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Abstract: This paper presents a succinct exploration of several analytical methods for extracting
the parameters of the single-diode model (SDM) of a photovoltaic (PV) module under standard
test conditions (STC). The paper investigates six methods and presents the detailed mathematical
analysis leading to the development of each method. To evaluate the performance of these methods,
MATLAB-based software has been devised and deployed to generate the results of each method
when used to extract the SDM parameters of various PV test modules of different PV technologies.
Similar software has also been developed to extract the same parameters using well-established
numerical and iterative techniques. A comparison is subsequently made between the synthesized
results and those obtained using numerical and iterative methods. The comparison indicates that
although analytical methods may involve a significant amount of approximations, their accuracy can
be comparable to that of their numerical and iterative counterparts, with the added advantage of a
significant reduction in computational complexity, and without the initialization and convergence
difficulties, which are normally associated with numerical methods.

Keywords: ideality factor; parameter extraction; photocurrent; saturation current; series resistance;
shunt resistance; single-diode model

1. Introduction

Photovoltaic (PV) systems offer the most direct conversion of the sunlight energy into electricity
making them one of the most appealing systems for renewable energy generation [1]. The principle
component of a PV power plant is the PV generator, which typically consists of an array of PV modules
connected in series and or parallel combinations to provide the terminal voltage and current required
to furnish the rated power of the plant. To harness the harvested solar energy and convert it into a
useable form of electricity for the end user, a PV plant uses different types of power electronic systems,
such as DC–DC and DC–AC converters [2]. The design, analysis and simulation of a PV system
including these power converters, require a lumped-parameter equivalent circuit model of the PV
generator. Such an equivalent circuit is used for purposes, such as efficient sizing of the PV array and
of the semiconductor switching devices of the power converters. In addition, it can be used with circuit
simulation software packages.

The normalized current–voltage (I–V) and power–voltage (P–V) characteristics of a typical PV
generator are shown in Figure 1. The general shapes of these characteristics are similar regardless of
the size of the PV generator, i.e., be it a cell, a module, or an array of modules. These curves reveal three
important salient points: the open-circuit (OC) voltage, the short-circuit (SC) current, and the maximum
power point (MPP). For maximum power extraction from any PV generator, the generator must be
continuously operated at its MPP (maximum power point). However, the load is normally variable,

Energies 2020, 13, 4825; doi:10.3390/en13184825 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0944-8915
http://dx.doi.org/10.3390/en13184825
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/18/4825?type=check_update&version=2


Energies 2020, 13, 4825 2 of 25

which implies that the load-line will not necessarily coincide with the MPP. Moreover, the terminal
characteristics of a photovoltaic generator vary with climatic conditions of temperature and insolation
thus, the MPP will also change with variations in insolation and temperature [3,4]. Hence, to maintain
operation at the current MPP, a photovoltaic system utilises an MPPT (maximum power point tracker)
system that forces the operating point of a PV generator to continuously follow the prevailing MPP
regardless of variations in the load and or environmental conditions [5].

Figure 1. Normalised experimental current–voltage (I–V) and power–voltage (P–V) characteristics of a
generic PV generator.

An MPPT system uses a DC–DC power converter controlled by an MPPT algorithm that is
normally implemented using a microcontroller [6]. The design of an MPPT system is made more
difficult due to the effects of PS (partial shading) [7]. Partial shading can lead to significant reduction
in the energy yield of a PV system and its reliability [8,9]. To mitigate the adverse consequences of PS,
bypass diodes are normally deployed in PV modules [10] and arrays [11]. However, these diodes can
give rise to power–voltage curves with multiplicity of power peaks which complicates the design of the
MPPT system [5]. Therefore, an equivalent circuit model of a PV generator is also required to aid the
design and simulation of the MPPT system, to investigate the adverse effects of PS and explore strategies
of mitigating them [12]. The single-diode model (SDM) of a PV generator, is currently the dominant
lumped-parameter equivalent circuit model, due to its accuracy and reduced complexity [13–15].
Furthermore, it can be readily modified to model a PV generator of any size [2,16].

As shown in Figure 2, the SDM includes five parameters which must be estimated: The saturation
current Isat and the ideality factor n of the diode, the series resistance Rs, the shunt resistance Rsh,
and the photocurrent Iph [13]. These five model parameters are not provided in datasheets of PV
modules, but can be estimated, or extracted, from information provided in datasheets. However,
information given in a datasheet of a PV module is specified under only one operating condition,
namely the standard test conditions (STC) (insolation G = 1000 W/m2, temperature T = 25 ◦C, and Air
mass AM = 1.5) thus, the extracted parameters are only valid at STC. For any other arbitrary conditions
of insolation and temperature, these STC parameters must be adapted accordingly [4,17].

Figure 2. The single-diode model of a photovoltaic (PV) generator.
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To estimate the model parameters of the SDM at STC, numerous methods with varying
degrees of mathematical and computational complexities and accuracy have been reported in the
literature, for example [14,18,19]. These methods are commonly classified as either analytical or
numerical. Numerical, or explicit methods, generate a system of equations which can be solved using
numerical/iterative algorithms such as the Newton–Raphson solution strategy. The disadvantages
of numerical methods include the need for appropriate initialisation, can produce trivial solutions,
and may have convergence difficulties. Analytical methods on the other hand, use simple and fast
parameter extraction schemes by making use of some simplifying assumptions and approximations [20].
For example, by disregarding some parameters or allocating some approximate values for some other
parameters as detailed in Section 3 [21,22].

In addition, there are other strategies for the parameter extraction, such as those based on
computational intelligence [23] and those using meta-heuristic algorithms [24]. More complex methods
of parameter extraction can also be found in the literature, such as those based on optimisation
algorithms [25,26] and those based on differential evolution [27]. There are also analytical methods
which are based on the double-diode circuit model which has seven parameters [28,29]. However,
the scope of this article is restricted to analytical methods which use the universally adopted SDM of a
PV module.

Referring to the SDM in Figure 2, the terminal current I of a PV module consisting of Ns PV cells
connected in series, is given by the general current equation:

I = Iph − Isat[exp(
V + IRs

nNsVth
) − 1] −

V + IRs

Rsh
(1)

The first term is the photocurrent Iph which is almost directly proportional to the incident insolation.
The second term, in the above equation, is the Shockley’s equation, which represents the diode current Id,
while the third term is the current in the shunt resistance Ish. The diode’s thermal voltage Vth is defined
in terms of the electronic charge q = 1.602× 10−19 C, the Boltzmann’s constant k = 1.38065× 10−23 J/K
and temperature T (K) as:

Vth =
kT
q

(2)

At room temperature, the thermal voltage is about 26 mV. The ideality factor for a silicon PV cell
is typically between one and two. For a typical PV module, the series resistance is in the order of 1 Ω,
the parallel resistance is in the region of few hundred ohms, and the saturation current is in the order
of nano-Amperes.

