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Abstract: Thermochemical Energy Storage (TCES), specifically the calcium oxide (CaO)/calcium
hydroxide (Ca(OH)2) system is a promising energy storage technology with relatively high energy
density and low cost. However, the existing models available to predict the system’s internal
states are computationally expensive. An accurate and real-time capable model is therefore still
required to improve its operational control. In this work, we implement a Physics-Informed Neural
Network (PINN) to predict the dynamics of the TCES internal state. Our proposed framework
addresses three physical aspects to build the PINN: (1) we choose a Nonlinear Autoregressive
Network with Exogeneous Inputs (NARX) with deeper recurrence to address the nonlinear latency;
(2) we train the network in closed-loop to capture the long-term dynamics; and (3) we incorporate
physical regularisation during its training, calculated based on discretized mole and energy balance
equations. To train the network, we perform numerical simulations on an ensemble of system
parameters to obtain synthetic data. Even though the suggested approach provides results with
the error of 3.96 × 10−4 which is in the same range as the result without physical regularisation,
it is superior compared to conventional Artificial Neural Network (ANN) strategies because it
ensures physical plausibility of the predictions, even in a highly dynamic and nonlinear problem.
Consequently, the suggested PINN can be further developed for more complicated analysis of the
TCES system.

Keywords: physics inspired neural network; physics-based regularisation; artificial neural network;
nonlinear autoregressive network with exogenous input (NARX); thermochemical energy storage

1. Introduction

1.1. Thermochemical Energy Storage

Energy storage systems have become increasingly important in the shift towards renewable energy
because of the fluctuation inherent to renewable energy generation [1,2]. Thermochemical Energy
Storage (TCES) stores and releases energy in the form of heat as chemical potential of a storage material
through a reversible endothermic/exothermic chemical reaction. TCES is favourable compared to
sensible and latent heat storage [3–5] because it features a high energy density, low heat losses and the
possibility to discharge the system at a relatively high and constant output temperature [6].

Numerous studies have been conducted on thermochemical energy storage in different
materials, including calcium oxide [3,6], manganese oxide [7,8], barium oxide [9], zinc oxide [10],
cobalt oxide/iron oxide [11], strontium bromide [12], calcium carbonate [13] and many more.
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In general, the chemical processes occurring on the storage material can be classified into: redox of
metal oxides, carbonation/decarbonation of carbonates and hydration/dehydration of hydroxides [14].
The choice of materials depends on many criteria, one of which is the application of the energy storage.
For example, in integration with Concentrated Solar Power (CSP) plants, manganese oxide is not
suitable because of its high reaction temperature [6,15]. Another important aspect to consider is the
practicability of the process; for example, in a calcium carbonate system, CO2 as the side effect of the
reaction has to be liquefied and results in a high parasitic loss [6,14]. Additionally, there are many
more criteria to consider, such as cyclability, reaction kinetics, energy density and, most importantly,
safety issues. For comprehensive reviews of varying storage materials, we refer to [14–16].

Recently, experimental investigations have been conducted specifically for the calcium oxide
(CaO)/calcium hydroxide (Ca(OH)2) system. One experiment investigated the material parameters
(such as heat capacity and density) and the reaction kinetics [17], another experiment focused
on studying the operating range, efficiency and the cycling stability of the system [18], and there
was also an experiment on the feasibility of integration with concentrated solar power plants [19].
All these experiments show that CaO/Ca(OH)2 is a very promising candidate as TCES storage
material. Furthermore, it is more attractive compared to other storage materials because it is nontoxic,
relatively cheap and widely available [20,21]. The system stores the heat (is charged) during the
dehydration of Ca(OH)2 by injecting dry air with higher temperature. Charging results in an
endothermic reaction along with the formation of H2O vapour and lower temperature at the outlet.
It releases the heat (is discharged) during the hydration of CaO. This is achieved by injecting air with
higher humidity (H2O content) and relatively lower temperature, resulting in an exothermic reaction
(see Figure 1). Note that in this case, the hydration process occurs at lower temperature relative to
the dehydration process, but both processes occur at high operating temperature [22]. The reversible
reaction is written as:

Ca(OH)2 + ∆H ⇀↽ CaO + H2O. (1)

(a)Dehydration process

(b)Hydration process

Figure 1. A simplified schematic of a Thermochemical Energy Storage (TCES) system with
CaO/Ca(OH)2 as the storage material during (a) dehydration and (b) hydration process.

A robust operational control of this system needs an accurate and real-time capable model to
predict its state of charge and health. Similar models are operationally used, namely for batteries in
mobile devices [23,24]. Accordingly, numerical TCES modelling studies were conducted to predict
the system’s behaviour [6,18,20,21,25]. However, the PDEs that describe the system are dynamic,
highly nonlinear and strongly coupled, making the numerical simulation computationally expensive.
This poses a significant hindrance on a more thorough and complex analysis of the TCES system.
Estimation of the system’s state of health, for example, requires a 2D or 3D model to study the effect of
the structural change due to agglomeration [26]. With increasing spatial dimension, the computational
time also increases strongly. Consequently, the system is not ready yet for commercial and industrial
use until a faster and accurate model is developed. In this work, we consider using Artificial Neural
Network (ANN) as a cheaper alternative to the expensive existing models.
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1.2. Physics-Inspired Artificial Neural Networks

Artificial Neural Networks (ANNs) have been studied and applied intensively in the past few
decades. They have become very popular alongside linear regression and other techniques such
as Gaussian Process Regression (GPR) and Support Vector Machine (SVM) [27]. ANNs have advantages
in terms of their flexibility and better applicability to model nonlinear problems compared to linear
regression and GPR [28]. Additionally, it has better scalability to larger data compared to SVM [29].
However, a detailed performance comparison of ANN with other machine learning techniques is out
of the scope of this paper.

ANNs have a wide range of applications, such as image and pattern recognition,
language processing, regression problems and data-driven modelling [30]. In this paper, we focus
on data-driven modelling, where an ANN is trained to predict the physical behaviour of a TCES
system based on available data. ANNs have been used for data-driven modelling in different fields.
In hydrology [31], ANNs have been successfully applied, for example to predict rainfall-runoff [32,33],
groundwater levels [34] and groundwater contamination [35] . Moreover, ANNs have been used in
energy system applications [36], for example to predict the performance of [37], reliability of [38] and
design [39] renewable energy systems . All these examples show that ANNs have a potential to be a
quick decision making tool which is useful for many engineering and management purposes.

In previous applications of ANNs in data-driven modelling, the ANN was treated as a black
box [40,41] that learns only the mathematical relationship between the input and output. In such
a process, the physical relationships and scientific findings that were previously used to build
governing equations of the modelled systems are completely neglected. This issue is very troublesome
and needs to be addressed because real data are noisy with measurement errors, and fitting the
ANN to the noisy data without any physical constraint might lead to overfitting problems [30].
Additionally, in many cases, observation data is difficult and expensive to obtain, providing users with
only a limited amount of data to train the ANN. Without any physical knowledge, ANNs perform
poorly when trained with a low amount of data [42,43]. Furthermore, ANNs have a very poor
interpretability [44,45], meaning that there might be different combinations of ANN elements (width,
depth, activation functions and parameters) that fit the training data with similar likelihood, but not
all of them are physically meaningful and robust. As a result, ANN predictions might be misleading.

