatly influenced by many weather factors
(solar irradiance, humidity, ambient and module temperature, wind speed and direction, longitude,
and latitude) and the energy generation within the microgrid is not fixed at different time of the day.
Any surplus or deficiency energy of the microgrid must be balanced by trading with the external
main grid. To build a more self-sustaining microgrid, energy storage devices will be needed to store
electricity for the future transaction when generation is abundant, instead of trading energy with the
main grid [20,21]. Much work has been done to explore the active roles of storage devices in smart grids
for reducing the peak-to-average ratio (PAR), balancing power supply and demand, and increasing the
social welfare. An advanced battery model was proposed in [22] for a DSM program, where residential
users played a scheduling game to lower their electricity costs, which resulted in the reduction of
the PAR value of the aggregated neighborhood load. A novel approach for optimal allocation and
economic operation of ESSs in microgrids was presented in [23] that uses the matrix real-coded
genetic algorithm. The net present value was used to estimate the quality of optimization in different
conditions. An energy-sharing controller based on a distributed ESS architecture was presented in [24].
Additionally, storage devices have also been adopted in the dynamic decision-making processes of
energy trading to better the interests of market participants by balancing the amount of electricity to be
traded and stored. A generalized treatment of storage in the DSM problem with a novel cost function
was provided in [5]. The cost function was viewed as a generalization of more common quadratic and
linear functions. Ref. [25] defined a novel utility function that captures the profits of buying/selling
energy at the current known price and uncertain future profits from selling stored energy. A Stackelberg
game was further formulated and the prospect theory was used to model the subjective behavior.
A modified auction-based mechanism was designed and used in [26] to assist residential units in
storing electricity with real-time auction price and energy storage allocation. A non-cooperative game
between storage units was formulated in [27] and each supplier decided the amount of energy to
sell to maximize its own profit. An advanced retail electricity market for the optimal operation of
home microgrids within active distribution networks was proposed in [28], where storage devices
were accommodated.

In general, the papers that study storage devices in energy trading management always introduce
a utility function, mostly quadratic, linear, or logarithmic, to approximately evaluate future economic
benefits of stored energy in the dynamic decision process. The optimal energy allocations to be stored
and sold are calculated through the game process between energy suppliers and EUs. However,
market parameters cannot be accurately obtained in advance in reality due to the highly variable
nature of many components in the microgrid energy trading markets, which challenges the effective
management of energy storage devices. Furthermore, market participants may be reluctant to publicly
disclose their trading preferences due to privacy concerns. To address the above-mentioned issues,
this paper studies an energy trading mechanism for a microgrid when energy suppliers are equipped
with storage devices. A dynamic energy storage management strategy based on the local trading
price is proposed and each supplier decides the amount of energy to be sold and stored in real time.
An iterative auction algorithm is further presented to obtain the market equilibrium and the optimal
energy allocation schedule. The economic analysis of introducing energy storage devices in this trading
market is further studied. Numerical examples are used to illustrate the feasibility of this proposed
trading mechanism and economic advantages of the introduction of energy storage devices. The effects
of different parameters on social welfare are also demonstrated, together with a brief economic analysis
of the introduction of energy storage devices in microgrids energy trading and a comparative analysis
with other works.

The main contribution of this paper are in three parts:

(1) A dynamic energy storage management strategy based on the local trading price is proposed.
(2) An iterative auction algorithm is presented to obtain the market equilibrium and the optimal

energy allocation schedule.
(3) Economic analysis of using energy storage devices in trading market is further studied.
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The rest of this paper is organized as follows: In Section 2, the system model of P2P renewable
energy trading with storage devices is presented in detail. Section 3 depicts a specific example to
illustrate the application of the approach in the real world. The conclusions and future work are
provided in Section 4.

2. System Model

In this section, the system model of P2P microgrid renewable energy trading with storage devices is
discussed in detail, which includes the dynamic energy storage management strategy, iterative auction
algorithm, and economic analysis.