Equation (1) is an implicit and transcendental equation that would normally require a numerical
solution to obtain the five parameters of the SDM. However, since numerical methods are susceptible to
convergence and initialisation difficulties, several alternative analytical methods have been described
in the literature. These methods aim at reducing the complexity of the implicit general equation of
the SDM by introducing some approximations to develop explicit models as detailed in Section 3.
For example, some methods use the approximation that the shunt resistance is the reciprocal of the
gradient of the I–V characteristic curve under short-circuit condition [20]. Others neglect the shunt
resistance on the assumption that it is relatively too large [30], while some analytical methods neglect
both the series and the shunt resistances [22].

The contributions of this article are: Explore the most literature-reported analytical methods
for parameters extraction of the SDM, present detailed derivation of the mathematical expressions
that lead to each method which are not normally detailed in the reporting literature, and synthesize
the results of each method by deploying them to extract the parameters of PV modules of different
technologies. Finally, the paper presents a comparison between these synthesized results and those
obtained using numerical and iterative techniques.

After this introductory section, Section 2, describes mathematical analysis that supports the
development of the analytical methods investigated in this work. Section 3 presents detailed
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mathematical derivation and formulation of the expressions required for extracting each parameter
using each method. Section 4 provides a discussion of the results and finally, Section 5 summarises the
main findings of the work presented in this article.

2. Mathematical Grounds for the Analytical Methods

When the entire I–V curve is available, the parameters of the SDM may be estimated using
curve fitting or optimisation algorithm [26,31,32]. In general, the I–V characteristics are not given
in manufacturers’ datasheets and even when provided, they are specified under only one operating
condition, namely the STC [33]. Most methods used to extract the SDM parameters are based on
developing the model equations using data at the three salient points (SC, OC, MPP), which are always
provided in the datasheet of a photovoltaic module. There are three standard equations used in most
studies, e.g., in [14,18,21], which are derived from Equation (1) at the three salient points: (0, Isc), (Voc, 0),
and (Vmp, Imp) under STC as explained next.

Substituting the SC point (0, Isc), in Equation (1), we arrive at the SC equation as:

Isc = Iph − Isat[exp(
IscRs

nNsVth
) − 1] −

IscRs

Rsh
(3)

Similarly, substituting the OC point (Voc, 0) in Equation (1) and rearranging, we obtain the OC
equation as:

Iph = Isat[exp(
Voc

nNsVth
) − 1] +

Voc

Rsh
(4)

Substituting the maximum power point
(
Vmp, Imp

)
in Equation (1), we obtain the MPP equation as:

Imp = Iph − Isat[exp(
Vmp + ImpRs

nNsVth
) − 1] −

Vmp + ImpRs

Rsh
(5)

Another important quantity required for parameter extraction is the derivative of the module’s
current with respect to its voltage, i.e., dI/dV. This is obtained by differentiating Equation (1):

dI
dV

= −
Isat

nNsVth
[exp(

V + IRs

nNsVth
)(1 +

dI
dV

Rs)] − [
1

Rsh
+

dI
dV

Rs

Rsh
] (6)

Solving for the derivative:

dI
dV

=
−

Isat
nNsVth

[exp( V+IRs
nNsVth

)] − 1
Rsh

(1 + Rs
Rsh

+ IsatRs
nNsVth

exp( V+IRs
nNsVth

)
(7)

It is to be noted that the above expression for the derivative is valid at any point on the I–V curve.
Another derivative used in parameter extraction procedures is that of the power with respect to voltage
defined as:

dP
dV

=
d

dV
(VI) = V

∂I
∂V

+ I
∂V
∂V

(8)

At the MPP point, this derivative equates to zero:

dP
dV

∣∣∣∣∣
MPP

= 0 = Vmp
∂I
∂V

+ Imp
∂V
∂V

(9)

Therefore, at the MPP the current derivative becomes:

dI
dV

∣∣∣∣∣
MPP

= −
Imp

Vmp
(10)
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The shunt resistance at the SC point Rsho, may be estimated from the gradient of the I–V curve at
the short-circuit point as:

dI
dV

∣∣∣∣∣
SC

= −
1

Rsho
(11)

Similarly, the series resistance at the OC point Rso is defined as:

dI
dV

∣∣∣∣∣
OC

= −
1

Rso
(12)

For the five parameters extraction process, the majority of the parameter extraction methods,
for example [14,19,22,34–38], have taken into account the mathematical correlation between these
parameters and separated them into two levels: The main level consists of the ideality factor, shunt
resistance, series resistance, and a secondary level which consists of the photocurrent and the saturation
current. This way, the extraction equations are reduced to three instead of five to simplify the
mathematical formulation as illustrated in the next section.

3. Parameters Extraction Methods

In this section we present the mathematical analysis and derivation of the equations required for
the extraction of the SDM parameters for six main analytical methods.

3.1. Method One

This method was developed to determine the parameters of a blue and grey solar cell using
experimentally obtained I–V curve and the three salient points, i.e., the SC, OC, and the MPP, which are
available in datasheets [20]. The method uses several approximations to simplify the required extraction
equations and is based on calculating a value of the ideality factor, n, as the main model parameter,
which is consequently used to estimate the remaining four parameters, namely Rs, Rsh, Iph, and Isat.
As explained in the following subsections, the method uses Equations (3)–(5), (11) and (12) to extract
the model parameters with the term Ns set to unity since the method was described for a single PV cell
as opposed to a PV module.

3.1.1. Extraction of the Photocurrent

The photocurrent is estimated using the short-circuit current point (0, Isc), i.e., Equation (3),
which we can be re-arrange to obtain an expression for the photocurrent as:

Iph = Isc(1 +
Rs

Rsh
) + Isat[exp(

IscRs

nVth
) − 1] (13)

The short-circuit current Isc is obtained from the datasheet. However, Rs, Rsh, and Isat are unknowns
and must be determined.

3.1.2. Extraction of the Shunt Resistance

We can derive an expression to estimate the shunt resistance using the expression for derivative
dI/dV expressed at the short-circuit point. Substituting the short-circuit point (0, Isc) in the expression
of the derivative of Equation (7), and setting Ns = 1, we obtain:

−
dI
dV

∣∣∣∣∣
SC

[
(1 +

Rs

Rsh
+

IsatRs

nVth
exp(

IscRs

nVth
)

]
=

Isat

nVth
[exp(

IscRs

nVth
)] +

1
Rsh

(14)

Substituting for the derivative at the SC point from Equation (11) into Equation (14) we obtain:

Rsho

[
Isat

nVth
[exp(

IscRs

nVth
) +

1
Rsh

]
= (1 +

Rs

Rsh
+

IsatRs

nVth
exp(

IscRs

nVth
) (15)
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The exponential term [Isat exp(IscRs/nVth)] represents the diode current under short-circuit
condition, which is too small compared to the short-circuit current hence, it may be neglected [39].
Further, since Rs � Rsh, the term Rs/Rsh may also be neglected. Therefore, Equation (15) becomes:

Rsh = Rsho (16)

This means that the shunt resistance is estimated directly from the gradient of the I–V curve at the
SC point.

