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Abstract: CFD-DEM (computational fluid dynamic-discrete element method) is a promising approach
for simulating fluid–solid flows in fluidized beds. This approach generally under-predicts the granular
temperature due to the use of drag models for the average drag force. This work develops a simple
model to improve the granular temperature through increasing the drag force fluctuations on the
particles. The increased drag force fluctuations are designed to match those obtained from PR-DNSs
(particle-resolved direct numerical simulations). The impacts of the present model on the granular
temperatures are demonstrated by posteriori tests. The posteriori tests of tri-periodic gas–solid flows
show that simulations with the present model can obtain transient as well as steady-state granular
temperature correctly. Moreover, the posteriori tests of fluidized beds indicated that the present model
could significantly improve the granular temperature for the homogenous or slightly inhomogeneous
systems, while it showed negligible improvement on the granular temperature for the significantly
inhomogeneous systems.
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1. Introduction

Fluidized beds with fluid (gas/liquid)–solid flows are operating units adopted in chemical and
energy processes. In the past decades, the computational fluid dynamic (CFD) simulations have
become an effective tool in the study of fluid–solid flows in the fluidized beds. The predictability of
CFD highly depends on the constitutive models. Accordingly, much attention has been focused on the
development of models for CFD simulations with a higher level of accuracy.

In industrial applications, the most commonly used CFD simulation methods for fluid–solid flows
are TFM (two-fluid model) and CFD-DEM (computational fluid dynamic-discrete element method).
TFM treats both the fluid and solid phase as a continuum, thus the effective solid stresses due to particle
collisions are required [1,2]. While in CFD-DEM, the solid phases are considered as discrete entities
and the particle collisions are fully resolved [3,4]. Closure for fluid–particle interaction forces, such as
the drag force, unsteady interaction force, and lift force, are required in both TFM and CFD-DEM.
In general, the drag force plays a significant role in determining the hydrodynamics of the fluid–solid
systems [5].

The closures for the drag force have been studied by many researchers. In addition to the widely
used empirical correlations obtained from experimental studies [6–8], many correlations for the drag
force in the homogenous fluid-particle system have been proposed through PR-DNSs (particle-resolved
direct numerical simulations) over the last few decades [9–12]. Moreover, some researchers studied the
effect of granular temperatures on the drag force. In recent years, the significant deviation of individual
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particle drag force from the average drag force has been pointed out. The mean and maximum relative
deviation of the drag force can be as high as 25% and 40%, respectively, for randomly distributed
stationary particles [13]. It is reported that the largest drag force on an individual particle would be
twice the mean drag force calculated from traditional drag models [14].

The importance of capturing the particle velocity fluctuations was raised in predicting the
core-annular structure observed in riser flows [7,15]. Yu et al. [16] recently reported that it is necessary
to consider the fluctuations of the meso-scale drag force to attain correct granular temperature
in coarse-grid CFD-DEM simulations. Without the consideration of drag fluctuations, traditional
CFD-DEM simulations cannot correctly predict the magnitude of granular temperature even in the
homogenous systems. Akiki et al. [17] found that the individual drag is dependent on the local
structures of neighboring particles, and they proposed a pairwise interaction extended point-particle
model for the prediction of the drag force. The accuracy of their model deteriorates as the solid volume
fraction increases, and they used machine learning to predict the individual drag in moderate and
dense flows [18]. Ma et al. [19] adopted a second-order structure tensor to measure the local anisotropic
distribution of particles. However, their method only yields an averaged drag force for particles
in a computational cell. Tenneti et al. [20] gave a fundamental understanding of the generation of
the granular temperature and developed the Langevin model to correct the granular temperature
of the gas–solid system. Esteghamatian et al. [21] adopted time-series analysis methods to consider
the stochastic drag force. The integral time and deviation of the drag coefficient are required from
PR-DNS simulations.