2.1. Microgrid Renewable Energy Trading

We consider a P2P renewable energy trading microgrid that consists of multiple DESs and
EUs, where DESs can sell the electricity they generate directly to EUs to meet their demand.
Each participant is equipped with a smart meter and a communication unit to monitor and forecast
energy production/consumption in real time and implement the information exchange with each other.
We assume that the prediction of generation and demand in the next time slot is reasonably accurate.

Let S = {1, 2, . . . , S} and B = {1, 2, . . . , B} denote the sets of sellers and buyers, respectively,
within the microgrid trading market. The trading period is divided into a total of T time slots, with a
resolution of one hour. For each seller i ∈ S and each buyer j ∈ B, the amounts of energy generation
and demand at each time slot t ≤ T are gt

i and dt
j, respectively. In this paper, we investigate a scenario

that does not interrupt the habits of the consumers, who will not curb their own electricity demand
to save costs. Instead, each seller i owns an energy storage device of capacity Qmax,i and the initial
stored energy at each time slot t is Qt

i . The introduction of storage devices enables the sellers to adjust
the amount of energy to be traded based on their personal preferences. The charging/discharging
efficiency of storage devices is assumed to be 100% in this paper.

Sellers and buyers can conduct direct local transactions within the microgrid; they can also trade
with the main grid. The energy sold from seller i to buyer j at time t is xt

i j and the corresponding

trading price is ct
i j. Any surplus or deficiency is balanced by trading electricity with the main grid

at the wholesale price (feed-in tariff) fout (the superscript “out” means this is an outflow from the
perspective of the microgrid) or retail price (current electricity price) fin (the superscript “in” means
this is an inflow from the perspective of the microgrid), where fout < fin.

The total profit of seller i to sell its energy at time t is

Ut
i =

B∑
j=1

(xt
i j·c

t
i j) + (st

i −

B∑
j=1

xt
i j)· f

out (1)

where st
i is the actual supply amount (from generation and/or storage) in a trading process for seller i

at time slot t, which is subject to

Qt
i + gt

i −Qmax,i ≤ st
i ≤ Qt

i + gt
i (2)

0 ≤ st
i (3)

Equation (2) represents operational constraints of storage devices with the minimum and maximum
values of the actual supply amount. To simplify the subsequent analytical and simulation process,
the rare case that some sellers may become buyers at one time slot with huge energy storage needs
is not considered in this paper. Thus, the actual supply of a seller shall not be negative, as shown in
Equation (3).
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Similarly, the total cost of buyer j to meet its energy demand at time t is

Ut
j =

S∑
i=1

(xt
i j·c

t
i j) + (dt

j −

S∑
i=1

xt
i j)· f

in (4)

From a global perspective, the social welfare (defined as the total benefit of this microgrid trading
with main grid, subtracting Ut

j from Ut
i ) of the whole microgrid at time t is

Ut
total=

S∑
i=1

Ut
i −

B∑
j=1

Ut
j

=
S∑

i=1

B∑
j=1

(xt
i j·c

t
i j) +

S∑
i=1

((st
i −

B∑
j=1

xt
i j)· f

out) −
S∑

i=1

B∑
j=1

(xt
i j·c

t
i j) −

B∑
j=1

((dt
j −

S∑
i=1

xt
i j)· f

in)

=
S∑

i=1

st
i · f

out
−

B∑
j=1

dt
j· f

in +
S∑

i=1

B∑
j=1

xt
i j·( f in

− f out)

(5)

subject to
0 ≤ xt

i j ≤ st
i (6)

0 ≤ xt
i j ≤ dt

i (7)

f out
≤ ct

i j ≤ f in (8)

A positive social welfare value Ut
total indicates that the microgrid sells surplus electricity after local

trading to the main grid for profits, while a negative value shows deficiency within the microgrid after
local trading. The maximal social welfare is achieved when the optimal allocation of energy ensures

the maximal self-consumption (
S∑

i=1

B∑
j=1

xi jt) in the local market during any time slot t.

To enable the energy suppliers and consumers to be actively involved in the microgrid energy
trading process, the double auction algorithm is introduced to obtain the local trading price ct

i j and
reasonable energy allocation, where the auctioneer sorts the quotes from each agent (seller/buyer) in
an order book based on the “price-first and time-first” principle with the ask (i.e., selling) quotes from
low to high and the bid (i.e., buying) quotes from high to low [29]. A transaction occurs when the
highest price of bids is greater or equal to the lowest price of asks [15].