3.1.3. Extraction of the Series Resistance

To estimate the series resistance, we can use the gradient of the I–V curve at the OC voltage point.
Substituting the OC point (Voc, 0) and setting Ns = 1 in the general expression for the derivative of
Equation (7), we can write:

−
dI
dV

∣∣∣∣∣
OC

[
(1 +

Rs

Rsh
+

IsatRs

nVth
exp(

Voc

nVth
)

]
=

Isat

nVth
[exp(

Voc

nVth
)] +

1
Rsh

(17)

Substituting for the derivative at the OC point from Equation (12) and re-arranging:

Rso

[
Isat

nVth
[exp(

Voc

nVth
)] +

1
Rsh

]
= (1 +

Rs

Rsh
+

IsatRs

nVth
exp(

Voc

nVth
) (18)

The term [Isat exp(Voc/nVth)] represents the diode current under open-circuit condition. Under this
condition, the diode current is the photocurrent, which is the same as the SC current less the negligibly
small current in the shunt resistance. When this diode current is divided by nVth the result is much
greater than 1/Rsh thus, the latter term can be neglected. Further, after neglecting the term Rs/Rsh, the
expression for series resistance becomes:

Rs = Rso −
nVth
Isat

exp(
−Voc

nVth
) (19)

This is not a closed form expression for the series resistance since it contains the saturation
current and the ideality factor which need to be determined. The open-circuit voltage is obtained from
the datasheet.

3.1.4. Extraction of the Reverse Saturation Current

By substituting, the open-circuit Equation (4) into the short-circuit Equation (3) and neglecting the
(−1) in the exponential terms, we obtain:

Isc = Isat[exp(
Voc

nVth
) − exp(

IscRs

nVth
)] +

Voc

Rsh
−

IscRs

Rsh
(20)

This may be re-arranged as:

Isat[exp(
Voc

nVth
) − exp(

IscRs

nVth
)] − (

Rs

Rsh
+ 1)Isc +

Voc

Rsh
= 0 (21)

However, since in practice at IscRs � Voc and Rs � Rsh [39,40], the equation for the saturation
current becomes:

Isat =

(
Isc −

Voc

Rsh

)
exp

(
−Voc

nVth

)
(22)

The OC voltage and the parallel resistance can be estimated from the I–V curve however, the ideality
factor is still unknown and needs to be determined.
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3.1.5. Extraction of the Ideality Factor n

Substituting the OC voltage equation for the photocurrent, i.e., Equation (4), into the MPP
Equation (5), and after ignoring the (−1) in the exponential terms, we can write:

Isat exp(
Voc

nVth
) − Isat exp(

Vmp + ImpRs

nVth
) +

Voc −Vmp

Rsh
− Imp(1 +

Rs

Rsh
) = 0 (23)

Since Rs � Rsh, this reduces to:

Isat exp(
Voc

nVth
) − Isat exp(

Vmp + ImpRs

nVth
) +

Voc −Vmp

Rsh
− Imp = 0 (24)

An expression for the ideality factor can now be derived as explained below.
Substituting Equation (16) into (22):

Isat =

(
Isc −

Voc

Rsho

)
exp

(
−Voc

nVth

)
(25)

Substituting Equation (25) into (24), we obtain:(
Isc −

Voc
Rsho

)
exp

(
−Voc
nVth

)
exp

(
Voc

nVth

)
−(

Isc −
Voc
Rsho

)
exp

(
−Voc
nVth

)
exp(

Vmp+ImpRs
nVth

) +
Voc−Vmp

Rsho
− Imp = 0

(26)

This can be simplified to:

Vmp + ImpRs −Voc

nVth
= ln

(
Isc − Imp −

Vmp

Rsho

)
− ln

(
Isc −

Voc

Rsho

)
(27)

Therefore, the ideality factor becomes:

n =
Vmp + ImpRs −Voc

Vth

[
ln

(
Isc − Imp −

Vmp
Rsho

)
− ln

(
Isc −

Voc
Rsho

)] (28)

This is not a closed from expression because it contains the series resistance, which must
be determined. This can be obtained by substituting the expression for the saturation current of
Equation (25) into the expression for the series resistance of Equation (19) as:

Rs = Rso −
nVth(

Isc −
Voc
Rsho

)
exp

(
−Voc
nVth

)
exp

(
Voc

nVth

) (29)

Hence, the expression for the series resistance becomes:

Rs = Rso −
nVth(

Isc −
Voc
Rsho

) (30)

Substituting this expression for the series resistance, i.e., Equation (30), into Equation (28):

n =
Vmp −Voc + Imp

(
Rso −

nVth
(Isc−Voc/Rsho)

)
Vth

(
ln

(
Isc − Imp −

Vmp
Rsho

)
− ln

(
Isc −

Voc
Rsho

)) (31)
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This can be simplified to:

nVth

[(
ln

(
Vmp

Rsho
+ Isc − Imp

)
− ln

(
Isc −

Voc

Rsho

))
+

Imp

(Isc −Voc/Rsho)

]
= Vmp −Voc + ImpRso (32)

Solving for the ideality factor:

n =
Vmp −Voc + ImpRso

Vth

[(
ln

(
Vmp
Rsho

+ Isc − Imp

)
− ln

(
Isc −

Voc
Rsho

))
+

Imp

(Isc−Voc/Rsho)

] (33)

This is now a closed form expression for the ideality factor because all the variables can be obtained
or estimated from the datasheet and the I–V curve of the cell. For a PV module with Ns cells connected
in series, the ideality factor is multiplied by Ns [2]. Having estimated the ideality factor, the saturation
current can then be estimated using Equation (25) and consequently, the series resistance obtained
from (19). Finally, the photocurrent can be calculated using (13). The major deficiency of this method is
the fact that it requires the I–V curve, which is not always available in the manufacturer’s datasheet.

3.2. Method Two

This method uses the idealised SDM model shown in Figure 3, which neglects the effects of the
both, the series and shunt resistances. The method results in simplified analytical expressions for
current, voltage, and power [22].

Figure 3. The idealised single-diode model (SDM) model of a PV generator.