Overall, the research on improving granular temperatures is still limited. The implementation of
most available models is complex or computationally expensive. In addition, it is noted that these
models do not utilize the existent drag force difference in the same cell in CFD-DEM. Based on available
PR-DNS data, we hypothesized that we could produce a correlation for the correct magnitude of the
drag force difference. Then, the obtained drag force difference in the cells in CFD-DEM could be
magnified to match the correct magnitude of drag force difference. Following this idea, in this paper,
a simple model is proposed to improve the granular temperatures through enlarging the existent drag
force difference on individual particles in the same computational cell.

The rest of the paper is organized as follows. In the next section, the model to enhance the drag
force fluctuations is presented based on the magnitude of the drag fluctuations obtained from PR-DNSs.
Then, posteriori validations of the proposed model on three different problems are implemented.
Finally, the conclusions are summarized.

2. Model to Improve the Granular Temperature

In this section, the relative deviation of the drag force in the homogenous system is obtained from
PR-DNSs performed by Huang et al. [13]. Then, a model to improve the granular temperature in
CFD-DEM simulations is proposed.

2.1. Mean Relative Deviation of the Drag Force in Homogenous Systems

The data from PR-DNSs performed by Huang et al. [13] were used in the present study. In their
simulations, the second-order accurate immersed boundary-lattice Boltzmann method (IB-LBM)
proposed by Zhou and Fan [22] was adopted. Flows past the randomly distributed particles with
various granular temperature were simulated. For the details of the PR-DNSs, the readers are
referred to Huang et al. [13]. The magnitude of the drag fluctuation, measured by the mean relative
deviation of the drag force, can be readily obtained from the PR-DNSs. The effects of φ (solid volume
fraction), Re (Reynolds number), and ReT (granular temperature-based Reynolds numbers) on the
mean relative deviation of drag force were considered. The mean relative deviation of the drag force,
σFd

, was defined as

σFd
=

1
3
〈
(Fd − 〈Fd〉) · (Fd − 〈Fd〉)

〉
/|〈Fd〉| (1)
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where Fd is the drag force on individual particles; the angular brackets denote the average over all
particles in the computational domain.

The Reynolds number, Re, is given as

Re = ρ f dp(1−φ)
∣∣∣u f − vp

∣∣∣/µ f (2)

where vp is the particle velocity, u f is the fluid velocity, dp is the particle diameter, and ρ f and µ f are
the fluid density and dynamic viscosity, respectively.

The granular temperature-based Reynolds number is the ratio between fluid viscous and inertial
force due to particle fluctuations, namely

ReT = ρ f dpT1/2/µ f (3)

where T is granular temperature and is defined as

T =
〈(

vp −
〈
vp

〉)
·

(
vp −

〈
vp

〉)〉/
3 (4)

In Huang et al.’s work [13], the PR-DNSs with six different solid volume fractions (φ = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6) were performed for six granular temperature-based Reynolds numbers (ReT = 0, 5, 8.66,
17.3, 26 and 34.6). The Reynolds number Re was varied from practically zero to approximately 120.
As ReT is much smaller than Re in the practical fluidized bed simulations [23], only the simulation setups
with ReT/Re < 0.5 were selected in this work. Based on the PR-DNS results, a simple correlation for
the mean relative deviation of the drag force, σdns

Fd
, was fitted, which is valid in the range 0.1 ≤ φ ≤ 0.6,

5 ≤ Re ≤ 120, 0 ≤ ReT/Re ≤ 0.5. The correlation for the mean relative deviation of the drag force is
given as

σdns
Fd

/σdns
Fd,ReT=0= 1.+k(ReT/Re)c (5)

σdns
Fd,ReT=0 = y0 + A exp(−Re/t) (6)

where σdns
Fd,ReT=0 is the mean relative deviation of the drag force when ReT= 0. The parameters k, c, y0,

A, and t are functions of the solid volume fraction and are listed below:

k = 5.471− 1.804 exp
(
−(φ− 0.528)2/0.0177

)
(7)

c = (0.859 + 9.26φ)/(1 + 5.366φ) (8)

y0 = (0.192 + 0.596φ)/(1. + 0.581φ) (9)