Implementing physical knowledge to build the ANN structure and regularisation is a potential
solution to solve this issue. By combining a black box model with a white box (fully physical) model,
we obtain a grey box model. In such an approach, physical theories are used in combination with
observed data to improve the model prediction and plausibility [46]. Moreover, the data will help to
include complex physical processes that may not be captured in currently existing white box models.
There are at least two motivations to do so: to obtain a reliable surrogate model for the physics-based
model for the sake of speed in real-time environments and to address situations where the underlying
physics of the system are incompletely understood, so that ANNs can build on, and later exceed,
the current state of physical understanding.

Several works have been conducted to develop the so-called Physics Inspired Neural Networks
(PINN). In general, PINNs can be grouped into two distinguishable motivations as mentioned above.
The first one applies ANNs to infer the parameter values in the governing Ordinary Differential
Equations (ODEs) or Partial Differential Equations (PDEs) as well as the constitutive relationships and
the differential operators [43,47], assuming that the ODEs or PDEs perfectly describe the modelled
system. The second one treats the system as a complex unit that is not sufficiently represented only
with simplified equations. It trains the ANN based on observation data while constraining the ANN
using physically-based regularisation [42,48,49]. We aim mostly at the second motivation and ask
ourselves how much of the useful knowledge contained in the PDEs can be used to inform ANNs
before proceeding to train them on observation data.

Despite the success of PINN implementations in this direction, there are still some open issues that
need to be addressed: (I) There is no well-defined alignment between the structure of the governing
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equations with the structure of the ANN. For example, most, if not all of the applications are for
dynamic systems. Nevertheless, the structures of the ANNs applied do not resemble the dynamic
behaviours of the systems and do not consider recurrency. (II) The focus in PINN development is more
on getting high accuracy with limited amount of training data rather than improving the physical
plausibility of the predictions. (III) The implementations of PINNs in previous works are mainly
for relatively simple problems, and implementation to more complex problems (featuring multiple
nonlinear coupled equations) has not been evident yet. In our current study, we address these three
open issues.

1.3. Approach and Contributions

For dynamic and complex systems with coupled nonlinear processes such as the TCES system,
we need an advanced approach to solve it using ANNs. Our approach implements physical knowledge
of the system into building the ANN such as: (I) we use a Nonlinear Autoregressive Network with
Exogeneous Inputs (NARX) structure. This is a form of Recurrent Neural Network (RNN), and we use
deeper recurrence to account for the system’s long-term time scales and nonlinear dynamics; (II) we
train the network with recurrence structure to improve the long-term predictions in the dynamic
system; and (III) we add physical regularisation terms in the objective function of training to enforce
physical plausibility of the predictions.

NARX is suitable to model time series of sequential (time-dependent) observations y(t) [50,51],
which are equispaced time series. There are several reasons why NARX is preferable to alternative
ANN structures: the included feedback loop in NARX enables it to capture long-term dependencies [34]
and the possibility to provide exogenous inputs improves the results compared to networks without
them [52]. Thinking in terms of PDEs, the exogeneous inputs resemble time-dependent boundary
conditions, and the feedback provides access to preceding time steps of the PDE solution. With deeper
recurrence, even integro-differential equations can be resembled, which is important for hysteretic
systems or for system descriptions on larger scales.

There are two different methods to train NARX, namely Series-Parallel (SP, also known as
open-loop) and Parallel (P, also known as closed-loop). In SP training, each time step in the time
series is used as an independent training example. This means the recurrency in the ANN structure is
ignored, and the preceding data values from the time series are provided as feedback inputs instead
of the predicted values. The feedback loop is closed only after completing the training to perform
multistep ahead predictions [52,53]. The independency of the training examples makes the training
much easier; however, the trained network performs much worse after closing the feedback loop [52].

Most, if not all studies conducted with NARX have used SP structure to train the network. In this
paper, we argue that P training resembles the dynamic system better. The reason is that P training
optimizes the ANN exactly for the later prediction purpose over longer time horizons: it accounts for
error propagation over time and for the time-dependency of the predictions between time steps. As a
downside, it requires more time to train the network in P mode. We are readily willing to accept this
trade-off, because once trained, the network can still calculate its outputs in high speed [54]. We also
propose to use a deeper recurrency to train the network by feeding back predictions of multiple
preceding time steps. This accounts for the nonlinearity of the system and for possible higher-order
memory effects in the system. In terms of PDE-governed systems, this corresponds to the time delay
between system excitations at one system boundary and the system’s reaction at a remote boundary.

Regularisation in training ANNs is useful to prevent overfitting. Here, as an addition to the
commonly used L2 regularisation, simple regularisation terms are added that align with the physics.
Several examples include, but are not limited to, monotonicity and non-negative values (examples
in this case are volume and mole fractions) of the internal states. This follows the works presented
in [46,55]. We suggest to use Bayesian Regularisation (BR) to optimally calculate the hyperparameters
(normalising constants) of all terms in the loss function, unlike in previous works, where the
hyperparameters were calibrated manually. Furthermore, regularisation terms with discretized balance
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equations are also used. This regularisation is a way to feed the training with fundamental human
knowledge previously used to build PDEs. It helps the network realise the extensive relationships
between inputs (previous states and boundary conditions) and outputs (future states of the system) in
complex problems and to prevent physically implausible predictions.

To test our ANN framework, a Monte Carlo ensemble of numerically simulated time series of
system states is used, which we generate from random samples of uncertain system parameters.
White noise is then added to the simulation results to emulate the actual noisy measurement data.
Then, this ensemble (both parameters and time series) is used to train the network. We use synthetic
data instead of experimental data because the former allow more exhaustive and controlled testing;
this does not imply that our main purpose is only surrogate modelling. As optimization algorithm for
training, the Levenberg–Marquardt (LM) algorithm [56–58] is implemented to obtain an optimum set
of NARX parameters (which consist of the so-called weights and biases).

This paper is organised as follows: in Section 2 we introduce the governing equations used for
numerical simulation of the TCES internal states, the alignment between the dynamic of CaO/Ca(OH)2

and the NARX structure, as well as how we implement the physical knowledge into the regularisation.
In Section 3, we discuss the results of our test, and Section 4 concludes the findings in the work.

2. Materials and Methods

2.1. Governing Equations

This study serves as an initial step towards enabling a more complex analysis of the TCES
system, focusing on predictions of the system’s dynamic internal states that change during the
endothermic/exothermic reaction process. The analysis of the system’s integration with the energy
source is out of scope of this paper.

To set up the prediction model, we consider the CaO/Ca(OH)2 TCES lab-scale reactor of
80 mm length along the flow direction as described in [20]. Assuming the system properties and
parameters to be homogeneous, the simulation was conducted in 1D. The system was modelled
as a nonisothermal single-phase multicomponent gas flow in porous media with chemical reaction
acting as the source/sink terms and can be described using mole and energy balance equations.
The inlet temperature and outlet pressure were fixed and defined with Dirichlet boundary conditions,
and Neumann conditions were used to define the gas injection rates. The solid components forming
the porous material are CaO and Ca(OH)2, and the gases are H2O and N2. The latter serves as an inert
component to regulate the amount of H2O mole fraction in the injected gas. Full explanation in detail
can be found in [20], and we offer a brief overview only in this section.

