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Abstract: In recent years, many buildings have been fitted with smart meters, from which
high-frequency energy data is available. However, extracting useful information efficiently has
been imposed as a problem in utilizing these data. In this study, we analyzed district heating smart
meter data from 61 buildings in Copenhagen, Denmark, focused on the peak load quantification in
a building cluster and a case study on load shifting. The energy consumption data were clustered
into three subsets concerning seasonal variation (winter, transition season, and summer), using the
agglomerative hierarchical algorithm. The representative load profile obtained from clustering
analysis were categorized by their profile features on the peak. The investigation of peak load
shifting potentials was then conducted by quantifying peak load concerning their load profile types,
which were indicated by the absolute peak power, the peak duration, and the sharpness of the peak.
A numerical model was developed for a representative building, to determine peak shaving potentials.
The model was calibrated and validated using the time-series measurements of two heating seasons.
The heating load profiles of the buildings were classified into five types. The buildings with the hat
shape peak type were in the majority during the winter and had the highest load shifting potential in
the winter and transition season. The hat shape type’s peak load accounted for 10.7% of the total
heating loads in winter, and the morning peak type accounted for 12.6% of total heating loads in the
transition season. The case study simulation showed that the morning peak load was reduced by
about 70%, by modulating the supply water temperature setpoints based on weather compensation
curves. The methods and procedures used in this study can be applied in other cases, for the data
analysis of a large number of buildings and the investigation of peak loads.
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1. Introduction

Energy-saving and energy decarbonization have become part of energy strategies in many
countries, as part of climate change mitigation efforts. In Demark, the electricity and heating should
be 100% covered by renewable energy by 2035 [1]. The report launched by the Danish Commission
on Climate Change Policy in 2010 stated that, by 2050, an energy system independent of fossil fuels
is achievable in Denmark without high costs [2]. Such targets require imperative paradigm shifts to
integrate energy systems and optimal operation on both energy supply and demand sides.

Buildings account for 40% of energy consumption in developed countries [3]. In Scandinavian
countries, heating needs account for a large share of energy consumption. And in city area, district
heating system (DH) cover 70–90% of the heating needs [4]. DH can play an essential role in the future
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smart energy system, because of its flexibility in using various forms of energy sources [5]. The heating
demand varies conspicuously in a day and consists of two parts, namely the baseload and the peak
load. The heat in Greater Copenhagen (Copenhagen metropolitans) is currently produced by two types
of heat generation plants owned by the utilities: baseload boilers and peak load boilers. The baseload
boilers cover the continuous heat demand throughout the day. They are constituted by the waste
incineration plants, geothermal plants, and biofuel based combined heat and power plants (CHP)
in Greater Copenhagen. In comparison with the baseload, peak loads are fluctuating, and typically
occur in the early morning between 06:00–09:00 [6] when occupants start their morning activities
simultaneously in the residential buildings, and when the service systems in public/commercial
buildings are rebooted. During the peak load hours, peak load boilers need to be used for heat
production. However, the peak load boilers are mainly based on fossil fuels, such as natural gas and
oil, which cause considerable CO2 and particle emissions. On the demand side, high return water
temperature from the buildings can cause penalties to the heat consumers in the building, if the cooling
effect does not fulfill the requirements by the utility companies. Therefore, the benefit of shifting
the peak loads is twofold: contributing to the decarbonization of DH and reducing the economic
expenditure for heat consumers.

Load shifting can be achieved by reducing the peak load and shifting the peak demands to off-peak
periods, thereby flattening the heat consumption profile. It can contribute to reducing the electricity
bill by 20–25%, based on several techniques [7]. The studies of load shifting strategies in the electricity
market are antecedent, and were summarized into three categories by Uddin et al. [8] Namely, the
integration of energy storage system (ESS), demand side management (DSM), and the integration
of electric vehicle (EV) to the grid. The former two strategies are also feasible to alleviate peak load
issues in DH, and commonly supplement each other. The integration of ESS generally consists of
two solutions. One is to implement additional heat storage units based on latent heat storage and
thermochemical storage [9]. Christian et al. [10] investigated the potential to release power flexibility
by utilizing thermal energy storage, such as different tanks in the power-to-heat system. However, this
needs additional capital investment and is also limited by the availability of spaces. Another solution
is to utilize the building thermal mass capacity, combined with the control strategies applied to the
demand side [11]. It is shown that the thermal storage capacity of buildings can contribute considerably
to the residential demand side management [12]. Favre et al. [13] addressed the importance of thermal
mass in the role of load shifting by the optimal control of electrical heating systems. Implementing
DSM through changing control strategies, for example, the optimal rescheduling of building heating
systems [14,15], model predictive control (MPC) based on energy price [16] and efficiency of DH
network [17]. In addition, the integration of heat pump coupled with DSM is also a promising approach
for heating load shifting [18,19].