The general current equation for this model is:

I = Iph − Isat

(
exp(

V
nNsVth

) − 1
)

(34)

A the short-circuit point (0, Isc), this reduces to:

Iph = Isc (35)

That is the photocurrent is the same as the SC current, and this is always provided by the PV
module’s datasheet. At the open-circuit point (Voc, 0), we have:

Iph = Isat(exp(
Voc

nNsVt
) − 1) (36)

Alternatively, since in this model, Isc = Iph, we may write:

Isc = Isat[exp(
Voc

nNsVt
) − 1] (37)

We can solve this for the OC voltage as:

Voc = nNsVth ln
( Isc

Isat
+ 1

)
(38)
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Using Equation (37), the saturation current can be expressed as:

Isat =
Isc[

exp( Voc
nNsVth

) − 1
] (39)

At the MPP, we can express the current as:

Imp = Isc − Isat

[
exp(

Vmp

nNsVth
) − 1

]
(40)

The derivative dI/dV at any point along the I–V curve can be obtained from Equation (34) as:

dI
dV

= −
Isat

nNsVth
exp(

V
nNsVth

) (41)

The derivative at the maximum power point is:

dI
dV

∣∣∣∣∣
MPP

= −
Imp

Vmp
(42)

Substituting Equation (42) into Equation (41), the current at the MPP becomes:

Imp =
VmpIsat

nNsVth
exp(

Vmp

nNsVth
) (43)

Substituting (37) and (43) into (40) and ignoring the (−1) in the exponential terms:

[exp(
Voc

nNsVt
)] = exp(

Vmp

nNsVth
)(1 +

Vmp

nNsVth
) (44)

Equations (35), (38), (43) and (44) represent the main equations of the explicit model. To estimate
the maximum power point voltage Vmp, the derivative in Equation (41) at the MPP is solved for the
MPP voltage as:

Vmp = nNsVth ln

−nNsVth
Isat

dI
dV

∣∣∣∣∣
Vmp

 (45)

The asymptotic behaviour of the I–V curve around the open-circuit and short-circuit points were
used to estimate the derivative needed in the above equation as [22]:

dI
dV

∣∣∣∣∣
Mpp
�

∆I
∆V

=
0− Isc

Voc − 0
= −

Isc

Voc
(46)

Substituting Equation (46) into (45), we obtain:

Vmp = nNsVth ln
(nNsVth

Isat

Isc

Voc

)
(47)

Substituting Equation (47) into (40):

Imp = Isc − Isat

exp[
nNsVth ln

(nNsVth
Isat

Isc
Voc

)
nNsVth

] − 1

 (48)

Simplifying the above, we obtain:

Imp = Isc + Isat − Isat

(nNsVth
Isat

Isc

Voc

)
(49)
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Imp = Isc + Isat − nNsVth
Isc

Voc
(50)

The maximum power is:
Pm = VmpImp (51)

Therefore,

Pm = nNsVth(Isc + Isat nNsVth
Isc

Voc
) ln

(nNsVth
Isat

(
Isc

Voc
)
)

(52)

To estimate the ideality factor under STC conditions, we substitute Equation (39) into (40) and
ignore the (−1) since the exponential terms in both is much larger than unity:

Imp = Isc −
Isc

exp( Voc
nNsVt

)
exp(

Vmp

nNsVth
) (53)

Re-arranging and simplifying, we obtain:

nNsVth ln
(
1−

Imp

Isc

)
= (Vmp −Voc) (54)

Solving for the ideality factor at STC, we obtain:

n =
Vmp −Voc

NsVth ln
(
1−

Imp
Isc

) (55)

In attempting to improve the accuracy of this method, Mahmoud et al. [41] modified the saturation
current equation as:

Isat =
exp( |β|∆Tq G[Isc+α∆T]

nNskT )

(GIsc/Isat,SCT + 1)
TSTC

T − exp( |β|∆Tq G
nNskT )

(56)

where ∆T = T − TSTC and β is the voltage temperature coefficient, which is always included in the
datasheet. The STC saturation current can be computed as [14]:

Isat,STC =
Isc

[exp(Voc/nNsVth) − 1]
(57)

Yousef et al. [42] improved the accuracy of the ideal model of the PV module at low irradiance
without affecting the simplicity of the model by modifying the equation of the saturation current to
take into account the effect of the low irradiance on the OC voltage as:

Isat =
Iph(G, T)

[exp q(Voc −
∣∣∣β∣∣∣∆T + ∆Voc(G1, TSTC)) − 1]

(58)

Voc =
nNskT

q
ln(

Iph

Isat
+ 1) (59)

∆Voc(G, TSTC) =
nNskT

q
ln(

G
GSTC

) (60)

3.3. Method Three

This method assumes that the shunt resistance is very large so that it can be neglected hence, it
is developed using the single-diode equivalent circuit model shown in Figure 4. This model, which
is known as the four parameters model, has been found to offer good accuracy [30,43]. The method
uses the datasheet, but does not require the full I–V curve [30,43–45] which is not normally available.
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The model equations can be derived as illustrated below. The general current equation for this model
is:

I = Iph − Isat[exp(
V + IRs

nNsVth
) − 1] (61)

Figure 4. The four-parameters SDM.

The short-circuit equation is:

Isc = Iph − Isat[exp(
IscRs

nNsVth
) − 1] (62)

The open-circuit equation is:

0 = Iph − Isat[exp(
Voc

nNsVth
) − 1] (63)

The MPP equation is:

Imp = Iph − Isat[exp(
Vmp + ImpRs

nNsVth
) − 1] (64)

3.3.1. Extraction of the Photocurrent

Referring to the equation of the short-circuit condition, i.e., Equation (62), the second term
represents the diode current. In practice, since the voltage IscRs is too small and comparable to
the thermal voltage, the exponential term exp(IscRs/nNsVth) is close to unity. Further, since this is
multiplied by the very small value of the saturation current, it is reasonable to assume that the under
short-circuit condition, the diode current is much smaller than the short-circuit current and can be
neglected, i.e., all of the photocurrent is the SC current, hence Equation (62) reduces to:

Iph = Isc (65)

That is the module’s photocurrent is the same as the SC current, which is always given in datasheets.

3.3.2. Extraction of the Saturation Current

Under open-circuit condition, the entire short-circuit current is the diode current, i.e.,

Isc = Isat[exp(
Voc

nNsVth
) − 1] (66)

Since the exponential term is much greater than one, we can ignore the (−1) hence, the saturation
current can be expressed as:

Isat = Isc[exp(
−Voc

nNsVth
)] (67)

This is, however, not a closed form expression for the saturation current since it includes the
ideality factor which must be determined.
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3.3.3. Extraction of the Series Resistance

The series resistance may be found by substituting Equation (67) into the MPP Equation (64) as:

Imp = Iph − Isc[exp(
−Voc

nNsVth
)][exp(

Vmp + ImpRs

nNsVth
) − 1] (68)

Neglecting the (−1) in the second exponential term and replacing the photocurrent by the
short-circuit current and re-arranging:

1−
Imp

Isc
= [exp(

−Voc

nNsVth
)][exp(

Vmp + ImpRs

nNsVth
)] (69)

Re-arranging and solving for the series resistance, we obtain:

Rs =
nNsVth ln(1−

Imp
Isc

) + Voc −Vmp

Imp
(70)

This is not a closed form expression since it includes the ideality factor, which needs to
be determined.