A = 0.0087− 0.6379φ+ 1.0851φ2 (10)

t = 14.7795 +
14.8826
π

/
[
4(φ− 0.4117)2 + 0.31042

]
(11)

The PR-DNS results and corresponding fitting curves calculated by Equations (5)–(11) are shown
in Figure 1. Figure 1a depicts that σdns

Fd,ReT=0 varies with Re at different φ. It can be seen that there is a

notable increase of σdns
Fd,ReT=0 with the increase of φ. Moreover, in most cases, σdns

Fd,ReT=0 increases with

increasing Re and it levels off at high Re. At φ = 0.6, we do observe a slight decrease of σdns
Fd,ReT=0 with

increasing Re. The reasons for this phenomenon are not clear. The fact that the trends of σdns
Fd,ReT=0

changing with Re are different between φ = 0.5 and φ = 0.6 makes the fitting much more difficult.
Hence, a relatively larger fitting error could be observed at φ = 0.5.
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Figure 1. Comparison of the mean relative deviation of the drag forces between the particle-resolved
direct numerical simulations (PR-DNSs) and fitting curves. (a) σdns

Fd,ReT=0 varies with Re at different
φ. The symbols denote PR-DNS results, and the fits of the PR-DNS results are represented by
the corresponding solid lines computed by Equation (6). (b) σdns

Fd
/σdns

Fd,ReT=0 varies with ReT/Re.

σdns
Fd

/σdns
Fd,ReT=0 is the ratio between the mean relative deviation of the drag force at arbitrary ReT and

that at ReT= 0 under the same solid volume fraction and Reynolds number. The symbols are from
PR-DNS simulations, and the fits of the PR-DNS results are represented by the corresponding solid
lines computed by Equation (5).

The effect of ReT/Re on σdns
Fd

/σdns
Fd,ReT=0 is shown in Figure 1b. It shows that σdns

Fd
/σdns

Fd,ReT=0 increases

with the increase of ReT/Re and the increasing rate increases gradually. Moreover, σdns
Fd

/σdns
Fd,ReT=0 first

decreases with the increase of the solid volume fraction and then increases slightly when the solid
volume fraction rises from 0.5 to 0.6. It should be noted that σdns

Fd
also increases with the increase of the

solid volume fraction. This trend is consistent with the observations made in Figure 1a for σdns
Fd,ReT=0.

Close observation shows that the scattering of PR-DNS results of σdns
Fd

/σdns
Fd,ReT=0 generally increases with

decreased solid volume fractions. This is understandable since the denominator σdns
Fd,ReT=0 significantly

decreases with decreased solid volume fractions (see Figure 1a). The small denominator tends to
magnify the scattering of the numerator.

2.2. Model to Enhance Granular Temperature in CFD-DEM Simulations

In CFD-DEM simulations, particles located in the same fluid grid experience different drag forces
due to the difference of the particle velocities, the local solid volume fractions, and local gas velocities.
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The drag force fluctuation of the particle in i direction, F′d,i, is

F′d,i = Fd,i − Fd,i (12)

where Fd,i is the average drag component in i direction (x, y or z direction) on the particles located
in the same computational grid. The overbar denotes the average in a computational cell. The drag
force fluctuation F′d,i obtained directly from CFD-DEM simulations is generally much lower than that
computed from PR-DNSs. To make the magnitude of F′d,i approach that from PR-DNSs, the modified
drag force fluctuation is calculated as follows

F′′d,i =

(
ei

√
Fd, j · Fd, j − ei

√
Fd, j · Fd, j

)
h + F′d,i (13)

ei = F′d,i/
∣∣∣∣F′d,i

∣∣∣∣ (14)

In Equation (13), the subscript j indicates Einstein’s summation convention; h is a parameter
that ensures the mean relative deviation of F′′d,i reaches the expected value σexp