In recent years, conventional mechanical meters are being replaced by smart meters, from which
real-time data regarding various attributes on both supply and demand sides are available. Data
can be recorded in a short time-frequency (1–60 min), and transmitted to the service providers or
consumers concurrently. This is of significance to enable utilities to monitor the status of energy
networks and to provide researchers a new opportunity for a better understanding of consumer
behavior [20], recognizing energy consumption patterns, detecting and diagnosing malfunctions,
and further optimizing energy production and distribution [21], for example, using the statistical
method and artificial neural network (ANN) to recognize energy patterns and automatically detect
fault operations in a smart building cluster [22]. In Denmark, a large number of smart meters have
been deployed in the energy network, especially in DH substations. It implies that hourly metering
data for energy, water flowrate, and supply and return temperature are accessible. These data give us
the possibility to extract information, such as energy consumption patterns, through data analysis. It is
believed that, based on comprehensive data analysis, we can improve the design and operation of
energy systems on both the supply and demand sides.
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Machine learning is a commonly used data analysis technique. In general, machine learning
methods can be divided into three categories, i.e., predictive method (supervised learning), descriptive
method (unsupervised learning), and reinforcement learning [23]. Supervised machine learning mostly
relies on the historical measured data, which are used to develop black-box models to predict future
energy consumption (profiles), e.g., by using ANN [24] or applying a linear prediction model for
MPC [25]. However, it requires a large amount of historical data to be adequately trained, and the
results sometimes are absent with physical meaning [26].

Unlike supervised learning processes merely to predict the associated response between output
with inputs, unsupervised learning pertains to discovering associated relationships between the
inputs [27]. Unsupervised learning is often subjective and in need of beforehand domain knowledge.
It can be classified into five categories: clustering, novelty detection, motif and discord detection, rule
extraction, and visual analytics [28]. Among which, clustering analysis is rated as the most popular
techniques, as it is less time-consuming and requires less human supervision [29]. Clustering has
served as a powerful method to discover varied energy patterns from time-series energy consumption
data [30,31], as it has been documented in [32] that the heating load has distinct daily and seasonal
variation. Besides, the results of clustering can also be employed as pre-processed information for other
analysis techniques. For example, Carmo et al. [33] and Gianniou et al. [34] used the clustered energy
pattern for further logit regression analysis, to discover the factors influencing heat consumption in
dwellings. Yang et al. [35] proposed a novel clustering algorithm that improves the accuracy of the
prediction model by clustering more accurate energy patterns. Xue et al. [21] utilized the results of
clustering to provide guidance for fault detection at DH substations.

The quantification of total peak loads of a building cluster and its corresponding load shifting
potential, based on meter data, is still an area that needs more investigation. The present study aims to,
first, analyze the smart meter data collected from DH substations of the typical municipal buildings in
Copenhagen, using clustering analysis to identify typical load profiles and quantify peak loads; second,
for typical load profiles with peaks, determine peak shifting potential using building simulations. As an
example of the second aims, load shifting strategies are simulated using a model of a representative
building developed based on time series measurements in two heating seasons, to show the possibilities
to employ flexibility control in heat substations. The novelty of this study lies in: (1) categorizing
heating load profiles base on the sharpness and duration of their peaks; and (2) quantifying the overall
peak loads of a large number of buildings and their peak shaving potentials. In this paper, Section 2
demonstrates the data analysis procedures, the peak identification and quantification method, and
the numerical model and simulation scenarios employed in this study. The results and discussions
of the data analyses and the outputs of the simulations are described in Section 3. Conclusions are
summarized in Section 4.

2. Methodology

The workflow of the load profile categorization and the investigation of peak load shifting
potential based on a case study building is as follows:

(1) Data cleaning, including removing missing values and outliers and transforming the datasets
into the appropriate form for the clustering analysis.

(2) Applying hierarchical clustering analysis to typical daily heating load profiles. Based on the
clustering analysis results, we defined the peak load threshold to identify the peak load and
categorize the load profiles based on the occurrence of the peak. Furthermore, peak quantification
was conducted, based on the categorization of the load profiles. This is discussed in detail in
Section 2.2, “Categorization of daily load pattern using clustering analysis, peak identification
and peak load quantification”.

(3) Finally, as an example, we investigated the load shifting potential of one representative building,
using a numerical model developed based on the building time-series measurement data. Dymola
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was used for modeling and simulation. R language was used for all data processing and
analyses [36].