3.3.4. Extraction of the Ideality Factor

The ideality factor is derived using the fact that the slope of the I–V curve at the maximum power
point is equal to zero. Equating Equation (10) and Equation (7) at the MPP:

−
Imp

Vmp
=
−

Isat
nNsVth

[exp(
Vmp+ImpRs

nNsVth
)]

(1 + IsatRs
nNsVth

exp(
Vmp+ImpRs

nNsVth
)

(71)

Re-arranging as:
Vmp

Imp
=

1
Isat

nNsVth
[exp(

Vmp+ImpRs
nNsVth

)]
+ Rs (72)

The above may be written as:

Rs −
Vmp

Imp
=

−nNsVth

Isat[exp(
Vmp+ImpRs

nNsVth
)]

(73)

Substituting for the series resistance Rs from (70) into (73) we obtain:

nNsVth ln(1−
Imp
Isc

) + Voc − 2Vmp

Imp
=

−nNsVth

Isat[exp(
Vmp+ImpRs

nNsVth
)]

(74)

This may be re-arranged as:

− ln(1− Imp/Isc)

Imp
+

(2Vmp −Voc)/nNsVth

Imp
=

1

Isat[exp(
Vmp+ImpRs

nNsVth
)]

(75)

Substituting for the saturation current from Equation (67):

− ln(1− Imp/Isc)

Imp
+

(2Vmp −Voc)/nNsVth

Imp
=

1

Isc[exp( −Voc
nNsVth

)][exp(
Vmp+ImpRs

nNsVth
)]

(76)
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This may be re-arranged as:

− ln(1− Imp/Isc)

Imp
+

(2Vmp −Voc)/nNsVth

Imp
=

1

Isc[exp(
Vmp+ImpRs−Voc

nNsVth
)]

(77)

The denominator on the right-hand side of Equation (77) may be re-written with the series
resistance substituted by its expression from Equation (70) and simplified as follows:

Isc[exp(
Vmp + ImpRs −Voc

nNsVth
)] = Isc exp[

Vmp −Voc + Imp(
nNsVth ln(1−

Imp
Isc )+Voc−Vmp

Imp
)

nNsVth
] (78)

Re-arranging:

Isc[exp(
Vmp + ImpRs −Voc

nNsVth
)] = Isc exp[ln(1−

Imp

Isc
)] (79)

Therefore:

Isc[exp(
Vmp + ImpRs −Voc

nNsVth
)] = Isc − Imp (80)

Substituting (80) into (77)

− ln(1− Imp/Isc)

Imp
+

(2Vmp −Voc)/nNsVth

Imp
=

1
Isc − Imp

(81)

Simplifying and solving for the ideality factor:

n =
(2Vmp −Voc)

NsVth[
Imp

Isc−Imp
+ ln(1−

Imp
Isc

)]
(82)

This is a closed form expression for the ideality factor since all variables in its expression are
available in the datasheet. Therefore, Rs and Isat can now be determined.

3.4. Method Four

This method uses information available in the datasheet to estimate the parameters of the SDM.
It uses a piecewise I–V curve fitting scheme along with the four parameters PV model to evaluate
them [45]. In this method the definition of the modified ideality factor is introduced as:

a = nNsVth (83)

Using Equation (7) the derivative of voltage with respect to current dV/dI is:

dV
dI

= −
Rs(

1
Rsh

+ Isat
a exp(V+IRs

a ) + 1
Isat
a [exp(V+IRs

a )] + 1
Rsh

(84)

Simplifying:
dV
dI

= −Rs −
aRsh

a + IsatRsh exp(V+IRs
a )

(85)

At the SC point, the derivative becomes:

dV
dI

∣∣∣∣∣
SC

= −Rs −
aRsh

a + IsatRsh exp( IscRs
a )

(86)
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At the OC point, the derivative becomes:

dV
dI

∣∣∣∣∣
OC

= −Rs −
aRsh

a + IsatRsh exp(Voc
a )

(87)

At the MPP point, the derivative is:

dV
dI

∣∣∣∣∣
MPP

= −Rs −
aRsh

a + IsatRsh exp(
Vmp+ImpRs

a )
(88)

Equating Equation (88) with the reciprocal of the derivative defined in Equation (10):

Vm

Im
= Rs +

aRsh

a + IsatRsh exp(
Vmp+ImpRs

a )
(89)

Using Equations (3), (4), (87), (88) and (89) with a series of simplifications, the following equations
are obtained to extract the five parameters Rs, Rsh, Iph, a, and the saturation current Isat [45]:

Rs =
Vmp(

dV
dI

∣∣∣
OC −

dV
dI

∣∣∣
SC)

[
dV
dI

∣∣∣
SC(Isc − Imp) + Vmp

]
−

dV
dI

∣∣∣
OC

[
( dV

dI

∣∣∣
SCImp + Vmp)(

dV
dI

∣∣∣
SCIsc + Voc)

]
Imp(

dV
dI

∣∣∣
OC −

dV
dI

∣∣∣
SC)[

dV
dI

∣∣∣
SC(Isc − Imp) + Vmp] + ( dV

dI

∣∣∣
SCImp + Vmp)(

dV
dI

∣∣∣
SCIsc + Voc)

(90)

Rsh = −Rs −
dV
dI

∣∣∣∣∣
SC

(91)

Iph = Isc(1 +
Rs

Rsh
) (92)

a = (
dV
dI

∣∣∣∣∣
OC

+ Rs)(
dV
dI

∣∣∣∣∣
sc

Isc + Voc)

(
dV
dI

∣∣∣∣∣
OC
−

dV
dI

∣∣∣∣∣
sc

)
(93)

And
Isat = (Iph −VocRsh)/(exp(Voc/a) − 1) (94)

According to the actual measurement of a PV module, the I–V curve in the low- and high-voltage
zones is smooth and can be represented by straight lines therefore, the slopes of the straight lines can
be considered as the differential values of the I–V curve in the two zones as explained in [46], that is:

dV
dI

=
∆V
∆I

(95)

3.5. Method Five

This method which is also based on the manufacturer’s datasheet, uses a reduced set of
approximations compared to the previous analytical methods without increasing complexity by
incorporating two boundary conditions [40]. The first boundary condition is the derivative of the
power with respect to voltage, which is used to derive expressions for the series and shunt resistances.
The second condition is the slope at short-circuit point, which is used to estimate a value for the ideality
factor. Both boundary conditions contributed significantly to improving the accuracy of the parameter
extraction process [40].