The mole balance equation was formulated for the solid component (subscript s) as:

∂ρn,sνs

∂t
= qs, (2)

where ρn denotes the molar density, ν the volume fraction, q the source/sink term, t the time and the
subscript n refers to molar properties. Note that νs is the volume fraction of each solid component
with regard to the full control volume, and therefore ∑s νs = 1− φ. In Equation (2), there is no effect
of advection or diffusion (no fluxes) because the solid is assumed to be immobile. The change of
solid component is solely caused by the chemical reaction through the reaction source/sink term qs,
assuming the solid is immobile. The change in the gas component (subscript g), however, is affected
both by advective and diffusive mass transfer and by a source/sink term for the reactive component
H2O, as is defined in the mole balance equation:

∂ρn,gxgφ

∂t
−∇.

(
ρn,gxg

K
µ
∇p + Dρn,g∇xg

)
= qg. (3)
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Here, x denotes the molar fraction, φ the porosity, K the absolute permeability of the porous
medium, µ the gas viscosity, p the pressure and D the effective diffusion coefficient.

The energy balance equation was formulated assuming local thermal equilibrium. It accounts for
internal energy change of both solid and gas phase, convective and conductive heat flux as well as
source/sink term from the reaction. It was defined as:

∂ρm,gugφ

∂t
+ ∑

s

∂(νsρm,scp,sT)
∂t

+∇.
(

ρm,ghg
K
µ
∇p
)
−∇.(λe f f∇T) = qe, (4)

where ρm is the mass density, ug is the gas specific internal energy, cp,s is the specific heat capacity of
the solid material (CaO and Ca(OH)2), T is temperature, hg is gas specific enthalpy and λe f f is the
average thermal conductivity of both solid materials and gas components.

Reaction rates must be specified to determine the source/sink term for each equation.
Based on [20,21], simple reaction kinetics were used, described as:

ρ̂m,SR =

−xH2O(ρm,Ca(OH)2
− ρm,SR)kH

R
T−Teq

Teq
, if T < Teq,

−(ρm,SR − ρm,CaO)kD
R

T−Teq
Teq

, if T > Teq,
(5)

where ρ̂m,SR is the mass reaction rate, kH
R and kD

R are hydration and dehydration reaction constant,
respectively and Teq is the equilibrium temperature. Hydration process occurs when T < Teq, which is
also called the discharge process and is the exothermic part of the reaction; and dehydration process
occurs when T > Teq, also known as charge process and the endothermic part of the reaction. At the
beginning of each reaction, the storage device is assumed to be in chemical equilibrium, corresponding
to νCa(OH)2

= 0 and νCaO = 0 for hydration and dehydration, respectively.
The relation between the reaction rate and the source/sink terms for the mole balance equations

were defined as:
qH2O = qCaO = −qCa(OH)2

=
ρ̂n,SR

1− φ
, (6)

with ρ̂n,SR the molar reaction rate (obtained from ρ̂m,SR using the molar mass of each respective
component). The energy balance source/sink term qe was calculated accounting for the reaction
enthalpy ∆H and the volume expansion work [59] according to:

qe = −ρ̂n,SR

(
∆H − φ

1− φ

p
ρn,g

)
. (7)

Note that a negative sign is necessary to calculate qe, so that its value is in proportion to
qCa(OH)2

, and in reverse to qH2O and qCaO. This negative sign can be explained by the fact that
to form Ca(OH)2 from CaO and H2O in the hydration process, energy is released into the system.
Correspondingly, a decrease in the molar amount of CaO and H2O (and an increase in the molar
amount of Ca(OH)2) results in a positive source term. The opposite holds for the dehydration process.

2.2. Input and Output Variables

The numerical model used in this work was developed using DuMux (Distributed and Unified
Numerics Environment for Multi-{Phase, Component, Scale, Physics, ...} [60]). As input to the simulator,
we need the material parameters such as CaO density (ρCaO), Ca(OH)2 density (ρCa(OH)2

), CaO specific
heat capacity (cp,CaO), Ca(OH)2 specific heat capacity (cp,Ca(OH)2

), CaO thermal conductivity (λCaO) and
Ca(OH)2 thermal conductivity (λCa(OH)2

); porous medium parameters such as absolute permeability
(K) and porosity (φ); reaction kinetics parameters such as reaction rate constant (kr) and specific
reaction enthalpy (∆H); and initial and boundary conditions such as N2 molar inflow rate (ṅN2,in),
H2O molar inflow rate (ṅH2O,in), initial pressure (pinit), outlet pressure (pout), initial temperature (Tinit),
inlet temperature (Tin) and initial H2O mole fraction (xH2O,init).
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In the TCES system application, one of the main goals is to estimate the state of charge of the device
that is implied in the CaO volume fraction νCaO. The device in fully charged condition corresponds
to νCaO = 1 and vice versa. We are also interested in the output variables p, T and xg,H2O (H2O mole
fraction). The behaviour of these variables, especially p, is very nonlinear. Therefore, it is interesting
to see the prediction of the ANN for these nonlinear variables. Additionally, these variables are also
important to assist in the system understanding. Therefore, our main output variables of interest were
defined as in the following vector y as a function of time t:

y(t) =


p(t)
T(t)

νCaO(t)
xg,H2O(t)

 . (8)

All input-output data samples are available as supplementary materials on
https://doi.org/10.18419/darus-633.

2.3. Aligning the ANN Structure with Physical Knowledge of the System

ANN representation via NARX has two different training architectures, namely Series-Parallel
(SP) and Parallel (P) structure. The network output ŷSP (t + 1) of the SP structure is a function of
the observed target values of previous time steps y (t) up to a feedback delay dy and of the so-called
exogenous inputs u:

ŷSP (t + 1) = f
(

y (t) , y(t− 1), . . . , y(t− dy), u
)

. (9)

In this work, u was assumed to be constant over time, meaning there is no disturbance signal
throughout the whole simulation period.

In P structure, the difference lies in the fed-back values. Here, the network outputs of the P
structure ŷP (t) are fed-back instead of the original given data y(t):

ŷP (t + 1) = f
(

ŷ (t) , ŷ(t− 1), . . . , ŷ(t− dy), u
)

. (10)

Note that, in terms of notation, the difference only lies in the hats above the fed-back values.
Apparently, the P-structure in NARX resembles an explicit time-discrete differential equation (ODE or
PDE) in a simplistic case, for example using the Adams–Bashforth discretization scheme [61,62] which
can be described as:

ŷ(t + 1) ≈ ŷ(t) + ∆t · g(u, ŷ(t), ŷ(t− 1), . . . , ŷ(t− dy)). (11)

where ŷ (t + 1) is an explicit function of ŷ (t) . . . ŷ
(
t− dy

)
. In Equation (10), the NARX function

f
(

ŷ (t) , ŷ(t − 1), . . . , ŷ(t − dy), u
)

can be seen as an approximation of ŷ(t) + ∆t · g(u, ŷ(t), ŷ(t −
1), . . . , ŷ(t − dy)) in Equation (11). Based on this reason, we propose to train using P-structure
for solving dynamic problems whenever possible. Additionally, training in P-structure helps the
network to learn that there is dependency between predicted values at different time steps. While both
architectures were considered for NARX training, only P architecture was used for testing, as for
longer-term forecasting, real data of previous time steps are not available [52]. For better understanding
of the difference between P and SP, Figure 2 illustrates both architectures.