2.1. Description of Data

2.1.1. Data Source—Description of DH Substations

The data used for the present study were collected from the DH substations of 61 municipal
buildings located in Copenhagen, Denmark. The functions of the selected buildings are shown in
Table 1.

Table 1. The distribution of the building functions.

Building Function Number

Daycare center 38
Inpatient institution 10

Teaching and researching facility 7
Others 6

Heating substations are instantaneous heat exchanger systems connected to the DH network as the
heat source for buildings. The substations consist of a primary side, i.e., the DH grid, and a secondary
side, i.e., heating systems in buildings. Figure 1 shows a schematic view of a typical configuration
of the DH substation. There are at least two loops on the secondary side, i.e., one or more than one
loops for space heating (SH), depending on the building size, one loop for domestic hot water (DHW)
preparation, and in some buildings, one or more loops for ventilation systems. All 61 substations are
equipped with smart control systems, which target the secondary side supply water temperature as
the control output by adjusting the water flow rate on the secondary side, according to a predefined
weather compensation curve (WCC). The supply water temperature on the primary side is controlled
by the utility, based on the regional heat demand and the weather of the day. It usually ranges from
60–110 ◦C during the year. In Greater Copenhagen, the DH supplies heat for DHW preparation all year
round and for SH in heating seasons, which is usually from mid-September to mid-May of the next
year (ca. 242 days). All the meters installed in the substation are smart meters, from which real-time
data are recorded, with an hourly interval on both the primary side and the secondary side. The data
can be accessed via the data management systems for the utility and the municipality.
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2.1.2. Dataset Characteristics

On the primary side, the data collection varied from one to two years. Table 2 lists the monitored
attributes, which are identical in every substation.

Table 2. The measured attributes of data on the primary side.

No. Attribute Unit

1 Datetime yyyy-mm-dd hh:mm:ss
2 Energy MWh
3 Cumulative flow m3

4 Supply water temperature ◦C
5 Return water temperature ◦C

On the secondary side, data are recorded and stored in the same format as those on the primary
side. As all the smart control systems were installed in 2017, the measurement started on 1 July 2017,
until the present. The monitored attributes on the secondary side are tabulated in Table 3.

Table 3. The measured attributes of data on the secondary side.

No. Attribute Unit

1 Datetime yyyy-mm-dd hh:mm:ss
2 Supply water temperature of loop i ◦C
3 Supply water temperature setpoint of loop i ◦C
4 Return water temperature of loop i ◦C
5 Return water temperature setpoint of loop i ◦C
6 Ambient temperature ◦C

2.2. Categorization of Daily Load Pattern Using Clustering Analysis, Peak Identification and Peak
Load Quantification

2.2.1. Categorization of Daily Load Pattern Using Clustering Analysis

The efficiency of clustering can be improved by data normalization, and the results of clustering
strongly depend on the data normalization method, as normalization eliminates redundant data, and
data on different scales. Z-Score normalization is commonly used in time series clustering analysis
for energy consumption data [22,37]. The Z-Score standardizes the heat consumption data which is
structured as each hour as a column and each day as a row. As a result, the normalized datasets are
subject to standard normal distribution. The normalization is calculated with Equation (1):

zi =
xi − µ

σ
(1)

where, xi and zi denote the original value and the normalized/standardized value, µ denotes the mean
of the dataset, and σ denotes the standard deviation of the dataset.

The basic principle of clustering analysis is maximizing the dissimilarities between different
clusters, while minimizing them within the same cluster. Normally, the pairwise distance or
(dis)similarity is computed using a specific distance-based metric, and such a method strongly
influences the goodness of the clustering quality. The commonly employed distance calculation
methods include Euclidean distance, Manhattan distance, and correlation-based distances [38]. In this
study, Euclidean distance is used, which is expressed in Equation (2).

decu(x, y) =

√√ n∑
i=1

(xi − yi)
2 (2)
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where, x and y are two data observations containing n attributes.
Hierarchical clustering is widely used among researchers in engineering. The most applied

hierarchical clustering algorithm is agglomerative clustering, also known as AGNES (agglomerative
nesting). This algorithm regards each observation as an individual cluster, and then merges the most
similar clusters, until all clusters have been merged into one big cluster containing all observations. This
strategy is denoted as the “bottom-up” approach [39]. Therefore, besides the distance measurement
between observations, the (dis)similarity between clusters needs to be computed, to decide which
clusters should be divided or merged. Agglomeration methods include complete linkage, single
linkage, average linkage, centroid linkage, and Ward’s minimum variance method. It is found that, for
the present analysis, Ward’s minimum variance method always yields the best results among others.
It minimizes the total within-cluster variance, as at each step, the pair of clusters with minimum
between-cluster distances are merged.

