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Abstract: Small-scale power generation based on renewable energy sources is gaining popularity
in distribution grids, creating new challenges for power system control. At the same time, remote
consumers with their own small-scale generation still have low reliability of power supply and poor
power quality, due to the lack of proper technology for grid control when the main power supply is
lost. Today, there is a global trend in the transition from a power supply with centralized control to a
decentralized one, which has led to the Microgrid concept. A microgrid is an intelligent automated
system that can reconfigure by itself, maintain the power balance, and distribute power flows.
The main purpose of this paper is to study the method of control using reclosers in the Lahsh district of
the Rasht grid in Tajikistan with distributed small generation. Based on modified reclosers, a method
of decentralized synchronization and restoration of the grid normal operation after the loss of the
main power source was proposed. In order to assess the stable operation of small hydropower plants
under disturbances, the transients caused by proactive automatic islanding (PAI) and restoration of
the interconnection between the microgrid and the main grid are shown. Rustab software, as one of
the multifunctional software applications in the field of power systems transients study, was used for
simulation purposes. Based on the simulation results, it can be concluded that under disturbances,
the proposed method had a positive effect on the stability of small hydropower plants, which are
owned and dispatched by the Rasht grid. Moreover, the proposed method sufficiently ensures the
quality of the supplied power and improves the reliability of power supply in the Lahsh district
of Tajikistan.

Keywords: decentralized control; small hydropower plants; microgrid; emergency control; recloser;
synchronous coupler; power systems stability
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1. Introduction

At present, many technologies provide high-quality and reliable power supply to consumers
locally, having the opportunity in emergency conditions to get power from backup sources. That is
why centralized electrification of power supply to remote rural areas is a hugely complicated problem
to be accomplished by grid companies.

The Tajikistan power system faces these difficulties for several reasons being (1) power supply is
centralized, and (2) there is power shortage during the autumn-winter period.

These two factors force the regulation of power generation, which is strongly reflected in the rural
areas making up about 70% of Tajikistan’s population [1].

Tajikistan is a country where that has a huge stock of hydro resources. Consequently, Tajikistan
ranks first among Central Asian countries, and eighth in the world, as noted by Zhan-Kristof et al. [2],
for hydropower research. The country possesses 4% of all world hydro-energy potential [1].
Fishov et al. [3] analyzed the condition and progress of Tajikistan’s hydro-energy potential, which
exceeds 527 billion kWh per year, and the country exploits only 6.6% of it [4]. Potential reserves of
small hydropower are 184.46 billion kWh per year [1].

In the field of small hydropower, the CASA-1000 (Central Asia South Asia) [5] project is of
paramount importance to Tajikistan. The role envisioned for the project is to limit the export of excess
power to neighboring countries during the summer. It is also important to recognize the effects not only
of large-scale hydropower (LHPP) plants but also small-scale hydropower plants (SHPPs) on power
generation. Implementation of the project will allow the efficient use of SHPPs and the development
of this energy sector in Tajikistan.

The 0.4–10 kV rural distribution grids are characterized by longline length and complex structure.
The key disadvantages of such grids are low reliability, inadmissible values of power quality indices, and
significant power losses. Cherkasova [6] has explored energy efficiency issues, including the reliability
and safety of rural electrical grids. The transmission outages can make up 40–90% of the total number
of outages. Moreover, due to the significant degradation of rural distribution grids, the reliability of
power supply is also deteriorating. For example, in the 6–20 kV grids, 30 blackouts/year × 100 km of
line length occurs on average, and in the 0.4 kV grids, 100 blackouts/year × 100 km [7]. It is possible
to reduce the number of blackouts using auto-reclosing in transmission lines. As Cherkasova [8]
shows in her research on the monitoring and analysis of failures, about 60% of power line damage is
unsustainable and eliminated by auto-reclosing. However, since rural distribution grids were built in
the 1960s and 1970s in Tajikistan, it is impossible to use auto-reclosing based on old oil circuit breakers
at the distribution center. A significant part of outages and interruptions can be reduced, and as a
consequence, the reliability of power supply will increase. The use of sectionalizing points when the
feeder is divided by switching devices is known to be an effective means of reliability increase. With
the development of engineering and technologies based on automatic sectionalizing points (ASP), it is
possible to significantly increase the reliability of power supply, especially in rural areas. The use of
reclosers can serve as a good opportunity for that purpose.

With the progress of power electronics and control theory, the Microgrid concept emerged, which
reflected in the research studies conducted in the USA, Europe, and Asia. Zhou et al. [9] have considered
key problems and prospects of microgrid progress. Barnes et al. [10] have considered a principle of
work versions of microgrid management. Zaidi et al. [11] discussed a new approach to modeling
intellectual microgrids with automatic load control consumers.

The microgrid is a small and independent system that combines small-scale generation (SSG),
consumers, energy storage systems, as well as control devices, forming an integrated controlled power
supply system. The microgrid is an intelligent automated system that can reconfigure itself, manage
power generation and load (maintain power balance), and distribute power flows.