Referring to Equation (3), the term [exp(IscRs/nVth)] is very close to unity and hence, the diode
current is very small when compared with either the SC current or the shunt resistance current and
hence, may be neglected [39,47,48]. This leads to:

Isc = Iph −
IscRs

Rsh
(96)
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Therefore, we can write for the photocurrent:

Iph = Isc
Rs + Rsh

Rsh
(97)

Substituting (97) in Equation (4), and neglecting the (−1) in the exponential term of the latter,
we have:

Isc
Rs + Rsh

Rsh
= Isat[exp(

Voc

nNsVth
)] +

Voc

Rsh
(98)

Solving for the saturation current:

Isat =
Isc(Rs + Rsh) −Voc

Rsh
exp(

−Voc

nNsVth
) (99)

Substituting equations (97) and (99) into Equation (5) and ignoring the (−1) in the exponential
term in the latter:

Imp = Isc
Rs + Rsh

Rsh
−

Isc(Rs + Rsh) −Voc

Rsh
exp(

−Voc

nNsVth
)[exp(

Vmp + ImpRs

nNsVth
)] −

Vmp + ImpRs

Rsh
(100)

Simplifying:

Imp =
IscRs + IscRsh −Vmp − ImpRs

Rsh
−

IscRs + IscRsh −Voc

Rsh
exp(

Vmp + ImpRs −Voc

nNsVth
)] (101)

This may be re-arranged as:

Imp = (Isc −
Vmp + ImpRs − IscRs

Rsh
) − (Isc −

Voc − IscRs)

Rsh
)[exp(

Vmp + ImpRs −Voc

nNsVth
)] (102)

Considering the equation for the derivative, Equation (6), at the MPP and using Equation (10),
we can write:

Imp

Vmp
=

Isat

nNsVth

(
1−

Imp

Vmp
Rs

)[
exp(

Vmp + ImpRs

nNsVth
)

]
+

[
1

Rsh
−

Imp

Vmp

Rs

Rsh

]
(103)

Substituting (97), (99) and (102) in (103):

Imp

Vmp
=

1
nNsVth

Isc(Rs + Rsh) −Voc

Rsh
(1−

Imp

Vmp
Rs)

[
exp(

Vmp + ImpRs −Voc

nNsVth
)

]
+

[
1

Rsh
−

Imp

Vmp

Rs

Rsh

]
(104)

Using Equations (97) and (102), we can re-write Equation (104) as:

Imp + Vmp

−
1

Rsh
−

( IscRsh−Voc+IscRs
nNsVtRsh

)
exp

(
Vmp+ImpRs−Voc

nNsVt

)
1 + Rs

Rsh
+

( IscRsh−Voc+IscRs
nNsVtRsh

)
Rs exp

(
Vmp+ImpRs−Voc

nNsVt

) = 0 (105)

From Equation (105), an expression for the shunt resistance may be obtained as follows:

Imp

[
1 + Rs

Rsh
+ (

IscRsh−Voc+IscRs
nNsVtRsh

)Rs exp
(

Vmp+ImpRs−Voc
nNsVt

)]
−

Vmp

[
1

Rsh

( IscRsh−Voc+IscRs
nNsVtRsh

)
exp

(
Vmp+ImpRs−Voc

nNsVt

)]
= 0

(106)
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Multiplying Equation (106) by Rsh and re-arranging:

RshImp + ImpRs+
Imp(IscRsh−Voc+IscRs)Rs

nNsVt
exp

(
Vmp+ImpRs−Voc

nNsVt

)
−Vmp−

Vmp(IscRsh−Voc+IscRs)
nNsVt

exp(
Vmp+ImpRs−Voc

nNsVt
= 0

(107)

Let x be defined as:

x =
Vmp + ImpRs −Voc

nNsVt
(108)

Hence, (107) becomes:

RshImp + ImpRs +
IscRsh
nNsVt

ImpRs exp(x) + (−Voc+IscRs)
nNsVt

ImpRs exp(x) −Vmp−

Vmp
IscRsh
nNsVt

exp(x) − (−Voc+IscRs)
nNsVt

Vmp exp(x) = 0
(109)

Simplifying:

RshImp +
IscRsh
nNsVt

ImpRs exp(x) − IscRsh
nNsVt

Vmp exp(x) =

Vmp +
(−Voc+IscRs)

nNsVt
exp(x) − ImpRs −

(−Voc+IscRs)
nNsVt

ImpRs exp(x)
(110)

Re-arranging:

Rsh[nNsVt Imp + IscImpRs exp(x) − IscVmp exp(x)] =

nNsVt Vmp − (Voc − IscRs)Vmp exp(x) − nNsVtImpRs + (Voc − IscRs)RsImp exp(x)
(111)

Solving for the shunt resistance

Rsh =
nNsVt (Vmp − ImpRs) − (Voc − IscRs)(Vmp − ImpRs) exp(

Vmp+ImpRs−Voc
nNsVt

)

[nNsVt Imp − (Vmp − ImpRs)Isc exp(
Vmp+ImpRs−Voc

nNsVt
)]

(112)

Using the definition of x in Equation (108), we can re-write Equation (102) as:

Rsh [(Imp − Isc) + Isc exp(x)] = (Voc − IscRs) exp(x) −Vm − ImpRs + IscRs (113)

Substituting the value of the shunt resistance from Equation (112) into Equation (113), we obtain:

nNsVt (Vmp−ImpRs)−(Voc−IscRs)(Vmp−ImpRs) exp(x)[Imp−Isc+Isc exp(x)]
[nNsVt Imp−(Vmp−ImpRs)Isc exp(x)]

= (Voc − IscRs) exp(x) −Vm − ImpRs + IscRs

(114)

Cross multiplying and simplifying, the above may be re-arranged as:

nNsVt(Vmp − ImpRs)(Imp − Isc) + nNsVtImpVmp + nNsVtI2
mpRs − nNsVtImpIscRs =

(Vmp − ImpRs)(Imp − Isc)(Voc − IscRs) exp(x) − nNsVt(Vmp − ImpRs)Isc exp(x)

+nNsVtImp(Voc − IscRs) exp(x) + (Vmp − ImpRs)VmpIsc exp(x)+

(Vmp − ImpRs)IscImpRs exp(x) − (Vmp − ImpRs)I2
scRs exp(x)

(115)
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The left-hand side of Equation (115) may be simplified to:

nNsVt(Vmp − ImpRs)(Imp − Isc) + nNsVtImpVmp+

nNsVtI2
mpRs − nNsVtImpIscRs = nNsVtVmp(2Imp − Isc)

(116)

The right-hand side of Equation (115) may be reduced to:

[
(VmpIsc + Voc(Imp − Isc))(Vmp − ImpRs) − nNsVt(VmIsc −VocImp)

]
exp

(
Vmp + ImpRs −Voc

nNsVt

)
(117)