Hierarchical clustering was performed using the hourly heat demand data. Several tests for
obtaining the optimal number of clusters were conducted. The goodness of clustering results was
evaluated using the silhouette width and Dunn index [38]. It was found that clustering the dataset into
three seasonal subsets always yielded the most rational cluster results. Therefore, in this study, all the
datasets were clustered into three groups using the agglomerative hierarchical method, namely,

• winter season, from mid-November to mid-March;
• transition season, from mid-March to mid-May and mid-September to mid-November;
• summer season, from mid-May to mid-September.

2.2.2. Peak Identification and Quantification

In order to identify the peak from the load profile, a threshold of the heat load magnitude has to
be defined. Different methods were used in previous studies to define the threshold, e.g., analyzing
the local maxima/minima and define the threshold as the valley value before the highest maxima [40];
define the threshold by the difference between upper and lower loads [41]; using the values of the
peak region relative to the mid-day load [42], etc. Zheng et al. [43] introduced the method to define
different thresholds for different seasons. It is common in existing methods to use daily average energy
load as the threshold to define peaks. However, using such methods, buildings without considerable
peaks will also be included. Thus, in the current study, a new peak threshold (Pthd) is defined when the
heating load exceeds the daily average heating power by 15%.

In order to perform the cross-comparisons among all the buildings, the identified peaks were
further quantified, using two features to describe the shape of the peak load profile: the duration
(tpeak), as shown in Figure 2 and the magnitude of the peak load (ε). Equation (3) expresses how ε
is calculated:

ε =
Pmax − Pthx

Pthd
(3)

where, Pthd (kW) denotes the threshold for a heating load to be a peak load. Pmax denotes the maximum
heating load.

2.3. Evaluation of Peak Load Shifting Potential

2.3.1. Model Description and the Case Building

A daycare center (tpeak = 10 h, ε = 13.5%) was selected for load shifting modeling. The building
has three floors and a total heated floor area of approx. 900 m2. It was constructed in 2005 and uses
radiation system supplies by the district heating network. The material of the wall is brick, and the
roof is covered by roofing felt. The exterior view of the building is shown in Figure 3. The secondary
side of the substation consists of two SH loops and one DHW loop. The modeling of the DH substation
was carried out in Modelica using a Dymola programming environment. The component models were
selected from the LBL Buildings Libraries [44] and Modelica standards.
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2.3.2. Model Calibration and Validation

The thermal zone model was calibrated using the 4-month measured data from November 2018 to
February 2019. The calibration process consisted of two steps. First, the supply water temperature and
the water flowrate from the real-time measurement data of SH and DHW loops, as well as the monitored
outdoor temperature, were prescribed in the model as inputs. Then, the thermal conductance, the
thermal capacity, the system nominal flow rate, and the heating power of the radiators were adjusted,
until the simulated energy consumption data matched the measured values without compromising
indoor thermal comfort. It was found that when the thermal conductance is 650 W/K, and the thermal
capacity is 1255 kJ/K, the simulated energy consumption had a similar profile to the measurement data.
Figure 4 shows an example of a 3-month comparison from December 2018 to February 2019, between
the simulated results and the measurements.
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The accuracy of the simulation method was measured by the coefficient of variation of the root
mean squared distance (CV(RMSD)), see Equation (4),

CV(RMSD) =
RMSD

y
=

(
∑n

i = 1(yi − ŷi)
2/n)

0.5

y
(4)

where, yi is the observed values from the measurements, ŷi is the simulated values, n is the number of
variable observations and y is the mean of the observed time series. A lower CV(RMSD) indicates a
higher accuracy of the simulation method and vice versa. Table 4 lists the CV(RMSD). The low CV
value indicates that the thermal zone model has been calibrated.

Table 4. CV(RMSD) of heat consumption in model calibration and validation.

Model Calibration
and Validation

Calibration of the Thermal
Zone Model (4 Months)

Calibration of System
Operation (4 Months)

Model Validation
(5 Months)

CV(RMSD) 0.126 0.198 0.204

In addition to the thermal zone, the system operation should also be calibrated. In this step, we
used the measured supply water temperature setpoints and return water temperature setpoints as
inputs, and use a P controller regulating the SH water flowrate. The system calibration was based
on the calibrated thermal zone. The P controller was tuned until the simulated energy consumption
profile matched the measured data, while the room temperature was maintained within the thermal
comfort range. Figure 5 shows an example of a 3-month comparison of simulated and measured heat
consumption from December 2018 to February 2019. The CV(RMSD) of this step is shown in Table 4.
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after calibrating the system operation.