The linear approximations of the demand and supply curves in a microgrid with a sufficiently large
number of sellers and buyers’ separate matching process are presented in Figure 1 [30]. The middle
point that is marked by a black dot is the equilibrium point of the market where the last local transaction
occurs. The equilibrium price p∗ is the clearing price (the local trading price ct

i j), and the equilibrium

quantity q∗ is the clearing quantity (the total amount of local transactions, which is equal to
S∑

i=1

B∑
j=1

xt
i j

mentioned above), solved as

pt∗ =

f out
·

S∑
i=1

st
j + f in

·

B∑
j=1

dt
j

S∑
i=1

st
j +

B∑
j=1

dt
j

(9)

qt∗ =

S∑
i=1

st
j·

B∑
j=1

dt
j

S∑
i=1

st
j +

B∑
j=1

dt
j

(10)
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Any surplus or deficiency in microgrid is balanced by trading electricity with the main grid.
Thus, the total profit sellers within the microgrid can earn at time t is

S∑
i=1

Ut
i =


S∑

i=1
st

i ·p
t∗ if

S∑
i=1

st
i ≤

B∑
j=1

dt
j

B∑
j=1

dt
j·p

t∗ + (
S∑

i=1
st

i −
B∑

j=1
dt

j)· f
out if

S∑
i=1

st
i >

B∑
j=1

dt
j

(11)

The total cost buyers within the microgrid should pay at time t is

B∑
j=1

Ut
j =


S∑

i=1
st

i ·p
t∗ + (

B∑
j=1

dt
j −

S∑
i=1

st
i)· f

in if
S∑

i=1
st

i ≤
B∑

j=1
dt

j

B∑
j=1

dt
j·p

t∗ if
S∑

i=1
st

i >
B∑

j=1
dt

j

(12)

The social welfare of the whole microgrid at time t is

Ut
total =

S∑
i=1

Ut
i −

B∑
j

Ut
j =


(

B∑
j=1

dt
j −

S∑
i=1

st
i)· f

in if
S∑

i=1
st

i ≤
B∑

j=1
dt

j

(
S∑

i=1
st

i −
B∑

j=1
dt

j)· f
out if

S∑
i=1

st
i >

B∑
j=1

dt
j

(13)

A proportional sharing-based distribution scheme is further introduced here, which states the
profit/cost a seller/buyer can earn/pay is totally proportional to the energy it supplies/demands.
Therefore, Equations (1) and (4) are transformed into

Ut
i =

st
i

S∑
i=1

st
i

S∑
i=1

Ut
i =


st

i ·p
t∗ if

S∑
i=1

st
i ≤

B∑
j=1

dt
j

st
i

S∑
i=1

st
i

(
B∑

j=1
dt

j·p
t∗ + (

S∑
i=1

st
i −

B∑
j=1

dt
j)· f

out) if
S∑

i=1
st

i >
B∑

j=1
dt

j

(14)
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Ut
j =

dt
j

B∑
j=1

dt
j

B∑
j=1

Ut
j =


dt

j
B∑

j=1
dt

j

(
S∑

i=1
st

i ·p
t∗ + (

B∑
j=1

dt
j −

S∑
i=1

st
i)· f

in) if
S∑

i=1
st

i ≤
B∑

j=1
dt

j

dt
j·p

t∗ if
S∑

i=1
st

i >
B∑

j=1
dt

j

(15)

From Equation (9) we can see that the local trading price (i.e., the equilibrium price) pt∗ lies
between the wholesale price and the retail price under the condition fout < fin, which ensures both
sellers and buyers can obtain monetary benefits from local energy trading within the microgrid.

However, the value of pt∗ greatly relies on the total supply
S∑

i=1
st

i and total demand
B∑

j=1
dt

j. During hours

when residential electricity consumption is relatively low compared to the solar energy generation
(e.g., 10 a.m. to 6 p.m.), the total energy supply in the microgrid is greater than the total demand,
which results in a small local trading price; this is the other way around when electrical appliances are
largely used (e.g., 6 p.m. to 11 p.m.). The local trading price can be seen as a good measure for the
market energy supply and demand.