Feedback delay is also an important property, because Equations (2)–(4) are not elliptic, and hence
there will be a time delay for the effect of input change to change the output. Because of this memory
effect and its nonlinearity, we propose to use a deeper recurrence in NARX to enable the network to
learn the system’s latency. In this work, feedback delay values dy ranging from 1 to 5 were tested to
get the optimum value.

https://doi.org/10.18419/darus-633
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(b)Parallel architecture

Figure 2. Difference between (a) SP and (b) P architecture. Here, yt...yt−dy
(in blue) are the given data,

while ŷt...ŷt−dy
(in red) are the ANN predictions.

Additional to an appropriate ODE-like structure, the hyperbolic tangent (tanh) function was
chosen as activation function within the neurons of NARX. Tanh is a nonlinear activation function
(named tansig function in MATLAB [63]). Aside from the nonlinearity, this choice was driven by the
assumption that all the input parameters and the targets depend on each other via smooth functions
(differentiable). This knowledge results, among others, from the presence of a diffusion term in all
relevant transport equations, and from the absence of shock waves in the solutions to Equations (2)–(4).
Hence, for each hidden layer l as shown in Figure 2, the layer output a[l] is computed in the feedforward
procedure described in:

a[l] = tanh(w[l]a[l−1] + b[l]). (12)

For the output layer L, a linear function is assigned for scaling, leading to:

ŷ[L] = w[L]a[L−1] + b[L]. (13)

2.4. Physical Constraints in the Training Objective Function

As loss function for training, the most commonly used performance measure is a Mean Squared
Error (MSE). Equation (14) shows the MSE for n training datasets (here, we use the subscript D for
“data” to label the error term ED in the loss function as the data-related term):

ED =
1

n.nt

n

∑
i=1

nt

∑
t=1

(yi,t − ŷi,t)
2, (14)

where i = 1 . . . n indicates a specific sample in the training dataset and t = 1 . . . nt indicates a
specific time step. However, using MSE alone in the loss function is not enough most of the
time. The optimization problem to be solved in training is typically an ill-posed problem in many
instances [30]. Thus, regularisation is required to prevent overfitting.

In this work, the L2 regularisation method was used to increase the generalisation capability of
the ANN [64]. L2 regularisation is also known as weight decay or ridge regression [65]. The goal of L2
regularisation is to force the network to have small parameter values (choosing the simpler network
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over the more complex one). This effectively adds a soft constraint to the loss function to prevent the
network from blindly fitting the possible noise in training datasets:

Eθ =
1
N

N

∑
j=1

θ2
j , (15)

where N is the total number of network parameters (weights and biases), and θ ∈ RN are the
network parameters.

To improve the network prediction and the physical plausibility even more, known physical laws
were inserted as part of the network regularisation:

Ephy,k =
1

n.nt

n

∑
i=1

nt

∑
t=1

(ephy,i,t,k)
2, (16)

where the subscript k identifies a specific physical law, for example a mole balance equation, and ephy,i,t,k
is the physical error listed in Table 1. For example, the term ephy,i,t,1 corresponds to the mole balance
equation for dehydration/hydration. The mole balance equation used for this regularisation is the
H2O mole balance, because it has the most complete storage, flux and source/sink term (the solid
components are assumed to be immobile, and N2 is inert). The mole balance error can be written as:

eMB(i, t) = nH2O,out(i, t)− nH2O,in + ∆nH2O,sto(i, t)− ∆nH2O,q(i, t), (17)

where nH2O is the molar amount of H2O, the subscript out, in, sto and q denote outflow, inflow, storage
and source/sink term, respectively. The mole balance error was used as a contraint ephy,i,t,1 and is
equal to 0 if the mole balance is fulfilled. Putting this equation as a regularisation term penalises the
network if the mole balance is not satisfied. Similarly, the corresponding energy balance equation also
has to be fulfilled:

eEB(i, t) = Qout(i, t)−Qin + ∆Qsto(i, t)− ∆Qq(i, t), (18)

where Q is the energy in the system. It was used as a regularisation in ephy,i,t,2. A more detailed
derivation of the mole balance error ephy,i,t,1 and the energy balance error ephy,i,t,2 can be found in
Appendix B.

Table 1. Physical constraints in training: loss term used in Equation (16).

k
Equation: ephy,i,t,k = ...

Dehydration Hydration

1 eMB(i, t)

2 eEB(i, t)

3 ReLU(−ν̂CaO(i, t))

4 ReLU(−x̂H2O(i, t))

5 ReLU(φ + ν̂CaO(i, t)− 1)

6 ReLU( p̂(i, t− 1)− p̂(i, t)) ReLU( p̂(i, t)− p̂(i, t− 1))

7 ReLU(T̂(i, t− 1)− T̂(i, t)) ReLU(T̂(i, t)− T̂(i, t− 1))

8 ReLU(ν̂CaO(i, t− 1)− ν̂CaO(i, t)) ReLU(ν̂CaO(i, t)− ν̂CaO(i, t− 1))

9 ReLU(T̂(i, t)− Tin) ReLU(Tin − T̂(i, t))

Further relations of the formF (ŷ) ≤ 0 (monotonicity and non-negative values) were implemented
using the Rectified Linear Units (ReLU) function, so that the physical error was then calculated with
ephy,i,t,k = ReLU

(
F (ŷ)

)
[46]. The ReLU function returns 0 as output value for negative arguments
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and linearly increases for positive arguments. Hence, it punishes positive values in proportion to
their magnitudes. Examples of these ReLU constraints are ephy,i,t,3 through ephy,i,t,13. They define
non-negativity and monotonicity of the predicted target variables. For both dehydration and hydration
process, negative fractional values ν̂CaO and x̂H2O are physically and mathematically impossible.
Therefore, in ephy,i,t,3 and ephy,i,t,4, the network is punished for predicting negative values for these
targets. Additionally, for both processes, ephy,i,t,5 provides an additional constraint for ν̂CaO, to limit
the amount of CaO volume in relation with the porosity (ν̂CaO ≤ 1− φ). All these monotonicity
assumptions originated from the fact that the system’s material parameters are considered to
be constant throughout operation of the system. Therefore, the system’s behaviour should be
monotonic and bounded in the specified aspects. Specific for the dehydration process, p̂, T̂ and
ν̂CaO are expected to not decrease throughout the simulation. This results in the corresponding
monotonicity constraints ephy,i,t,6 to ephy,i,t,8. The system temperature must also be lower or equal to
the injected temperature as constrained in ephy,i,t,9, because the injected temperature is higher than
the initial temperature. Specifically for the hydration process, the monotonicity constraints ephy,i,t,6 to
ephy,i,t,9 for the dehydration process are reversed, because the hydration process is the reverse of the
dehydration process.

2.5. Obtaining Optimum Network Parameters

The complete loss function defined in Section 2.4 including MSE and all the regularisation term is
written as:

L(θ) = αEθ + βED + ∑
k

λkEphy,k. (19)

Here, α and β are normalising constants of Eθ and ED, respectively; and λk is a normalising constant
for each physical regularisation k. All error and regularisation terms, therefore, are evaluated in a
normalised metric. These normalising constants, also known as the hyperparameters, determine the
importance given to each term. For example, a high β means that it is more important for the network
to fit the training datasets than to generalise better. In many cases, the hyperparameters are determined
manually from trial-and-error. In this work, Bayesian Regularisation was adopted to calculate them
overall using a maximum likelihood approach to minimise L(θ) [66,67]. Bayesian Regularisation
reduces the subjectivity arising from manual choice of hyperparameters. First, all the hyperparameters
α, β and λk along with the network parameters θ were initialised. The hyperparameters were initialised
by setting β = 1, α = 0 [68] and also λk = 0, while the network parameters were initialised using the
Nguyen-Widrow method [69,70]. The Nguyen-Widrow method initialises the network parameters
so that each neuron contributes to a certain interval of the whole output range (added with some
random values).