For the validation of the model, 5-month measured data from November 2017 to March 2018 were
used. Figure 6 shows a 3-month comparison between the measured and simulated heat consumption
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from December 2017 to February 2018. The CV(RMSD) value in Table 4 indicates that the model can
reproduce the actual energy consumption profile with a decent level of confidence.
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Figure 6. An example of a 3-month comparison between measured and simulated heat consumption in
the model validation.

2.3.3. Load Shifting Scenarios

As all the investigated buildings are municipal buildings that rarely have evening peak loads, the
focus of load shifting is thus on reducing morning peak loads occurring at 06:00–09:00. The supply
water temperature for SH in the analyzed buildings is controlled by the predefined WCCs. The WCCs
were obtained from the measurements and shown as the two reference curves in Figure 7 for the
modeled building. To obtain these two separated curves from recorded data points (black dots in
Figure 7), model-based clustering was applied. This method made the shape of the cluster explicit by
assigning the probabilistic model to fit the data [45]. Subsequently, linear regression was applied to
acquire the functions of two weather compensation curves, as shown in Figure 7. It was found from
the dataset that night setback was applied in the building, and the two curves modulated the supply
water temperature for 06:00–17:00 (working hours) and 18:00–05:00 (off-work hours), respectively.
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Figure 7. Weather compensation curves for the ref. case and scenario 2 (S2) as an example.

The morning peak load shifting can be achieved by preheating the building before the occurrence
of the morning peak. In this study, the load shifting strategies were only applied and simulated to
the SH circuit. The load shifting was carried out by increasing the supply water temperature setpoint
and/or prolonging the preheating duration before 06:00, while reducing the setpoint during the morning
peak hours without compromising indoor thermal comfort. Specifically, the slope and the intercept of
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the two weather compensation curves were adjusted from the reference curves. To reduce the supply
water setpoint at the same ambient temperature, we either decreased the intercept or increased the
slope of the WCCs. Three scenarios were designed and simulated, with variable preheating setpoints,
preheating periods, and morning setpoints, as shown in Table 5. The percentage of hours under
thermal discomfort condition was maintained to be no more than 5% in all scenarios, according to
DS/EN 15,251 Annex G for kindergarten Category II that defined the room temperature in the heating
season as 20 ± 2.5 ◦C [46].

Scenario 1 (S1) was designed to reduce the morning (06:00–9:00) setpoints, while keeping the
setpoints the same as the reference case during other hours. It utilized the night setback, which has
already been implemented in the original control strategy. In S2 and S3, the setpoint was lowered
during the morning peak hours (06:00–09:00), by reducing the intercept by 7 ◦C compared to the
reference scenario. The variation between S2 and S3 was the preheating duration, as the preheating
began at 04:00 for S2 and 03:00 for S3. The supply water temperature setpoints were higher in S2 than
S3, to ensure the room temperature within a comparable range. Figure 7 shows the WCCs of S2 as an
example. In all scenarios, during the period outside the preheating hours and peak hours, the setpoints
were kept identical to the reference ones.

Table 5. Functions of weather compensation curves for all scenarios.

Scenario Period Time
Function of Supply Temperature Setpoints for SH Loop

T2s,SH,sp =

Ref.
Working 06:00–17:00 −1.42Tamb + 57.1
Off-work 18:00–05:00 −1.72Tamb + 51.1

S1 Peak hours 06:00–09:00 −1.43Tamb + 51.8
S2, S3 Peak hours 06:00–09:00 −1.42Tamb + 50.1

S2 Preheating 04:00–05:00 −1.72Tamb + 63.1
S3 03:00–05:00 −1.72Tamb + 61.1

2.3.4. Performance Assessment

The effects on the load shifting of different scenarios were assessed using the indicators below,
including the reduction of peak load (∆Qpeak) and the increment of energy consumption during
preheating hours (∆Qpreh) in comparison to the reference case. They were used to describe the change
of the energy consumption; load shifting factor (LSF) was used to measure the balance between the
energy added for preheating the building and the energy reduced from the peak hours, as described in
Equation (5); the morning peak load reduction rate in Equation (6) describes the reduction in energy
use in morning peak hours in comparison to the reference case. Similarly, the load increasing rate
in Equation (7) describes the extra energy use for preheating in preheating hours compared to the
reference case; the increment of energy use at 10:00 (rebound effect) as to the reference case is described
in Equation (8).