For energy sellers with storage devices, they can choose to store electricity when the supply is
sufficient and use that energy to supply EUs when there is great demand in the market to better their
profits. However, the future profits in a fluctuant market are uncertain and the impact of sacrificing
current interests in exchange for longer-term returns should be carefully justified, together with
specified management strategies. A dynamic energy storage management strategy based on the local
trading price is presented and discussed below in Section 2.2.

2.2. Dynamic Energy Storage Management Strategy

We define an intermediate variable et
i to represent the operation condition of battery storage for

seller i at time t, which is the difference between the actual supply amount and energy generation,
given as

et
i = st

i − gt
i (16)

subject to
−Qmax,i ≤ et

i ≤ Qmax,i (17)

A positive value of et
i indicates a discharging state of the battery, while a negative value shows a

charging state. Energy sellers with storage devices can adjust their amount of energy supply in the
trading process by controlling the charging/discharging volume et

i based on the local trading price to
better their profits. When the market supply is greater than the demand and the local trading price
is relatively low, sellers can choose to store energy for future trading and the intermediate variable
et

i is negative. Similarly, sellers can increase the supply of energy when there is great demand in
the market with a large local trading price and the intermediate variable et

i is positive. Therefore,
charging/discharging volume et

i for seller i at time t can be recognized as a piece-wise function of the
local trading price pt∗, shown as

et
i = f (pt∗)


> 0 if pdisc

i < pt∗
≤ f in

= 0 if pchar
i ≤ pt∗

≤ pdisc
i

< 0 if f out
≤ pt∗ < pchar

i

(18)

where pdisc
i is the discharging threshold and pchar

i is the charging threshold for seller i under the condition

f out
≤ pchar

i ≤
f out + f in

2
≤ pdisc

i ≤ f in (19)

The intermediate state is when the total supply equals the total demand in the market and the

local trading price is f out+ f in

2 .
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As the local trading price increases, the desire to discharge the battery increases and the charging
decreases. If the local trading price lies between the discharging threshold and charging threshold, the
function is considered to be in the marginal position and equals zero. Therefore, the function f (·) is
non-decreasing, convex in the discharging interval and concave in the charging interval. Mathematically,

δ f (pt∗)

δ(pt∗)
≥ 0 (20)

δ2 f (pt∗)

δ(pt∗)2


> 0 if pdisc

i < pt∗
≤ f in

= 0 if pchar
i ≤ pt∗

≤ pdisc
i

< 0 if f out
≤ pt∗ < pchar

i

(21)

In this paper, a piece-wise quadratic function is introduced to describe the charging/discharging
function f (·) with the extreme point at (pchar, 0) and (pdisc, 0), shown in Figure 2. Additionally, when the
local trading price is fin or fout, the discharging or charging volume reaches its maximum value Qmax,i.Energies 2020, 13, x FOR PEER REVIEW 9 of 21 
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From Equations (2), (3), and (16), we can further have 
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From Equations (2), (3) and (16), we can further have

Qt
i −Qmax,i ≤ et

i ≤ Qt
i (23)

− et
i ≤ gt

i (24)

To obtain the market equilibrium and the optimal energy allocation schedule, an iterative auction
algorithm is proposed that does not require the agents to have much knowledge about the market or
other participants. In a microgrid energy trading market, once the market is open for the next time slot
energy trading, each agent submits its initial quote to the auctioneer. The initial local trading price
pt∗(0) is obtained, together with the profit Ut

i (0) and cost Ut
j(0) for seller i and buyer j, respectively.

Seller i with a storage device can get the charging/discharging volume et
i based on Equations (22)
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with the constrains (23) and (24) to adjust the amount of energy it supplies. The dynamic adjustment
processes of demand and supply curves with a small/large local trading price are presented in Figure 3.
These new allocations together with the local trading price pt∗(n) as well as the profit Ut

i (n) and cost
Ut

j(n) in the n th iteration are announced back to sellers and buyers. The iterative auction Algorithm 1
will terminate if the newest local trading price satisfies the convergence criteria or the iteration number
exceeds the predefined maximum value.