Fd
. The calculation of

σ
exp
Fd

based on F′′d,i could be achieved by calculating Equation (1) in a computational cell. Note, σexp
Fd

is

usually about 0.4 ~ 0.8 times that of σdns
Fd

, which is obtained from PR-DNSs and could be computed

by Equation (5). The relationship of σexp
Fd

and σdns
Fd

will be given in the next subsection. Once σexp
Fd

is available, h becomes the only unknown parameter in Equation (13). The determination of h can
be achieved by simple iterative methods introduced in textbooks of numerical analysis, such as the
shooting method. The solution is believed to be converged when the relative difference between the
mean relative deviation calculated based on F′′d,i and σexp

Fd
is less than 1%. Setting the initial value of h

as unity, the shooting method usually converges rapidly in only several iterations. The converged h
usually attains the value ranging from 2 to 10, making the magnitude of F′′d,i generally much larger
than that of F′d,i. With the final value of h determined in the iteration, the modified particle drag force,

Fmodi f y
d,i , is calculated as,

Fmodi f y
d,i = Fd,i + F′′d,i (15)

Then, Fmodi f y
d,i will be imposed on particles to replace the originally obtained Fd,i in CFD-DEM

simulations. It is worthwhile to mention that the model proposed to obtain Fmodi f y
d,i is rotationally

invariant. This indicates that the same vector Fmodi f y
d can still be obtained even when the used

coordinates have an arbitrary angle with the original framework.

2.3. Determination of the Expected Mean Relative Deviation of the Drag Force

The abovementioned expected drag deviation σexp
Fd

is calculated through the following expression:

σ
exp
Fd

= cor · σdns
Fd

(16)

where cor is the correction coefficient. To obtain the correction coefficient, gas–solid flows suspended in a
tri-periodic domain are simulated using MFIX-DEM (https://mfix.netl.doe.gov/) [24]. The computational
domain is a cube with side lengths of L = 9dp. In these simulations, only one computational cell is
used, and the particle drag forces are given by Equation (15). The steady-state granular temperature is
obtained after the simulations reach thier statistical steady state. It should be noted that all the particles
in these simulations are fully elastic and hence the restitution coefficients for colliding particles are
set unity. Gas–solid flows with 100 ≤ ρs/ρ f ≤ 2000, 0.1 ≤ φ ≤ 0.4 and 10 ≤ Re ≤ 100 are simulated.
For a given set of ρs/ρ f , φ and Re, the correction coefficient, cor, is adjusted to ensure the steady-state
granular temperature attains the same value as that calculated by the formula proposed by Tenneti et

https://mfix.netl.doe.gov/
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al. [20]. Consequently, the correlation for the correction coefficient with ρs/ρ f , φ and Re is fitted and is
given as

cor = f
(
ρs/ρ f

)
g(φ)h(Re) (17)

f
(
ρs/ρ f

)
= 0.3 exp

(
−

(
ρs/ρ f

)
/495.3

)
+ 0.5 (18)

g(φ) = −1.039 exp(−φ/0.066) + 1.071 (19)

h(Re) = 0.272 exp(−Re/21.126) + 0.938 (20)

3. Posteriori Validations

This section is to assess the performance of the proposed model in improving the granular
temperature. In the MFIX code, the particle drag forces and the correction coefficient of the mean
relative deviation of drag force are given by Equations (15) and (17), respectively. Posteriori validations
on three different types of flows are performed: gas–solid flows in a tri-periodic domain, 3-dimensional
liquid–solid fluidized beds, and 3-dimensional gas–solid fluidized bed.

3.1. Gas–Solid Flows in a Tri-Periodic Domain

CFD-DEM simulations of gas–solid flows suspended in a tri-periodic domain were performed
over a wide range of solid volume fractions (0.1 ≤ φ ≤ 0.4), Reynolds numbers (10 ≤ Re ≤ 100),
and density ratios (100 ≤ ρs/ρ f ≤ 2000). The average drag model proposed by Tenneti et al. [11] was
used. Note that these PR-DNS results were used to attain the coefficient in Equation (16) in Section 2.3.
The simulations run for 100τp to achieve the statistical steady state and then run for another 100τp to