The complete derivation for updating α and β can be found in [66,67]. Here, we only give the
calculation of λk. After each iteration, they are updated according to the following relation:

λk :=
N − λkTrace(H−1 JT

phy,k Jphy,k)

2Ephy,k
, (20)

where Jphy,k is the Jacobian of physical error Ephy,k with respect to the network parameters θ.
The approximate Hessian matrix H of the overall loss function L(θ) was defined as follows:

H = αI + βJT
D JD + ∑

k
λk JT

phy,k Jphy,k, (21)

where JD is the Jacobian of the MSE (ED) with respect to the network parameters and I is the N × N
identity matrix (N is the number of network parameters θ).
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The network parameters are also updated after each iteration according to the Levenberg–
Marquardt algorithm:

θ := θ− (H + Iµ)−1(αθ+ βJDED + ∑
k

λk Jphy,kEphy,k), (22)

where µ > 0 is the algorithm’s damping parameter. Its value is increased when an iteration step is not
successful, and is decreased otherwise. The Levenberg–Marquardt algorithm was chosen because of its
faster convergence rate compared to Steepest Decent and higher stability relative to the Gauss–Newton
algorithm [58]. In absence of our physical regularisation terms and with fixed α, β, the procedure
would simplify to a plain (nonlinear) least squares training, which would be the standard approach for
training ANNs. Values of the trained network parameters and the normalising constants at the end of
the training are given as supplementary materials on https://doi.org/10.18419/darus-634.

3. Results and Discussion

Our hypothesis is that applying physical knowledge of the modelled system into the construction
of ANNs would lead to an improved physical plausibility of the prediction results. In this section,
the prediction of the TCES system using ANNs is assessed and three relevant aspects that support our
hypothesis are discussed: (I) the effect of feedback delay on the prediction result to account for the
system’s nonlinearity and long-term memory effect (Section 3.1), (II) the comparison between training
in SP and P architecture (Section 3.2) and (III) the improved physical plausibility from using physical
regularisation (Section 3.3). The results are illustrated only for the dehydration process, because the
hydration provides very similar results.

The complete workflow of the ANN application is shown in Figure 3. In general, the workflow
can be divided into: training, validation and testing of the ANN. To train the ANN, first an ensemble
of exogeneous input u was generated based on selected probability distributions. These distributions
are based on different values used in literature [6,17–21]. The complete list of exogeneous inputs
u with their corresponding distributions is listed in Appendix A. This ensemble was then plugged
into the numerical model in DuMux and was simulated until t = 5000 s to obtain an ensemble of
target data y(t). The governing equations are provided in Section 2.1. White noise was then added to
these targets by generating normally distributed random numbers with zero mean and a standard
deviation of 0.05 times the target values. Lastly, both exogenous inputs and targets were normalised
to the range [−1, 1] to help the stability of the training [71]. Then, we set up the NARX ANN as
described in Section 2. The training was then conducted using the built-in functions for NARX in the
MATLAB Neural Network Toolbox [63], in which the loss function calculation was modified based
on the equations provided in Section 2.5. It was conducted in batch mode both for dehydration and
hydration process with a total of 100 training datasets.

Without physical regularisation, we obtain the lowest MSE value when the NARX is trained
using 1000 training datasets, as shown in Figure 4. However, it is interesting to see how the
physical knowledge can further improve the performance of NARX with limited training data.
Therefore, we conducted the training in batch mode both for dehydration and hydration process
with a total of only 100 training datasets.

For conciseness, the choice of the number of hidden layers, number of nodes per hidden
layer and choice of activation function is not discussed because there is no existing uniform and
systematic method to calculate the appropriate or the best combination [72]. Based on trial and
error, we found that for this specific problem, 2 hidden layers with 15 and 8 nodes at each layer
gives reasonable results. An example of ANN prediction using this configuration is provided in
Appendix C. The stopping criteria are the dampening factor µ > 1010 (see Equation (22)) or the loss
function gradient g = ∂L(θ)

∂θ < 10−7, both of which are the default values proposed in the toolbox.
Additionally, a maximum epochs is set for the training. Since training error converges mostly before
500 epochs, this limit is sufficient.

https://doi.org/10.18419/darus-634
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Figure 3. Flowchart of training, validation and test of the ANN.

Figure 4. Comparison of MSE using different number of training datasets.

Different initialization values often lead to different network response as the algorithm might
fail to always locate the global minimum [65]. Therefore, the network was retrained with 50 different
initialisations. This number was set to find a compromise between a reliable result and a reasonable
computational time. After each training, the network was validated on 20 validation datasets,
and the trained network with the lowest MSE (ED evaluated against validation data) was selected.
Finally, the network was tested with data contained neither in the training nor in the validation set on
a test set with 800 time series.

3.1. Influence of Feedback Delay

Figure 5 shows the influence of feedback delay on the MSE evaluated on both the training (dashed
lines) and test datasets (solid lines) for networks trained using P structure. As shown in Figure 5,
for dy > 1 the test MSE is lower than the training MSE. This is generally because the network was
trained using additional white noise—producing more errors in the training, while the test datasets
were smooth for reference.
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Figure 5. Feedback delay variation.

In Figure 5, while the training error seems to remain constant at dy > 2, the test error keeps
decreasing with increasing dy. This clearly illustrates that including more depth in the recurrence
improves the generalisation capability and therefore improves the ANN prediction. As the best
MSEtest was obtained with dy = 5, this value will be used from here onwards. From Figure 5 we
can also analyse that a time delay of at least 3 previous time steps is useful to train the network.
Moreover, we do not see the value of using dy > 5, as judging by the MSE trend in Figure 5, there is no
significant improvement expected.

3.2. SP Versus P Training Structure

Figure 6 compares the training time of P compared to SP structure. Moreover, plotting the gradient
and performance as function of training epochs allows us to analyse the difference between both
training characteristics. As expected and shown in Figure 6 (dashed lines), both SP and P structure
training time increases nearly linearly with the number of epochs (iterations). However, the slope is
steeper for P training which is caused by higher computational cost using Backpropagation Through
Time (BPTT).

In Recurrent ANNs, BPTT is used to calculate the derivative of the loss function instead of
the normal backpropagation method. BPTT is technically the same as the normal backpropagation
method but with the RNN unfolded through time being the main difference [30]. The gradient is then
backpropagated through this unfolded network. Unfolding the recurrent network increases its size,
and therefore the optimization problem becomes computationally more expensive and more difficult
to solve.

After every epoch in P training, the output values change, and consequently the feedback values
also change. The constantly changing feedback values cause additional changes of the gradient values
along the iteration (dotted lines in Figure 6). This makes the training a more nonlinear problem.
Correspondingly, the training performance (smaller MSE) increases much slower. In SP training,
the gradient strongly decreases during the first 20 epochs, showing that the SP training is more
computationally stable. However, the MSE (solid lines in Figure 6) was evaluated during training for
the structure the network was trained with, meaning that the training performance does not consider
the closed-loop conversion error for SP training. For that reason, the MSE values shown in Figure 6
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seem to be better for SP training. Regardless of this difference, both training procedures converge with
strictly monotonic decay of their MSE.

training epoch
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Figure 6. Training time, gradient and performance for P (Parallel) and SP (Series-Parallel) structure.