Algorithm 1. Iterative Auction Algorithm

1: Initialization: nmax, ε, n← 0 .
2: Input Set of sellers S, set of buyers B, and their initial supply/demand, ask/bid.
3: While the market is open for the next time slot energy trading Do
4: Allocation of energy in the order book with pt∗(n), Ut

i (n) and Ut
j(n).

5: If |p
t∗(n)−pt∗(n−1)|

pt∗(n−1) > ε and n ≤ nmax, Then
6: Sellers adjust and resubmit their quotes based on Equations (22) with the constrains (23) and (24).
7: n← n + 1 .
8: Else
9: Break
10: End If
11: End While
12: Output: Allocation of energy, local trading price, total cost, total profit, overall social welfare
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2.3. Economic Analysis

In this section, a brief economic analysis of the introduction of energy storage devices in microgrids
energy trading is conducted to explain profitable incomes of energy sellers and buyers with purchase
and operation costs of storage devices.

Let Ut
with and Ut

without denote the social welfare of the microgrid with/without energy storage
devices at time t, respectively. Thus, the economic benefit of using energy storage in energy trading
markets can be obtained as

∆Ut = Ut
with −Ut

without (25)

It is clear that the performance of energy storage equipment gradually decreases with the
increase of operation time (mainly reflected in the gradual decrease of the charging/discharging
efficiency, which is previously assumed to be 100% in this paper). A parameter is introduced here to
comprehensively reflect the impact of degradation, and the total economic benefit over a long period
of time is modified as

Utotal =
∑
t=0

∆Ut =
∑
t=0

(η(t)·Ut
with −Ut

without) (26)

where η(t) is a time-based, decreasing, and concave function between 0 and 1, which indicates negative
impacts of device degradation on social welfare of the microgrid.

On the other hand, the total cost of introducing the energy storage devices consists of the purchase
cost CP and routine operation and maintenance cost Ct

om, given as

Ctotal = Cp +
∑
t=0

Ct
om (27)

The purchase cost CP is determined by energy storage demands in the microgrid (mainly the
maximum storage capacity) and the routine operation and maintenance cost Ct

om is related to the
maintenance actions taken and initial purchase cost. The longer the service age is, the greater the
difficulty of operation and maintenance are. Usually, the routine operation and maintenance cost
can be estimated as a proportion of the purchase cost with a parameter function and the total cost is
transformed into

Ctotal = Cp +
∑
t=0

α(t)·Cp (28)

where α(t) is a time-based, non-negative increasing function, which represents the fact that the operation
and maintenance cost increases year by year with degradation of devices and increase of operation
and maintenance difficulty.

The economic analysis of introduction of energy storage devices can be realized by obtaining
the estimation of parameter functions (η(t) and α(t)) through the analysis of battery degradation and
operation and maintenance data, and acquiring the long-term evaluation of economic benefit and costs
with microgrid energy trading simulation results.

3. Numerical Examples

3.1. Case Description

In this section, we consider a P2P renewable energy trading microgrid to evaluate the feasibility of
this proposed trading mechanism based on a real database from the Smart* Project [31] of the University
of Massachusetts, Amherst, USA. The data contains minute-level electricity usage information from
over 400 anonymous homes with solar generation data. Forty agents (20 consumers and 20 producers)
are included in this market. The wholesale price fout is 21.8 ¢/kWh (cents per kilowatt hour) and the
retail price fin is 33.2 ¢/kWh. Each producer is equipped with a storage battery with a maximum
capacity of 500 kWh. To simplify the simulation process, the discharging threshold pdisc