gain statistical values. τp is the particle time defined as τp = dp/
∣∣∣∣〈vp

〉
−

〈
u f

〉∣∣∣∣, where
〈
vp

〉
and

〈
u f

〉
are

the mean particle velocity and mean fluid velocity in the periodic domain, respectively.
The steady-state granular temperatures obtained from simulations are compared with those

calculated by the formula proposed by Tenneti et al. [20] in Figure 2. It can be seen that the
steady-state granular temperatures obtained from simulations agree with their formula very well.
This demonstrates the effectiveness of the proposed model in improving the prediction of granular
temperature in CFD-DEM simulations. Besides, the results show that the granular temperature scaled
by the slip velocity decreases with the increase of the solid–fluid density ratio, Reynolds number, and
solid–volume fraction. Close observation shows that the deviation between the proposed model and
CFD-DEM increased with decreased density ratio. This may be because the proposed formula of
the mean relative deviation of the drag force (Equations (5) and (6)) came from simulations of fixed
particles in which the Stokes number (St = Reρs/18ρ f ) was high. The observed deviation could be
explained considering that the Stokes number decreases with the decrease of density ratio. It is also
observed that the deviation between the proposed model and CFD-DEM slightly increased with a
decreased solid volume fraction. The physical reason for this is not clear. One possible reason is that
the proposed correction coefficients (Equation (17)) are not well fitted at small solid volume fractions.

The impact of the present model on the evolution behavior of granular temperature was also
evaluated. The evolution of granular temperatures under different initial granular temperatures were
compared with the transient PR-DNS results obtained in Tenneti et al. [20], and are shown in Figure 3.
The data from the case with ρs/ρ f= 100, φ= 0.1 and Re= 10 were selected as an illustrative example.
It can be seen that the evolution of granular temperatures from the CFD-DEM simulations with the
present model agrees favorably well with that from the PR-DNSs by Tenneti et al. [20]. Moreover, for
cases with different initial granular temperatures, the converged steady-state granular temperatures
from the present model reach almost the same value, which is very close to that obtained from the
PR-DNSs. It is noted that the granular temperature from traditional CFD-DEM simulation (without
the present model) decays to zero. Overall, this test showed that CFD-DEM with the present model
has the capacity to correctly produce the transient as well as the steady-state granular temperature in
small computational domains.
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Figure 2. Comparisons of the steady-state granular temperatures calculated by computational fluid
dynamic-discrete element method (CFD-DEM) simulations with the proposed model and those by
the formula from Tenneti et al. [20]. The granular temperature is scaled by the mean fluid-particle
slip velocity 〈W〉 =

〈
vp

〉
−

〈
u f

〉
, where the angular brackets denote the average over the system.

The solid–fluid density ratio for (a), (b), and (c) are 100, 500, and 1000, respectively. As the agreements
between scatters and lines were similar for the density ratios 2000 and 1000, the comparisons are only
shown for density ratio at 1000.
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Figure 3. Evolution of granular temperature predicted by CFD-DEM simulations with the proposed
model under different initial granular temperatures. ReT−initial is the initial granular temperature-based
Reynolds number imposed on the particles. For details of imposing initial granular temperature on the
particles, please refer to Huang et al. [13]. It should be noted that the scatters from CFD-DEM without
the new model for ReT−initial = 0.11 are not shown, as the corresponding granular temperatures were
too small.

3.2. Liquid–Solid Fluidized Beds

CFD-DEM simulations were performed for liquid-solid flows in bi-periodic fluidized beds
with periodic boundary condition imposed both in the x and y directions. In these simulations,
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the vertical direction is the z direction and the lateral direction is the x or y direction. The size of
fluidized bed was 15dp in the vertical direction and 8dp in the both lateral directions. The liquids
were uniformly injected from the bottom of the beds with inlet velocity Uin, while the top of the beds
was imposed by the constant pressure boundary condition. The simulation parameters are listed in
Table 1. The computational grid size of 2dp was selected in the following simulations. Following the
suggestion of Esteghamatian et al. [5], model B was adopted in the present CFD-DEM simulations.
The details of the difference between models A and model B in the CFD-DEM simulations was not the
focus of the present study and hence will not be explained here. The interested reader can refer to
Zhou et al. [25]. The bounding cube (BC) scheme [26] was used to map information from particles to
the computational grid and vice-versa. The average drag model proposed by Beetstra et al. [9] was
used in the following simulations.