Therefore, Equation (115) simplifies to:

exp(
Vmp + ImpRs −Voc

nNsVt
) =

nNsVtVmp(2Imp − Isc)

(VmpIsc + Voc(Imp − Isc)) (Vmp − ImpRs) − nNsVt(VmIsc −VocImp)
(118)

Combining Equations (102) and (118) an alternative expression for the shunt resistance is
obtained as:

Rsh =
(Vmp − ImpRs)(Vmp −Rs(Isc − Imp) − nNsVt)

(Vmp − ImpRs)(Isc − Imp) − nNsVt
(119)

Using the above expression for the shunt resistance, i.e., Equation (119), an expression for the
ideality factor can be derived as follows:

nNsVt =
(Vmp − ImpRs)(Vmp − (Isc − Imp)(Rsh + Rs)

Vmp − Imp(Rs + Rsh)
(120)

The expression in (15) may be re-expressed as:

Rsho
Rsh
− 1−

Rs

Rsh
+ (Rsho −Rs)

Isat

nVth
exp(

IscRs

nVth
) = 0 (121)

Simplifying, we obtain:

1
Rsh
−

1
(Rsho −Rs)

+
Isat

nVth
exp(

IscRs

nVth
) = 0 (122)

Ignoring the exponential term, we obtain:

Rsho = Rsh + Rs (123)

Substituting Equation (123) into Equation (120) we obtain the expression given in [40] as:

nNsVt =
(Vmp − ImpRs)(Vmp − (Isc − Imp)Rsho

Vmp − ImpRsho
(124)

Substituting Equation (124) into (118) we obtain an explicit and closed form expression for the
series resistance as:

Rs =
Vmp[α− β] + Vocβ

Imp[α+ β]
(125)

where

α = (Vmp + (Imp − Isc)Rsho) ln(
Vmp + Isc + (Imp − Isc)Rsho

Voc − IscRsho
) (126)

and
β = Vmp − ImpRsho (127)
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Finally, the gradients of the I–V curve at the SC and OC points may be estimated as [46]:

Rsho = Csh
Voc

Isc
(128)

and
Rso = Cs

Voc

Isc
(129)

where, for silicon, Csh = 34.49692 and Cs = 0.11175.

3.6. Method Six

This method presented a unique strategy for developing the analytical expressions required for
estimating the parameters of the SDM model [49]. The method is also based on using manufacturer’s
datasheet but does not require the slopes of the I–V curve. Two approaches are used in this method:
The first is based on developing a relationship between the modified ideality factor and the OC voltage
making use of the temperature coefficients of the voltage and current. The second approach depends
on the simplified Lambert-W function of the SDM model to estimate the parameters of the single-diode
equivalent circuit model [50].

Using the open-circuit voltage of Equation (4) and after neglecting the shunt resistance, a new
expression that connects the modified ideality factor and the open-circuit voltage at STC is given as:

δSTC =
astc

Voc,STC
=

1− TSTCµVoc

50.1− TSTCµIstc
(130)

The modified ideality factor is assumed to vary linearly with temperature but is independent of
insolation. For any arbitrary temperature, Equation (130) is adjusted as:

δ(T) =
a(T)

Voc(T)
= aSTC

Voc,STC

Voc

T
TSTC

(131)

Using (3), (4), (5), (8) and (130), the parameters of the SDM can be extracted numerically.
The method relies on using equations presented in [50], which correlate the maximum power point
with the SDM parameters using the Lambert W-function and properties of the ideal model to extract
the five model parameters as follows:

astc = δSTCVoc,STC (132)

Rs =
aSTC(wSTC − 1) −Vmp

Imp
(133)

Rsh =
aSTC(wSTC − 1)

(1− 1
wSTC

)ISTC − Im
(134)

Iph = (1 + Rs/Rsh)Isc (135)

Isat = Iph exp(−1/δSTC) (136)

where the parameter δSTC is estimated using Equation (130) and wSTC is given as:

wSTC = W
(
e

1
δSTC

+1
)

(137)

All the mathematical derivations of (130)–(137) can be found in references [49,50].
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4. Results and Discussion

To synthesize the results of the analytical methods described above, software has been developed
using MATLAB to extract the five parameters of the SDM model for different photovoltaic modules.
Similar software has also been developed to estimate the same parameters using two numerical methods:
the first uses Newton–Raphson algorithm and the initialisation provided in [34], whilst the second is
based on an iterative solution procedure [14]. In order to preserve generality when comparing various
methods, three photovoltaic modules of different PV technologies were used in the investigation:
The multicrystalline Kyocera KC200GT [51], monocrystalline Lorentz LC50-12M [52], and thin film
Sanyo 180BA19 [53]. The datasheet parameters of these test modules are summarised in Table 1.
The results for the analytical and numerical methods are shown in Tables 2–4. It is evident from Table 2,
that the reference results of the iterative [14] and the numerical method [34] are close as expected.
For the monocrystalline and thin-film PV modules used in this investigation, the Newton–Raphson
method failed to converge, see Tables 3 and 4, demonstrating the convergence difficulties that can
accompany numerical methods. From Tables 2–4, methods one and five outperform all other analytical
methods and are most accurate in the case of multi and monocrystalline technologies. These two
methods also offer simpler mathematical formulation. They both depend on the slope of the I–V curve
with the difference that method five uses the slope at the MPP for the main equation instead of the
slope at the open-circuit voltage point. Methods two and three showed degraded accuracy compared
to methods one and five and can result in higher and unrealistic values for the ideality factor when
used with thin-film technologies. These two methods have been formulated by neglecting some model
parameters to simplify the modelling process, resulting in higher than normal values for the ideality
factor. Method four suffers a noticeable inaccuracy in estimating the ideality factor and saturation
current for all three PV technologies. The values of the series and shunt resistances are also unrealistic.
Method six depends on a procedure that is entirely different to all other methods. It results in reduced
values of the ideality factor and saturation current. The value of the ideality factor is limited to 1± 5%.
The reduction in the ideality factor and the saturation current have an adverse effect on the accuracy of
estimating the values of the series and shunt resistances.

Table 1. Parameters for the Multi-crystalline (Kyocera KC200GT).

Datasheet KC200GT LC50-12M 180BA19

Parameters Multi-Crystalline Mono-Crystalline Thin Film

Isc(A) 8.21 A 3.2 A 3.65 A
Voc(V) 32.9 V 22.5 V 66.4 V
Imp(A) 7.61 A 2.9 A 3.33 A
Vmp(V) 26.3 V 17.2 V 54 V

µVoc
(V/◦C) −1.23 × 10−1

−7.88 × 10−2
−173 × 10−3

µIsc
(A/◦C) 3.18 × 10−3 2.88 × 10−3 1.01 × 10−3

Ns 54 36 96

Table 2. Parameters for the Multicrystalline (Kyocera KC200GT).