i and charging
threshold pchar

i are set to be the same for all sellers with the value of 29 ¢/kWh and 26 ¢/kWh, respectively.
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The convergence threshold ε is 10−4 and the maximal iteration number nmax is 40. Two 7 × 24-h
energy trading scenarios with different lighting conditions are simulated based on the above algorithm
and parameter settings, which use real power consumption and generation data from the Smart*
Project. The total generation and consumption data of the 40 agents for these two 7 × 24-h periods are
represented in Figure 4 with different irradiation.
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Figure 5a shows the convergence evolution of local trading price achieved by the Iterative Auction
Algorithm for 12 noon energy trading on 1 February 2016 when the solar radiation is extremely intense
and the total generation is larger than total demand in local grid, and Figure 5b is the comparison of
total profit for sellers, the total cost for buyers and social welfare over the iteration. It can be noted that
the local trading price rapidly converges close to the optimal one after 36 iterations when the value
|pt∗(36)−pt∗(35)|

pt∗(35) is 9.65 × 10−5, together with the total cost for buyers, total profit for sellers and social
welfare. This trading scenario at 12 noon is an example trading scenario when residential electricity
consumption is low and the total energy supply in the microgrid is greater than the total demand.
Energy sellers tend to store the energy generated, and the local trading price gradually increases over
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the iteration. The trading volume for sellers is decreasing as shown in Figure 3a with a small local
trading price, which results in a gradual reduction of the total profit for sellers. On the other hand,
the total cost for buyers is increasing with an increase in trading price.
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A further comparison of the hourly optimal local trading price of these two markets with different
irradiation values are demonstrated in Figure 6, which represent similar tendency. Specially, in the
market with no storage device used, a distinct U-shape curve of the optimal local trading price is
displayed for every day in the seven-day period, which illustrates the obvious impact of renewable
energy on the trading market. During the daytime when the solar radiation intensity is high, the total
energy generation is greater than the demand, which leads to a relatively low local trading price that
approaches the wholesale price of 21.8 ¢/kWh. The local trading price is equal to the retail price of
33.2 ¢/kWh at dark when this microgrid can only be served by the main grid. However, the use of
energy storage devices, which sellers can choose to store electricity when the supply is sufficient and
use that energy for future trading, helps to moderate the fluctuant market with a less sharp curve of
the optimal local trading price. Specifically, the blue line is higher than the red line during the daytime,
because sellers with storage devices start to store part of the generated energy when the charging
threshold (26 ¢/kWh in this case) is reached. The sharp drop in the blue line near 8 p.m. everyday
represents the trigger of discharging strategy when the threshold (29 ¢/kWh in this case) is met.

To illustrate the economic advantages of the introduction of energy storage devices in energy
trading, a comparison of 7 × 24-h simulation results of two markets with different irradiation values
are shown in Figure 7. The stored energy for each seller at the start and end of this trading scenario is
both zero, which provides a premise of fair comparison. The effects of the energy storage devices on
the social welfare in Figure 7 are similar to those on the optimal local trading price in Figure 6.
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The summary of the results of these two 7 × 24-h simulation scenarios are presented in Table 1.
In the scenario when the solar radiation intensity is high, the total cost for buyers shows a decline of
1.52% in the market with storage devices, compared to that when no storage device is used. Meanwhile,
the total profit for sellers shows an increase of 1.27%, leading to a substantial relative improvement
of 118.94% in social welfare. It is quite clear that the introduction of energy storage devices brings
benefits to both sides of the trading market. In contrast, the economic advantage is not obvious in
the scenario with low irradiation values when the solar power generation cannot meet the electricity
demand in this local grid. It can be easily deduced that the solar power is consumed immediately once
produced in most cases and storage devices have no proper chance to play their due roles, as shown in
Figures 6a and 7a that polylines are mostly overlapping with/without storage devices. The results of
this comparison also illustrate effects of the number of users actively participating in the auction system,
number and installed capacity of PV systems on the economic advantage from the side. In microgrids
with more energy demand (the number of users is large), the economic advantage is relatively lower.
However, in microgrids with larger number or installed capacity of PV systems, the role of energy
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storage devices is reflected to the greatest extent to balance power supply and demand, and increase
the social welfare.Energies 2020, 13, x FOR PEER REVIEW 15 of 21 
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Table 1. Summary of the results of two 7 × 24-h scenarios.