Table 1. Simulation parameters of liquid–solid fluidized beds.

Simulation Parameters Values

Domain size Lx × Ly × Lz 8dp × 8dp × 15dp
Inlet velocity Uin/Um f 2.0, 3.0, 4.5, 5.5

Inlet Reynolds number Rein = ρ f Uindp/µ f 4.0, 6.0, 9.0, 11.0
Inverse Froude number Fr = gdp/Uin 24.5, 10.9, 4.8, 3.2

Solid-fluid density ratio ρs/ρ f 10.0
Stokes number St = ρsdpUin/18µ f 2.2, 3.3, 5.0, 6.1

Total number of particles Np 512

Note: µ f is the dynamic viscosity of liquid. Um f is the minimum fluidized fluid velocity derived from Gidaspow [7].

The evolution of granular temperature in the main and lateral flow directions of the CFD-DEM
simulations were compared with the PR-DNS results from Esteghamatian et al. [21]. The granular
temperature in the main and lateral directions are defined as

Tz =
〈(

vp,z −
〈
vp,z

〉)
·

(
vp,z −

〈
vp,z

〉)〉
(21)

Tx =
〈(

vp,x −
〈
vp,x

〉)
·

(
vp,x −

〈
vp,x

〉)〉
(22)

where the main flow direction (vertical direction) is along the positive z axis. The flows in this fluidized
bed are statistically the same in the x and y directions, so only the granular temperature in the x
direction was selected. vp,z and vp,x are particle velocities in the z and x directions, respectively.

The evolutions of granular temperatures under various inlet Reynolds numbers are shown
in Figure 4. It can be seen that the granular temperature from CFD-DEM without the proposed
model decays to very small values after the systems reach their steady states, while the granular
temperatures from CFD-DEM with the proposed model are significantly improved. Close observation
shows that, compared with the PR-DNSs, CFD-DEM simulations with the proposed model
overpredict/underpredict the granular temperature at low/high inlet Reynolds numbers.
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At relatively small Reynolds numbers (Re = 4), the proposed model over-predicts the granular
temperature. This may be because Equation (16) over-predicts the expected drag deviations. After all,
the proposed drag deviations are developed based on simulation results from nearly homogeneous
systems. They are expected to work well only for the homogenous gas–solid systems in Section 2.3.
Nevertheless, compared to the traditional CFD-DEM, the CFD-DEM with the proposed model
significantly improves the prediction of granular temperature. At relatively high Reynolds numbers,
the proposed model under-predicts the granular temperature. This is because the inhomogeneity
becomes important at relatively high Reynolds numbers. In Figure 4, it is obvious that the ratio of the
steady-state granular temperature in the vertical direction to that in the lateral direction increases with
increasing Reynolds number. This indicates that the inhomogeneity of the flows would increase with
the increase of Reynolds number. A smaller computational grid size is required to resolve the existing
inhomogeneity. The computational grid size of 2dp used in this work was not sufficient for resolving
the inhomogeneity. Thus, the unresolved inhomogeneity leads to the under-prediction of the granular
temperature at relatively high Reynolds numbers.

3.3. Gas–Solid Fluidized Beds

CFD-DEM simulations were performed for gas–solid flows in bi-periodic fluidized beds with
periodic boundary conditions imposed both in the x and y directions. In these simulations, the vertical
direction was the z direction and the lateral direction was the x or y direction. The size of the fluidized
bed was 50dp in the vertical direction and 10dp in the both lateral directions. The gas was uniformly
injected from the bottom of the beds with inlet velocity Uin, while the top of the beds was imposed by
the constant pressure boundary condition. The computational grid size was 2dp and the bounding
cube (BC) scheme was used. The simulation parameters are listed in Table 2. The simulations ran for
200τp to reach a steady-state and ran another 500τp to obtain statistical results.