Next, the prediction performances of both training architectures are compared. In Figure 7,
the results of the SP-trained NARX (dashed lines) are shown compared to the target values obtained
from the simulation (solid lines) as reference solutions. Here, all target variables are calculated
with differing inlet temperature. After a few time steps with relatively precise forecasts, the NARX
predictions for T, p and νCaO diverge from real values and are highly fluctuating over time, which is
nonphysical. Note that, in Figure 7, the results are shown only up to time step 100 instead of 1000.
This is because the NARX prediction results after time step 100 have even higher fluctuations as the
error propagates, hence making the comparison unclear visually. The forecast for xg,H2O is reasonably
accurate for t < 100 but more erroneous for longer forecast periods. The forecast error is caused by the
closed-loop-instability, meaning the inaccuracy caused by converting the network structure from SP to
P. In other words, training using SP structure gives increasingly erroneous results with increasing time
horizon. On the contrary, training with P structure provides clearly more accurate forecasts compared
with SP, as shown in Figure 8. The NARX predictions (dotted lines) correspond really well to the
reference targets (blue solid lines) throughout the whole simulation time for 1000 time steps, with inlet
temperatures covering the whole range of its input distribution.

The comparison of P and SP structure shows that, while training in P structure seems to be
more unstable, it provides significantly better long-term predictions because it trains the network to
realise the time-dependency of output variables in a dynamic system. As shown by Equation (11),
NARX resembles an explicitly discretized ODE, which is known to be conditionally stable. In cases
where the discrete ODE is unstable, the error grows exponentially through time [73]. By training the
network using P structure, the same structure is used for both training and testing, hence minimising
the error propagation. The higher computing time needed to train in P structure (in comparison with
training in SP structure) should not be a problem because the training only needs to be conducted once.
Once the optimum network parameters are obtained, NARX can give reasonably accurate predictions
with fast computational time. In fact, almost all studies in the area of surrogate models are willing
to accept high computational costs during training (called offline costs) if the accuracy and speed for
prediction (online) are good [54,74,75].
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Figure 7. Forecasts with SP-trained NARX for various inlet temperatures.

Figure 8. Forecasts with P-trained NARX for various inlet temperatures.

3.3. Physical Regularisation Improves Plausibility

To test the benefit of physically-based regularisation, the ANN performance is compared between
training the network using:

• only MSE as the loss function (“MSE”), that is L(θ) = ED,
• MSE combined with only L2 (“MSE + L2”), that is L(θ) = αEθ + βED,
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• MSE combined with only physical regularisation (“MSE + PHY”), that is
L(θ) = βED + ∑k λkEphy,k, and

• MSE combined with both L2 and physical regularisation (“MSE + L2 + PHY”), that is
L(θ) = αEθ + βED + ∑k λkEphy,k.

To make a fair comparison, all networks were trained with the same set of initial network
parameters. In this test, we used only P training and feedback delay dy = 5, because they clearly
showed preferable performance in the previous sections. The comparison is summarised in Table 2.

Table 2. MSE for different regularisation methods

Loss Function MSEtrain MSEtest

MSE 8.45 × 10−3 2.81× 10−3

MSE + L2 9.01× 10−3 3.96× 10−4

MSE + PHY 8.68× 10−3 3.83× 10−3

MSE + L2 + PHY 8.43× 10−3 3.96× 10−4

While the MSE on training data is in a comparable range for all loss functions, differences in
MSEtest are observed. L2 regularisation helps to reduce overfitting of training data, resulting in a lower
test error in “MSE + L2” compared to “MSE”. At first glance, the additional physical regularisation
does not seem to further improve the results. MSEtest of “MSE + PHY” is slightly worse compared
to “MSE”, and MSEtest of “MSE + L2 + PHY” is in the same order with “MSE + L2” because another
constraint is added in the objective function, while the performance is measured only based on MSE.
Moreover, using only the physical (MSE + PHY) instead of only L2 regularisation (MSE + L2) leads to
a test performance decrease.

Even though the performance for both “MSE” and “MSE + L2” are better than “MSE + PHY”,
they both fail to produce physically plausible predictions in several test datasets (outliers) as shown in
Figures 9 and 10 (the label “Reference” for the blue line refers to the synthetic test data obtained from the
physical model), the clearest one being negative fraction values of CaO and H2O. One important aspect
that needs to be considered is that the ANN was trained using only 100 training datasets, compared to
almost 500 parameters that exist inside the network. This made the optimisation problem an ill-posed
one, leading to clear overfitting in the network with “MSE” and “MSE + L2”. Physical regularisation
tackles this problem even for relatively sparse training data, which is valuable once experiments are
costly, and therefore, not much data are often available to train the network.

Even though it produces the worst overall test performance, physical regularisation alone
(MSE + PHY) is able to produce physically plausible results despite no application of L2 regularisation,
see Figure 11. The figure illustrates the worst prediction result of all test sets obtained using
“MSE + PHY”. Even in its worst prediction with high error, the network is much more stable. With the
addition of L2 regularisation in the “MSE + L2 + PHY” scheme, the prediction error (MSE) is further
reduced so that it lies within the same range as “MSE + L2”. The major difference here is illustrated in
Figure 12, where the worst prediction result produced by “MSE + L2 + PHY” is far more physically
plausible, shown by the absence of unstable fluctuations as well as the relatively higher accuracy.

We trained the ANN using numerical simulation results which indirectly imbues the physics
from the formulated governing equations into the ANN. When the ANN was not trained using
numerical simulation results but with real observation data (which could follow more complex,
scientifically unexplored equations), physical regularisation helps to constrain the ANN training at
least to fundamental, confirmed laws and prevent unnecessary overfitting to the irregular and noisy
observation data. As such, implementation of the method we present will be even more beneficial for
applications with real observation data.
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Figure 9. Worst prediction sample (red) obtained with “Mean Squared Error—MSE” regularisation
method and reference solution obtained from the physical model (blue).

Figure 10. Worst prediction sample (red) obtained with “MSE + L2” regularisation method and
reference solution obtained from the physical model (blue).
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Figure 11. Worst prediction sample (red) obtained with “MSE + PHY” regularisation method and
reference solution obtained from the physical model (blue).

Figure 12. Worst prediction sample (red) obtained with “MSE + L2 + PHY” regularisation method and
reference solution obtained from the physical model (blue).

4. Conclusions

We adopted a PINN framework as an example of grey-box modelling to predict the dynamic
internal states of the TCES system. Our approach aligns with the motivation of PINN that sees
the modelled system as a complex unit that is underrepresented by the governing equations used
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in the physical model. We do not construct the ANN only as a surrogate model for the expensive
numerical model, unlike in other PINN approaches that use ANN to infer the governing equations
of the modelled system or the parameter values, assuming that the physical model describes the
system perfectly. Our method was designed for application with real observation data that imply more
complex processes than the simplified physical model. In this paper, however, we used synthetic data
to train the ANN as a proof of concept.

As a key contribution, we propose to implement physical knowledge about a system into building
the structure, choosing the training mode and designing the regularisation of ANNs to assure the
physical plausibility and to increase the performance of the TCES dynamic internal state predictions.
The alignment between the system’s behaviour (dynamic and nonlinear) and the ANN structure is
described. The ANN predictions using different regularisation strategies are also compared to show
the improvement provided by our method.