LSF =

∣∣∣∆Qpeak
∣∣∣− ∆Qpreh∣∣∣∆Qpeak
∣∣∣+ ∆Qpreh

(5)

Morning Peak load reduction rate =
∆Qpeak

Qpeak,re f
× 100% (6)

Preheating load increasing rate =
∆Qpreh

Qpreh,re f
× 100% (7)

Rebound e f f ect =
∆P10,S

P10,re f
× 100% (8)

where, ∆Qpreh denotes the difference of heat consumption during preheating hours between the
individual scenarios and the reference; ∆Qpeak denotes the difference in heat consumption during
peak hours (in this case study, this is at 06:00–09:00, between the individual scenarios and the
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reference); ∆Qpeak_6−9 denotes the difference in peak load at 06:00–09:00, between the individual
scenarios and the reference; P10,re f denote the heating power at 10:00 for the reference case; ∆P10,S
denotes the difference in the heating power at 10:00 between the individual scenarios and the reference.
The subscript of ref is the corresponding absolute value of the reference case. LSF ranges between
−1 and 1. If the additional energy added during the preheating period is identical to the reduced
energy consumption during peak hours, LSF is 0. The extreme values of LSF = 1 means that morning
heating load is shaved without preheating, and LSF = −1 means that there is no morning heating load
reduction, even with preheating. The optimal operation being when LSF→ 1 , namely the peak load is
eliminated without preheating the building.

3. Results and Discussions

3.1. Clustering Results

For every building, the daily heating profiles were clustered into three clusters, which show
distinct seasonality. As examples, the clustering result of the case study building is shown in Figure 8.
For each cluster, a representative profile curve was formed by applying the median on the daily heating
demand profiles in this cluster. Figure 9 presents three representative profiles of the three clusters,
which are the median profiles of individual clusters. It is better to use median values than mode or
mean values, because the underlying distribution is not normal [47]. Winter profile contained the
coldest months of the year, with the highest heating power and an apparent variation between daytime
and nighttime; in the cluster of the transition season, the heating power was much lower, and the
variation between daytime and nighttime was not as noticeable as in winter. With the DHW demand
as the only heat demand in the summer, the heating load was the lowest and flattest.
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3.2. Results of Heating Load Profile Categorization and Peak Identification

For each building, the categorization of the heating load profiles was performed for winter and
transition season, based on the Pthd defined in Section 2.3.2. Overall, five peak profile types were
classified for the winter and transition season among 61 buildings. Figure 10 presents the typical
features of each type:

• Hat shape type, which has continuous high heat consumption during the daytime. The heat
consumption during night and evening is stable and relatively low.

• Morning peak type, which has a noticeable short-term morning peak load occurring at 06:00-09:00.
After that, the heat consumption reduces to a lower and stable level until the evening, when the
substation is switched into night setback operation. The peak duration is much shorter compared
with the hat shape.

• Morning and afternoon peak type, which has not only morning peaks, but also several additional
peaks occurring in the afternoon. Typically, the highest peak is the first one in the morning.

• Morning and evening peak type, which has peaks during the evening period in addition to the
morning peak.

• No peak, which has no peaks in the hourly heating profile of the day.
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Figure 10. Typical hourly heating load profiles of each peak profile type. (a) Hat shape type; (b) Morning
peak type; (c) Morning & afternoon peak type; (d) Morning & evening type; (e) No peak type.

Table 6 lists the distribution of the buildings in each peak type for the winter and transition season.
In both the winter and transition season, most of the shape type lies in the morning peak. Hat shape
and morning and afternoon type are the second-largest profile groups in winter and transition season,
respectively. From the results, no correlation was found between the buildings’ functionality and the
peak type of the profile.

Table 6. Distribution of buildings of each peak profile type.

Profile Type in Winter Daycare Nursing Home Teaching Others Sum

Hat shape 14 0 0 0 14
Morning 9 1 5 4 19

Morning and afternoon 10 2 0 0 12
Morning and evening 2 1 0 0 3

None 3 6 2 2 13
Sum 38 10 7 6 61

Profile Type in the Transition Season Daycare Nursing Home Teaching Others Sum

Hat shape 3 0 0 0 3
Morning 20 7 7 5 39

Morning and afternoon 13 1 0 0 14
Morning and evening 1 1 0 0 2

None 1 1 0 1 3
Sum 38 10 7 6 61

3.3. Peak Load Quantification

Table 7 shows the results of the sum of peak loads for 61 buildings with different peak types in
2018. In the winter of 2018, the profiles with hat shape have the peak load (Qpeak) of 353.3 MWh and
account for 43.7% of the total peak loads, and 10.7% of the total heating demand of all types (