With Low Irradiation No Storage Device With Storage Devices Relative Difference

Total cost for buyers (×105 $) 1.2541 1.2463 −0.62%
Total profit for sellers (×105 $) 0.5617 0.5722 1.87%

Social welfare (×104 $) −6.9245 −6.7408 2.65%

With High Irradiation No Storage Device With Storage Devices Relative Difference

Total cost for buyers (×105 $) 1.2126 1.1942 −1.52%
Total profit for sellers (×105 $) 1.2413 1.2571 1.27%

Social welfare (×104 $) 0.2872 0.6289 118.98%
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3.2. Sensitivity Analysis

In this section, the effects of different parameters on the social welfare of the market with energy
storage devices are presented using the 7 × 24-h simulation scenario with high irradiation values
described above.

Figure 8 illustrates the effects of the maximum capacity of energy storage on the social welfare
of the trading market for 12 noon energy trading on 1 February 2016. Specially, the point with a
zero maximum capacity corresponds to the case where the energy storage device is not considered.
Initially, the social welfare increases rapidly as the maximum capacity increases, which shows the
economic advantages of the use of storage devices. However, after a certain point, further increases
in the maximum capacity do not lead to more economic benefits but have the opposite effects. It is
mainly because the charging/discharging volume for each seller in one decision process is related to the
maximum capacity of the storage battery with which it is equipped while the energy generated is fixed.
An excessive value of the maximum capacity means that sellers tend to store most of the generated
energy in the daytime and release it when residential electricity consumption is low. The energy
generated within the microgrid is not supplied to EUs preferentially, which lowers the total amount of
local transactions and social welfare.
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Furthermore, the joint effects of the charging and discharging thresholds on social welfare
are presented in Figure 9. The point with the maximum value of the discharging threshold and
minimum charging threshold corresponds to the case where the energy storage device is not considered.
The optimal discharging threshold and charging threshold are both 27.5 ¢/kWh in this example, which is
the average of fout and fin (21.8 ¢/kWh and 33.2 ¢/kWh, respectively).
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3.3. Economic Analysis

Specially, a long period of one year energy trading simulation with 40 agents (20 consumers and
20 producers) presented above is implemented from 1 February 2016 to 31 January 2017 as a reference.
Figure 10 presents the weekly economic benefit of this trading market over one year and OY axis refers
to the system without energy storage devices. The changing curve shows significant periodicity and
volatility that the economic benefit is relatively higher in summer/autumn than that in winter/spring.
Two continuous zero points are seen in the 14th and 15th week when the solar panel power generation
system was shut down for routine operation and maintenance according to maintenance log.
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Moreover, a real and specific energy storage device, made up of several rechargeable lithium iron
phosphate battery packs is presented here, with the cycle life over 3000 times, nominal voltage of 48 V,
electric quantity of 100 kWh and boundary dimension of 600 mm × 600 mm × 1400 mm. More detailed
information can be seen in [32] and the purchase cost for each device is priced at $20,000.
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An exponential parameter factor is introduced here as η(t) = 0.95t to present negative impacts of
device degradation on social welfare and a linear function α(t) = 0.05 + 0.005t is used to approximately
calculate the operation and maintenance cost over time, where t is the operation time in years. The total
economic benefit of using energy storage devices and its corresponding cost over operation time are
presented in Figure 11. The total economic benefit of using energy storage devices and corresponding
cost both gradually increases with the growth of operation time but at different rates. An intersection
point appears after about five years of operation when the economic benefit offsets the purchase and
routine operation and maintenance costs, which means that the introduction of energy devices is not
profitable if the number of charging cycles reached the maximum value and operation year is below
the intersection point. After that, the economic benefit curve is above the cost curve and the maximum
separation is reached at 15th year. Longer operation time does not generate more revenue because of
battery degradation and equipment aging; thus, the total cost converges towards the total economic
benefit. The deviation curve (the difference between total economic benefit and cost) demonstrates the
above relations visually and intuitively.
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In summary, the profit of use of energy storage in this example is guaranteed after five years
of operation and reaches its maximum value at the 15th year by comparing the economic benefit
curve and cost curve. When the operating time further increases, the profit will gradually decline
considering the decrease of the charging/discharging efficiency and increase of routine operation and
maintenance cost.