Method
Parameter

n Rs Rsh Isat Iph

Method 1 1.08317 0.27077 124 2.4885 × 10−9 8.22793
Method 2 1.81764 0 infinite 1.78074 × 10−5 8.21
Method 3 1.40991 0.19455 infinite 4.09919 × 10−7 8.21
Method 4 0.65008 0.39999 82.5508 1.14541 × 10−15 8.24978
Method 5 0.88423 0.38033 123.62 1.81544 × 10−11 8.23526
Method 6 1.00258 0.30567 130.466 4.43777 × 10−10 8.22924

Iterative [14] 1.3 0.2283 572.124 9.89443 × 10−8 8.21329
Numerical [34] 1.3405 0.2172 951.327 1.7097 × 10−7 8.2119
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Table 3. Parameters for the Monocrystalline (Lorentz LC50-12M).

Method
Parameter

n Rs Rsh Isat Iph

Method 1 2.0361 0.10045 206 2.0109 × 10−5 3.20156
Method 2 2.41979 0 ∞ 1.3832 × 10−4 3.2
Method 3 1.76187 0.4969 ∞ 3.24464 × 10−6 3.2
Method 4 0.79342 0.93255 105.70414 1.47618 × 10−13 3.22823
Method 5 1.24254 0.77359 205.22641 9.82922 × 10−9 3.21206
Method 6 0.99693 0.84024 125.53699 8.22168 × 10−11 3.22142

Iterative method [14] 1.2 0.784 186.40574 5.06574 × 10−9 3.21352
Numerical method [19] No convergence

Table 4. Parameters for the Thin film (Sanyo 180BA19).

Method
Parameter

n Rs Rsh Isat Iph

Method 1 0.55767 2.69004 2329 3.99938 × 10−21 3.65422
Method 2 2.06455 0 ∞ 7.9701 × 10−6 3.65
Method 3 2.11483 −0.09068 ∞ 1.08651 × 10−5 3.65
Method 4 0.95729 1.13544 313.85129 2.13594 × 10−12 3.6632
Method 5 1.95145 0.10657 2328.8934 3.71538 × 10−6 3.65017
Method 6 0.95589 1.41883 327.95525 2.1766 × 10−12 3.66579

Iterative [14] 1.8 0.27300 1181.56509 1.17348 × 10−12 3.65084
Numerical method [19] No convergence

However, it is a matter of fact that there are different combinations of the five parameters of
the SDM whose I–V curve pass through the same salient points (SC, OC, and MPP) which does
not necessarily imply that all these curves represent physical meaning [54]. Therefore, to verify the
performance of the analytical methods to represent the behaviour of PV modules, the characteristic
curves for the KC200GT module were plotted for different combination of parameters alongside
those obtained using numerical methods. For example, Methods one and five outperformed Methods
two and three for the parameter extraction process, however, they exhibited similar performance
to Methods one and five in presenting the characteristic curves as shown in Figures 5 and 6 under
STC conditions.

Figure 5. Comparison between the I–V (left) and P–V (right) curves obtained using Methods two and
three with those obtained using numerical method for the KC200GT module.
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Figure 6. Comparison between the I–V (left) and P–V (right) curves obtained using Methods one and
five with those obtained using numerical method for the KC200GT module.

Methods one and five exhibit similar performance, particularly in the higher current region of
the I–V curve since both are based on the slope of the I–V curve in this region as shown in Figure 6.
Method four slightly underestimates the I–V curve in the high current region, since it is derived on the
assumption of a flat line in this region, as shown in Figure 7.

Figure 7. Comparison between the I–V (left) and P–V (right) curves obtained using Method four with
those obtained using numerical method for the KC200GT module.

Method 6 demonstrated good agreement with the iterative method as illustrated in Figure 8.
All methods resulted in similar MPP except Method four which resulted in slightly higher peak power.
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Figure 8. Comparison between the I–V (left) and P–V (right) curves obtained using Method six with
those obtained using numerical method for the KC200GT module.

5. Conclusions

The paper presented a detailed mathematical analysis and comparative evaluation of the
performance of the commonly reported analytical methods for parameters extraction of the single-diode
model of a PV module. Six prevalent methods have been explored and deployed to extract the
parameters of three PV modules of different PV technologies. The extracted parameters were compared
with reference values extracted using numerical and iterative methods. It has been confirmed that
while some methods may not be the most accurate in extracting the parameters, e.g., Methods two and
three, they can still provide good agreement between their I–V curves and those obtained numerically.
The reduced accuracy of Method two in the parameter extraction process could be attributed to the
fact that it neglects the shunt resistance which can reduce the accuracy particularly at low levels of
insolation. Methods one and five use the slope of the I–V curve about the short-circuit point which
led to both methods having similar results. Method four resulted in slight overestimation in the high
current region of the I–V curve since it approximated the I–V curve by a straight line in this region to
simplify the model equations. Method six resulted in good agreement with the iterative I–V curve. It is
recommended that additional extensive investigation should study the dependence of the analytical
methods on the technology and different materials of PV modules.
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Nomenclature

a Modified ideality factor (a = nNsVth)
αIsc Temperature coefficient of the short-circuit current (A/◦C)

βVoc Temperature coefficient of the open-circuit voltage (V/◦C)

δ Coefficient for the single-diode model defined as a/Voc.
G Insolation (W/m2)
GSTC Insolation at standard test conditions (W/m2)
I Terminal current of a photovoltaic cell or module (A)
Imp Current at the maximum power point (A)
Isc Short-circuit current (A)



Energies 2020, 13, 4825 23 of 25

Isat Reverse saturation current (A)
Iph Photocurrent (A)
Iph,STC Photocurrent at standard test conditions (A)
k Boltzmann’s constant (1.38065× 10−23 J/K)
MPP Maximum power point
n ideality factor of a PV cell/diode
Ns Number of series-connected cells in a PV module
P Power (W)
Pmp Power at maximum power point (W)
PV Photovoltaic
q Electronic charge 1.602 × 10−19 (C)
Rs Series resistance of a photovoltaic module (Ω)
Rso The negative of the reciprocal of the slope of the I–V curve at the open-circuit voltage point
Rsh Shunt resistance of a PV module (Ω)
Rsho The negative of the reciprocal of the slope of the I–V curve at the short-circuit current point
SDM Single-diode model
STC Standard test conditions (Insolation = 1000 W/m2, air mass AM = 1.5, T = 25 ◦C)
T Temperature (k)
TSTC Temperature at standard test conditions (◦C)
V Terminal voltage of a PV module (V)
Vth Thermal voltage (V)
Voc Open-circuit voltage of a PV module (V)
Vmp Voltage at maximum power point (V)
Voc,STC Open-circuit voltage of a PV module at STC (V)
W Lambert-W function
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