∑
Qtotal).
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The amount of peak load in the morning peak profile follows the hat shape with 200.2 MWh, and
accounts for 6.1% of the total heating demand in the winter of 2018. In the transition season of 2018,
the heating consumption during peak hours was dominated by the morning peak type of the profile by
the value of 338.0 MWh, and accounts for 52.8% of the total peak loads and 12.6% of the total heating
demand. The morning and afternoon profiles have similar peak loads in both winter and transition
season at approx. 160 MWh. The ratio of the peak load over total heating demand of its own type
(Qtotal) can indicate the potential in terms of implementing load shifting strategies. From which, the
buildings with hat shape profile type process a significant potential in both winter and transition
season by a high ratio of approx. 55%. Morning and afternoon and morning and evening profile types
also have considerable potential in applying load shifting strategies. Overall, the total peak loads were
808.0 MWh in the winter and 639.9 MWh in the transition season in 2018, and both account for approx.
24% of the total heating demand, respectively.

Table 7. Peak load quantification and the load sifting potential, based on categories in the winter and
transition season of 2018.

Profile Type in Winter Qpeak (MWh) Qtotal (MWh)
Qpeak

Qtotal
(%)

Qpeak∑
Qtotal

(%)

Hat shape 353.3 642.7 55.0 10.7
Morning 200.2 1673.9 12.0 6.1

Morning and afternoon 167.5 687.8 24.4 5.1
Morning and evening 87.0 286.8 30.3 2.6

Sum of all types 808.0 3291.2 - 24.5

Profile Type in the Transition Season Qpeak (MWh) Qtotal (MWh)
Qpeak

Qtotal
(%)

Qpeak∑
Qtotal

(%)

Hat shape 73.8 136.1 54.2 2.8
Morning 338.0 1997.4 16.9 12.6

Morning and afternoon 156.7 384.1 40.8 5.9
Morning and evening 71.4 160.2 44.6 2.7

Sum of all types 639.9 2677.8 - 23.9

Figure 11 shows the distribution of peak types. In the winter, the bottom part is where the
buildings with the morning peak type and the morning and afternoon peak type are distributed; the
peak durations (tpeak) are less than 6 h and the peak sharpness (ε) is of a broad range from approx. 0%
to 48%. At the right upper part, where the buildings with the hat shape peak type are distributed, ε
ranges from 10% to 48% and tpeak is all above 6 h. It indicates that the hat shape peak typically has
a sharper shape and longer duration. In the transition season, phenomena can be observed, as the
buildings with the morning peak are still concentrated mainly at the left bottom part. In addition to
these, the overall peak duration in the transition season is shorter, but ε is larger compared with the
winter. This is because the baseload in transition season is lower than that in the winter. Additionally,
the peak load quantification results reveal that more attention should be paid to the hat shape type,
especially in the winter. This is the reason that a daycare center with the hat shape peak (tpeak = 10 h,
ε = 13.5%) was selected for load shifting modeling.
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3.4. Peak Load Shifting Potential

Table 8 shows the simulation results of three load shifting scenarios throughout the simulation
period, from January 2018 to March 2018. Compared to the reference model, which has an average room
temperature during working hours at 19.3 ◦C, all three scenarios sacrifice the room temperature for
less than one degree, to the level of 18.5 ◦C, which still complies with the DS/EN 15,251 standard [46].

The morning peak load was shifted/reduced effectively, and the peak load reduction rate in
morning peak hours was 68.7–70.2% in all scenarios in comparison to the reference, as shown in Table 8
Simulation results of load shifting scenarios during the winter of 2018. The rebound effect appeared
in all scenarios when the temperature setpoints changed to normal after peak hours. In S1, without
preheating, the peak load (Qpeak) was reduced by 68.7%, and the heating power was increased by 16%
at 10:00 after the morning peak hours caused by the rebound effect. The morning peak load could be
reduced by around 70% when preheating was implemented. S1 is preferable because of the highest
LSF and a high peak load reduction rate.
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Among the scenarios that applied with preheating strategies, S2 was of the highest LSF and
highest morning peak reduction rate. The longer preheating period led to the smaller LSF because
of a more considerable heat loss during the longer the preheating period. Compare S2 with S3; it
can be observed that the increased preheating load is less “sharper” when the preheating period is
longer since the setpoint for preheating is lower, which is indicated by the load increasing rate in
preheating hours in Table 8. Overall, the energy consumption during morning peak hours for the
reference scenario in 50 weekdays in winter 2018 was 4.27 MWh, and it could be reduced by 2.16 MWh
by applying S1, and by 2.45 kWh by applying S2–S3.