3.4. Comparative Analysis

In exiting papers that study storage devices in energy trading [5,25–28], the total profit of energy
seller is composed of two main parts, revenue from trading energy with buyers and profits from energy
stored, which is usually described by a quadratic, linear, or logarithmic function, shown as [25]

Ut
i = (αt
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t
i)·c

t + ηIn(1 + (1− αt
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where αt
i is the proportion of energy for trading, gt

i is the total generated energy, ct is the transaction
price, In(·) is the utility function of stored energy, and η is the adjustment factor. The optimal energy
allocations to be stored and sold (reflected in αt

i) are calculated through the game process between
energy sellers and buyers by maximizing total profit. It is easy to understand that the second term of
the above formula is a rough estimate of returns in future energy trading markets. However, as stated
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above, market parameters cannot be accurately obtained in advance in reality due to the highly variable
nature of many components in the microgrid energy trading markets. The adjustment factor η is
constantly changing and cannot be accurately assessed, which challenges the effective management of
energy storage devices. Furthermore, market participants may be reluctant to publicly disclose their
trading preferences due to privacy concerns and parameters, such as gt

i and αt
i are not easy to get.

In this paper, the total profit of seller i to sell its energy at time t is defined in Equation (1), including
direct local transactions within the microgrid and trading with the main grid. The introduction of
energy storage devices helps sellers to adjust the amount of energy to be traded. A dynamic energy
storage management strategy is proposed and each supplier decides the amount of energy to be sold
and stored in real time based on the local trading price. Compared with models proposed, no private
information is further needed and the profit is an accurate value for real-time evaluation.

4. Conclusions

In this paper, a P2P renewable energy trading mechanism for microgrids when energy suppliers
are equipped with storage devices is studied. A dynamic energy storage management strategy based
on the local trading price is proposed and each supplier decides the amount of energy to be sold and
stored in a time slot. An iterative auction algorithm is presented to obtain the market equilibrium and
optimal energy allocation schedule. The economic analysis of introducing energy storage devices in
this trading market is further studied. Two 7 × 24-h energy trading scenarios with 20 consumers and
20 solar energy producers are simulated using real power consumption and generation. A comparison
of the hourly optimal local trading price of these two markets is further demonstrated. In those days
with high solar radiation intensity, compared with the market with no storage device, the total cost
for buyers in the market when storage devices are used shows a decline of 1.52% and the total profit
for sellers shows an increase of 1.27%, which leads to a substantial relative improvement of 118.94%
in the overall social welfare. However, the economic advantage is not obvious in the scenario with
low irradiation values for the reason that the solar power is consumed immediately once produced in
most cases and storage devices have no proper chance to play their due roles. Moreover, the effects
of the maximum capacity of the battery and discharging/charging threshold on the social welfare
of the market with energy storage devices are also presented. It is found that the social welfare
increases rapidly as the maximum capacity increases in the beginning, while after a certain point,
further increases in the maximum capacity do not lead to more economic benefits but have the opposite
effects. The optimal discharging threshold and charging threshold is 27.5 ¢/kWh respectively in the
rendered trading scenario. A brief economic analysis of the introduction of energy storage devices
in microgrids energy trading is further conducted with a one-year energy trading simulation from
1 February 2016 to 31 January 2017 as a reference, and a real and specific energy storage device made
up of several rechargeable lithium iron phosphate battery packs. An exponential parameter factor is
introduced to present negative impacts of device degradation on social welfare and a linear function
is used to approximately calculate the operation and maintenance cost over time. In the example
presented, the profit of use of energy storage in this example is guaranteed after five years of operation
and reaches its maximum value at the 15th year by comparing the economic benefit curve and cost
curve. When the operating time further increases, the profit will gradually decline considering the
decrease of the charging/discharging efficiency and increase of routine operation and maintenance cost.
At last, a comparative analysis of model proposed in this paper with other works is illustrated.

It should be clarified that the simulation results discussed above are strongly related to the trading
scenarios we chose. To provide guidance for microgrids trading market participants, a broader sample
of data needs to be adopted, and this will be one of our future research efforts. More detailed and
precise economic analysis of the introduction of energy storage devices in microgrids energy trading
could also be another relevant research extension of this paper.
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