Table 2. Simulation parameters for gas–solid flows.

Uin/Umf Rein Fr ρs/ρf St Np

2 25 0.49 85 118 2000

In Table 3, the steady-state granular temperatures of the CFD-DEM simulations are compared with
those of the PR-DNS results [21]. It can be seen that the magnitude of the granular temperature without
the present model would be under-predicted in both directions. Moreover, with the present model, the
granular temperature was under-predicted in the vertical direction while it was over-predicted in the
lateral direction. The present model only showed better performance in terms of the average granular
temperature of three directions. On the whole, the CFD-DEM simulation with the present model
performs as well as but not better than that without the present model. This may be because of the
existence of significant inhomogeneity in the gas–solid flows, which was mentioned in Esteghamatian
et al.’s work [21]. The PR-DNS results in Table 3 show the granular temperature in the vertical direction
is around three times that in the lateral direction. This also indicates the significant inhomogeneity in
the flows. As explained in Section 3.2, the unresolved inhomogeneity would lead to under-prediction
of the granular temperature.

Table 3. Comparisons of the steady-state granular temperature between CFD-DEM simulations and
PR-DNSs [21].

Simulation Cases 〈
√

Tx〉t/Uin 〈
√

Tz〉t/Uin (2〈
√

Tx〉t+〈
√

Tz〉t)/3Uin

PR-DNS 0.11 0.36 0.19
CFD-DEM without model 0.09 (−15%) 0.16 (−57%) 0.11 (−40%)

CFD-DEM with model 0.14 (+27%) 0.14 (−62%) 0.14 (−27%)

Note: The angular brackets with subscript “t” denote the average over time. The PR-DNS results are the averaged
value of the square root granular temperatures from Esteghamatian et al.’s work [21]. The values in the brackets are
the relative errors compared with the PR-DNS results.
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4. Conclusions

CFD-DEM generally under-predicts granular temperature due to the use of the average drag force.
To improve the prediction of granular temperature, the present work proposed a model to enhance
the drag force fluctuations on particles (see Equation (15)). The mean relative deviations of the drag
force from PR-DNS simulations were calculated and used as a reference to determine the modified
drag force.

The present model was implemented in the MFIX-DEM software. To assess the impact of the
present model on the CFD-DEM simulations, three types of fluid–solid systems were tested. In the
systems of gas–solid flows suspended in a tri-periodic domain, the steady-state granular temperatures
calculated by CFD-DEM agree favorably well with the formula proposed by Tenneti et al. [20]. Besides,
the evolution of the granular temperature also matches the transient solution from PR-DNSs [20].
For the liquid–solid systems, the CFD-DEM without the present model significantly under-predicts
the granular temperatures, and there is an appreciable improvement of the granular temperatures
when the present model is used. It was also found that the inhomogeneity increases with an increasing
Reynolds number and the unresolved inhomogeneity would lead to the under-prediction of the
granular temperature. Though the agreement with PR-DNS results [21] was not as good as that in the
first validation case, the effectiveness of the present model in improving the prediction of granular
temperature was also demonstrated. For the gas–solid systems, CFD-DEM simulation with the present
model was unable to a give better performance than that without the present model. This may also
be because of the existence of the significant inhomogeneity. In conclusion, CFD-DEM with the
proposed model is able to consider the effect of the unresolved drag force fluctuations on the granular
temperature, while the effect of the unresolved inhomogeneity on the granular temperature cannot
be considered.

Overall, the present study shows that granular temperature calculated from CFD-DEM simulations
could be profoundly improved through simply magnifying the existent drag force fluctuation on
different particles in the same computational cell. Future studies should be focusing on further
improvement of the proposed model. For example, the estimation of the coefficients in Equation
(17) in a wider range of density ratios and solid volume fractions. Additionally, the present model
should be further validated in relatively large-scale applications. Considering that the computational
domain of the PR-DNSs from which the drag fluctuations were calculated is limited, more PR-DNSs
in relatively large-scale domains should be performed to provide accurate drag fluctuations in
nonhomogeneous structures.
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