We show that, while training in P structure is computationally more expensive and unstable,
the result is superior to training using SP structure, because P training resembles the dynamic of
the governing differential equations better. Additionally, we found that, due to the nonlinearity and
long-term memory effects implied by the system equations, deeper recurrency is necessary. A moderate
depth of feedback delay produces better prediction performance, resulting from the network ability to
capture the latency of the system. However, using too much feedback delay is also counter-productive,
as it does not give significant improvement anymore, only increasing computational cost.

We also show that including physical regularisation to train the network improves the physical
plausibility of the network predictions, even for worst-case scenarios. Physical regularisation helps
the network to learn about relationships between different input and target variables, as well as the
time-dependency between them. This includes mole and energy balance equations that serve as
the building blocks of the system’s behaviour, along with simple monotonicity and non-negative
constraints. However, physical regularisation alone is not enough to improve the generalisation
capability of the network, and therefore, L2 regularisation is also necessary.

A very common issue with using ANNs in data-driven modelling is that obtaining experimental
or operational data can be very costly, and therefore, there is often no sufficient data available to
train the ANN. Our work shows that even with only a relatively small amount of training data
(compared to the number of network parameters), using P training with a moderate amount of
feedback delay dy, combined with physical regularisation helps to prevent overfitting in optimising
ill-posed problems and it produces relatively accurate and physically plausible predictions of the
CaO/Ca(OH)2 TCES system internal states. Further work is required for more sophisticated analysis
of the system, for example with spatial distribution of the internal system, dynamic exogeneous input
and uncertainty quantification of the predictions.

Availability of Data and Materials: Input-output data pairs used to train, validate, and test the ANN are available
as supplementary materials on https://doi.org/10.18419/darus-633, while the trained network parameters
(weight and bias values) for different regularisation methods explained in Section 3.3 are also available on
https://doi.org/10.18419/darus-634. Each dataset is accompanied with a ’README’ file that explains the
data format.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations:
ANN Artificial Neural Network
BR Bayesian Regularisation
LM Levenberg Marquardt
MSE Mean Squared Error
NARX Nonlinear Autoregressive Network with Exogeneous Inputs
ODE Ordinary Differential Equation
P Parallel (network structure)
PDE Partial Differential Equation
PINN Physics Inspired Neural Network
RNN Recurrent Neural Network
SP Series Parallel (network structure)
TCES Thermochemical Energy Storage
TCES-related parameters:
∆H Reaction enthalpy
λe f f Average thermal conductivity
µ Viscosity
νs Solid volume fraction
φ Porosity
ρm Mass density
ρn Molar density
t Time
cp Specific heat capacity
D Effective diffusion coefficient
h Specific enthalpy
K Permeability
kR Reaction constant
p Pressure
q Source/sink term
T Temperature
u Specific internal energy
xg Gas molar fraction
ANN-related parameters:
α Normalising constant of L2 regularisation term
β Normalising constant of data-related error
H Hessian matrix
I Identity matrix
J Jacobian matrix
ŷ(t) Predicted value at time t
λ Normalising constant of physical error
µ Damping parameter for LM algorithm
θ Network parameter
b Network bias
dy Feedback delay
ED Data-related error
Eθ Mean squared value of network parameters
Ephy Physical error
Lθ Loss function
N Number of network parameters
n Number of training samples
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nt Number of time steps
u Exogeneous input
w Network weight
y(t) Observed value at time t

Appendix A. List of Exogeneous Input and Its Distribution

Table A1 lists all of the exogeneous input with their corresponding distributions. The exogeneous input
distributions are centred around the values taken from [20].

Table A1. Input distributions for exogenous inputs, with µ and σ being the mean and standard
deviation used to generate the data, respectively; while the superscript D and H refer to the dehydration
and hydration process, respectively.

Exogenous inputs with normal distribution

u Unit µD σD µH σH

ρCaO kg/m3 1656 25 1656 25
ρCa(OH)2

kg/m3 2200 25 2200 25
pinit,pout Pa 1 × 101 2.3× 103 2× 105 2.3× 103

Tinit K 573.15 20 773.15 20
Tin K 773.15 20 573.15 20

ṅN2,in mol/s.m 4.632 0.25 2.04 0.15
ṅH2O,in mol/s.m 0.072 0.01 1.782 0.15

Exogenous inputs with lognormal distribution

u Unit µD σD µH σH

K mD log(5×103) 0.525 log(5× 103) 0.525
kR - log(0.05) 0.5 log(0.2) 0.5

Exogenous inputs with shifted and scaled beta distribution

u Unit a b scale shift

cp,CaO J/kg.K 7.1 2.9 300 700
cp,Ca(OH)2

J/kg.K 7.6 2.4 350 1250
λCaO W/m.K 6.5 3.5 0.6 -

λCa(OH)2
W/m.K 6.5 3.5 0.6 -

φ - 8.5 1.5 0.825 -
∆H J/mol 4.8 5.2 3×104 9× 104

xH2O,init - 76 85 - -

Appendix B. Mole and Energy Balance Error

Physical constraints in ephy,i,t,1 and ephy,i,t,2 use mole and energy balance equation, respectively. Both balances
are calculated in a simplified way discretized for time steps of 5 s with spatially averaged values and a local
thermal equilibrium of the gas and the solid. For clarity, all the specific sample indicators in the training dataset i
are omitted in this section.

The mole balance is formulated for H2O (assuming that the density can be calculated with ideal gas
law) with the in- and outflowing moles nH20,in and nH20,out, the storage term in the gaseous phase ∆nH20,sto
and the source/sink term ∆nH20,q. The in- and outflowing moles of H2O both are known values from the
simulation or input data. The storage term ∆nH20,sto can be calculated from the change in H2O molar fraction,
x̂g,H2O(t)− x̂g,H2O(t− 1) multiplied with the H2O molar density and the pore volume. The complete definition is
written as:

∆nH2O,sto(t) = φV(x̂g,H2O(t)− x̂g,H2O(t− 1))ρn,H2O(t). (A1)

The source/sink term ∆nH20,q is calculated with the molar amount of CaO formed. Based on the
stoichiometry ratio, with every 1 mole of CaO forme, 1 mole of H2O is also formed. The molar amount of
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CaO is determined by the change in CaO volume fraction, ν̂CaO(t) − ν̂CaO(t − 1), multiplied with the molar
density and the volume. The calculation for ∆nH20,q is written as:

∆nH2O,q(t) = V(ν̂CaO(t)− ν̂CaO(t− 1))ρn,CaO. (A2)

Finally, Equations (A1) and (A2) are substituted into Equation (17).
For the energy balance formulation, the energy of the inflowing and outflowing gas Qin and Qout are also

known from simulation or from input data. The energy storage in the gaseous phase is neglected as its contribution
is negligible. Only the solid contribution is used in the calculation of ∆Qsto. The solid energy change is calculated
as the change in both CaO and Ca(OH)2 mass multiplied by the temperature and specific heat capacity. The
definition is written as:

∆Qsto(t) = Qsto(t)−Qsto(t− 1), (A3)

where Qsto(t) is defined as:

Qsto(t) = V[ν̂CaO(t)cp,CaO.ρm,CaO+

(1− φ− ν̂CaO(t))cp,Ca(OH)2
.ρm,Ca(OH)2

]T̂(t).
(A4)

The source/sink term for the energy balance equation, ∆Qq, is calculated based on the change in molar
amount of CaO multiplied by the specific reaction enthalpy and subtracted with the volume expansion work. The
negative sign corresponds to the definition in Equation (7). The calculation is written as:

∆Qq(t) = −V
(

ν̂CaO(t)− ν̂CaO(t− 1)
)

ρn,CaO

(
∆H − φ

1− φ
T̂(t)R

)
. (A5)

Equations (A3) and (A5) are then substituted into Equation (18).