Table 8. Simulation results of load shifting scenarios during the winter of 2018.

Scenarios

Peak Load
Reduced in

Morning
Peak Hours

(∆Qpeak)
(MWh)

Increased
Load in

Preheating
Hours

(∆Qpreh)
(MWh)

Peak load
Reduction

Rate in
Morning

Peak Hours
(%),

Equation (6)

Load
Increasing

Rate in
Preheating
Hours (%),

Equation (7)

Rebound
Effect after
Peak Hours

(%),
Equation (8)

LSF (-),
Equation (5)

Ref. 0 0 0.0 0.0 0.0 -
S1 2.16 0 −68.7 0.0 16.1 1.00
S2 2.46 0.76 −70.2 32.6 20.2 0.53
S3 2.45 0.81 −70.0 23.6 20.1 0.50

4. Conclusions and Discussion

Smart metering systems have been commonly deployed in DH networks and substations in
Denmark, resulting in a large amount of data being available for analysis. In this study, the energy
consumption data from the DH substations of 61 municipal buildings were analyzed using clustering
analysis techniques. All the datasets were clustered into three clusters. The representative profiles
obtained from clustering analysis were categorized by the peak occurrence of the profile curves.
Furthermore, the peak loads were quantified using the duration and the sharpness of the peak with
regard to different categorizations. To investigate the potential of peak load shifting, a numerical
model of a representative building was developed, based on time-series measurements. The main
conclusions are:

1. The energy consumption profiles were categorized into five types in the winter and transition
season. Most of the buildings had the hat shape peak type during the winter and the morning
peak type during the transition season. No correlation was found between the function of the
buildings and the peak type.

2. For the analyzed 61 buildings, the total peak loads were 808.0 MWh in the winter and 639.9 MWh
in the transition season in 2018. The hat shape type’s peak load was predominating in the winter
with 353.3 MWh, and accounted for 55% of the total peak loads. In the transition season, the
morning peak type was the majority with a peak load of 338.0 MWh and accounted for 52.8%
of the total peak loads. In the winter and transition season, the peak load accounted for 24% of
total heating consumption. The buildings with the hat shape profile have been shown to have a
notable potential for load shifting.

3. For the modeled building with a hat shape profile, the morning peak was reduced by about 70%
in all scenarios, by implementing the proposed load shifting strategy. It was shown that the
energy consumption during morning peak hours could be reduced by between 2.2 MWh and
2.5 MWh during the 50 weekdays in the winter. For the investigated building, the optimal start
time of preheating was 2 h before the morning peak.

The results have shown that the seasonal operational patterns can be identified effectively using
the clustering analysis technique. The median pattern of each cluster can be used to identify and
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quantify peak loads. One limitation of this study is that only one building is modeled to test the effect
of different load shifting scenarios. Therefore, the simulation result is too specific to be generalized.
However, the proposed control strategy was shown to be effective for load shifting in this type
of buildings. This strategy has the potential to be implemented in the existing DH substations by
easily adjusting the weather compensation curves. It should be mentioned that the standard DS/EN
15,251 used in this study is replaced by DS/EN 16798-1:2019, which changes the indoor temperature
recommendation (category II) from 17.5–22.5 ◦C to 20.0–24.0 ◦C. The load shifting results in this study
are still valid regardless of this change, since the historical data used for modelling was collected
during the time the previous standard was complied. In future studies, more load shifting strategies
should be investigated in more building types with different energy consumption patterns, as well as
the fact that the load shifting investigation should be based on the updated data and standard.
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Nomenclature

Indices, Parameters and Variables
xi origin value
zi normalized value
µ mean of dataset
σ standard deviation of dataset
ε indicator for peak load magnitude quantification
Pmax maximum heating power of a load profile (kW)
Pthd threshold for peak load of a load profile (kW)
P10 heating power at 10:00 (kW)
Qpeak heating load during peak hours (kWh)
Qtotal total heating load of the day (kWh)
Qpreh heating load during preheating hours (kWh)

∆Qpreh
increased heating load during preheating hours in scenarios compared with the reference
case (kWh)

∆Qpeak
reduced heating load during morning peak hours in scenarios compared with the reference
case (kWh)

Si scenario i
tpeak peak load duration of a load profile (h)
T2s,SH,sp secondary side space heating supply water temperature setpoints (◦C)
Tamb ambient temperature (◦C)

Abbreviations

CV(RMSD) Coefficient of variation of the root mean squared distance
DH District heating
DSM Demand side management
DHW Domestic hot water
LSF Load shifting factor
SH Space heating
WCCs Weather compensation curves
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Subscripts

ref reference case
S scenarios
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