Appendix C. Example of the Ann Prediction

Figure A1 shows the best prediction of the ANN using 2 hidden layers with 15 and 8 nodes at each layer
using only MSE and L2 regularisation to define the loss function.

Figure A1. An example of the best prediction sample (red) obtained using 2 hidden layers with 15 and
8 nodes at each layer and reference solution obtained from the physical model (blue).



Energies 2020, 13, 3873 23 of 26

References

1. Haas, J.; Cebulla, F.; Cao, K.; Nowak, W.; Palma-Behnke, R.; Rahmann, C.; Mancarella, P. Challenges
and trends of energy storage expansion planning for flexibility provision in power systems—A review.
Renew. Sustain. Energy Rev. 2017, 80, 603–619. [CrossRef]

2. Møller, K.T.; Williamson, K.; Buckleyand, C.E.; Paskevicius, M. Thermochemical energy storage properties
of a barium based reactive carbonate composite. J. Mater. Chem. 2020, 8, 10935–10942. [CrossRef]

3. Yuan, Y.; Li, Y.; Zhao, J. Development on Thermochemical Energy Storage Based on CaO-Based Materials:
A Review. Sustainability 2018, 10, 2660. [CrossRef]

4. Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high
temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev.s 2014, 32, 591–610. [CrossRef]

5. Scapino, L.; Zondag, H.; Van Bael, J.; Diriken, J.; Rindt, C. Energy density and storage capacity cost
comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space
heating. Renew. Sustain. Energy Rev. 2017, 76, 1314–1331. [CrossRef]

6. Schaube, F.; Wörner, A.; Tamme, R. High Temperature Thermochemical Heat Storage for Concentrated Solar
Power Using Gas-Solid Reactions. J. Sol. Energy Eng. 2011, 133, 7. [CrossRef]

7. Carrillo, A.; Serrano, D.; Pizarro, P.; Coronado, J. Thermochemical heat storage based on the Mn2O3/Mn3O4

redox couple: influence of the initial particle size on the morphological evolution and cyclability.
J. Mater. Chem. 2014, 2, 19435–19443. [CrossRef]

8. Carrillo, A.; Moya, J.; Bayón, A.; Jana, P.; de la Peña O’Shea, V.; Romero, M.; Gonzalez-Aguilar, J.; Serrano,
D.; Pizarro, P.; Coronado, J. Thermochemical energy storage at high temperature via redox cycles of Mn and
Co oxides: Pure oxides versus mixed ones. Sol. Energy Mater. Sol. Cells 2014, 123, 47–57. [CrossRef]

9. Carrillo, A.; Sastre, D.; Serrano, D.; Pizarro, P.; Coronado, J. Revisiting the BaO2/BaO redox cycle for solar
thermochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 8039–8048. [CrossRef]

10. J.P.Muthusamy.; Calvet, N.; Shamim, T. Numerical Investigation of a Metal-oxide Reduction Reactor for
Thermochemical Energy Storage and Solar Fuel Production. Energy Procedia 2014, 61, 2054–2057. [CrossRef]

11. Block, T.; Knoblauch, N.; Schmücker, M. The cobalt-oxide/iron-oxide binary system for use as high temperature
thermochemical energy storage material. Thermochim. Acta 2014, 577, 25–32. [CrossRef]

12. Michel, B.; Mazet, N.; Neveu, P. Experimental investigation of an innovative thermochemical process
operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance.
Appl. Energy 2014, 129, 177–186. [CrossRef]

13. Uchiyama, N.; Takasu, H.; Kato, Y. Cyclic durability of calcium carbonate materials for oxide/water
thermo-chemical energy storage. Appl. Therm. Eng. 2019, 160, 113893. [CrossRef]

14. Yan, T.; Wang, R.; Li, T.; Wang, L.; Fred, I. A review of promising candidate reactions for chemical heat
storage. Renew. Sustain. Energy Rev. 2015, 43, 13–31. [CrossRef]

15. Zhang, H.; Baeyens, J.; Cáceres, G.; Degréve, J.; Lv, Y. Thermal energy storage: Recent developments and
practical aspects. Prog. Energy Combust. Sci. 2016, 53, 1–40. [CrossRef]

16. André, L.; Abanades, S.; Flamant, G. Screening of thermochemical systems based on solid-gas reversible
reactions for high temperature solar thermal energy storage. Renew. Sustain. Energy Rev. 2016, 64, 703–715.
[CrossRef]

17. Schaube, F.; Koch, L.; Wörner, A.; Müller-Steinhagen, H. A thermodynamic and kinetic study of the de- and
rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim. Acta
2012, 538, 9–20. [CrossRef]

18. Schaube, F.; Kohzer, A.; Schütz, J.; Wörner, A.; Müller-Steinhagen, H. De- and rehydration of Ca(OH)2

in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results.
Chem. Eng. Res. Des. 2013, 91, 856–864. [CrossRef]

19. Schmidt, M.; Gutierrez, A.; Linder, M. Thermochemical energy storage with CaO/Ca(OH)2 - Experimental
investigation of the thermal capability at low vapor pressures in a lab scale reactor. Appl. Energy
2017, 188, 672–681. [CrossRef]

20. Shao, H.; Nagel, T.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O. Non-equilibrium thermo-chemical
heat storage in porous media: Part 2—A 1D computational model for a calcium hydroxide reaction system.
Energy 2013, 60, 271–282. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.05.201
http://dx.doi.org/10.1039/D0TA03671D
http://dx.doi.org/10.3390/su10082660
http://dx.doi.org/10.1016/j.rser.2013.12.014
http://dx.doi.org/10.1016/j.rser.2017.03.101
http://dx.doi.org/10.1115/1.4004245
http://dx.doi.org/10.1039/C4TA03409K
http://dx.doi.org/10.1016/j.solmat.2013.12.018
http://dx.doi.org/10.1039/C5CP07777J
http://dx.doi.org/10.1016/j.egypro.2014.12.074
http://dx.doi.org/10.1016/j.tca.2013.11.025
http://dx.doi.org/10.1016/j.apenergy.2014.04.073
http://dx.doi.org/10.1016/j.applthermaleng.2019.113893
http://dx.doi.org/10.1016/j.rser.2014.11.015
http://dx.doi.org/10.1016/j.pecs.2015.10.003
http://dx.doi.org/10.1016/j.rser.2016.06.043
http://dx.doi.org/10.1016/j.tca.2012.03.003
http://dx.doi.org/10.1016/j.cherd.2012.09.020
http://dx.doi.org/10.1016/j.apenergy.2016.11.023
http://dx.doi.org/10.1016/j.energy.2013.07.063


Energies 2020, 13, 3873 24 of 26

21. Nagel, T.; Shao, H.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O. The influence of gas-solid reaction
kinetics in models of thermochemical heat storage under monotonic and cyclic loading. Appl. Energy
2014, 136, 289–302. [CrossRef]

22. Bayon, A.; Bader, R.; Jafarian, M.; Fedunik-Hofman, L.; Sun, Y.; Hinkley, J.; Miller, S.; Lipiński, W.
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