In the present work, the problem of connecting the microgrid based on small generation to
an external power grid is solved using its direct connection to the grid. We applied the methods
in Zhdanov [12], namely the fixed-point iteration method, equal area criterion, and the method
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of superposition for determining the stability of power plants operating in parallel with the grid.
To simulate the method used in the present article, the Rustab software based on RastrWin3 (2.3, JSC
“Scientific and Technical Center of Unified Power System”, Yekaterinburg, Russia) was used. It is a
multifunctional software devoted to the study of electromagnetic and electromechanical transients
during different load flow calculations [13]. The RastrWin3 software includes Eurostag and Mustang
libraries, which allow us to calculate, analyze, and optimize the load flow states; to monitor the power
generation/consumption; to calculate short circuit currents and to carry out asymmetrical load flow.

Currently, the transition from a centralized to a decentralized power supply system based on
the microgrid is relevant. It allows us to efficiently use to distribute power sources over the grid,
including renewable energy sources (RES). Therefore, decentralized synchronization and control of
the normal operation restoration during the parallel operation of the separated grid and generators is
considered in the present work. The control method using modified reclosers with distributed small
generation in the Lahsh district of the Rasht grid of Tajikistan is studied. Based on the methodology
above, the stability of all available SHPPs under disturbances in the Rasht grid was estimated.

Frequent emergency disturbances in the external network will lead to emergency shutdowns
of the SHPPs power units, which feed consumers located in the local network of the Lahsh district.
Consequently, consumers of this local network remain without power, and the available capacity of
SHPPs is underutilized. Therefore, the goal of this work is to study ways of decentralized management
using reclosers of a local network with SHPPs in the rural Lahsh district of Rasht electric networks
of Tajikistan.

The paper is structured as follows: Section 2 provides an overview of the literature; Section 3
describes information about the object of study and a problem description; Section 4 discusses methods
and tools for solving the problems under consideration; Section 5 presents the results obtained, as well
as plans for further research; Section 6 gives the conclusions.

2. Literature Review

A review of research works devoted to the decentralization of grids control is presented in several
publications. In Wang et al. [14] study, a decentralized power control system consisting of three
integrated microgrids and working both independently and in parallel with the main power grid is
considered. The microgrid may contain such power sources as a microturbine unit (under distribution
grid operator control), wind turbines, solar panels operating stochastically. When the microgrid is
in interconnected mode, the distribution grid operator and each microgrid connected to the grid
are considered as separate objects with individual goals, which are minimization of operating costs.
In an islanded mode, each microgrid’s goal is to provide a reliable power source for its consumers.
Tani et al. [15,16] study power control in decentralized power systems using wind turbines with
photovoltaic panels and energy storage systems. An energy storage system is needed for a quick
response to correct the imbalance between generation and load caused by sudden fluctuations in wind,
sun, or consumers. In this work, the energy consumption control method based on a frequency approach
using a fluctuating distribution of wind power/load is shown. The main advantage of the control
method in Tani et al. [16] is that the used frequency approach takes the dynamic characteristics of the
power sources into account and allows them to increase the operating time of the main power sources
and reduce the size of the energy storage system. Kargarian et al. [17] considered the decentralized
algorithms to determine the optimum power flow in electric power systems. The algorithms offered in
their work can be used for the accelerated process of deciding large-scale problems of optimization that
are difficult to solve centrally, as well as to control systems with several independent operating objects.
Dou et al. [18] proposed double-tier strategies for decentralized online optimization management for
an isolated microgrid without communication network channels to ensure frequency security and
minimize operating costs. Qi et al. [19] considered a decentralized approach to optimal performance,
based on analytical cascading of goals, to optimize the performance of AC/DC hybrid distribution
networks. Yin et al. [20] have offered real-time decentralized energy management for multi-source
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hybrid energy systems that adapts to sudden changes in system configuration. Koukoula et al. [21] offer
a new fully decentralized method of controlling congestion in radial distribution networks. The authors
propose an algorithm for detecting and eliminating local restrictions on power flows without the need
for centralized control. Shi et al. [22] developed a distributed energy management strategy for optimal
microgrid performance, considering the distribution network and its associated limitations.

Reclosers are widely used in various countries around the world. Examples can be drawn from
several studies. Sazykin et al. [23] considered the decentralized control of 6–10 kV distribution grids
and planned to achieve this by installing reclosers that would act like sectionalizers. The placement of
reclosers for different versions of the grid design was determined analytically. Reliability indices of
the grid under consideration were calculated. Andrianova et al. [24] analyzed the use of reclosers in
6–35 kV rural distribution grids for decentralized control. Reliability indices such as SAIFI (System
Average Interruption Frequency Index) and SAIDI (System Average Interruption Duration Index),
as well as power supply quality indices, were calculated before and after installation of reclosers.
It was noted that the number of load shedding events reduced by 15 times, and the duration of load
loss was reduced by 26 times when reclosers were installed in distribution grids. Popovic et al. [25]
presented the methodology for optimizing and coordinating placement of reclosers and generators
in distribution grids. It was noted that optimal placement contributes to the improvement of system
reliability and voltage profile and the reduction of power losses. The locations of reclosers and
generators were determined using a genetic algorithm, which helped to improve the overall reliability
of the grid. The study [26] was devoted to finding the optimal placement of reclosers in the grid.
The reliability index SAIFI was calculated for various grid designs using the developed method.
De Bruyn et al. [27] studied the behavior of recloser in the case of distributed wind energy presence in
the grid. Misoperations and dead zones of relay protection were found and appropriately addressed
using the developed improved version of the method. Sazykin et al. [28] examined the criteria of
optimal recloser placement in 6–10 kV distribution grids. The results indicated a reduction in the
number and duration of load loss events, with the total energy not served value being reduced from
69.7% to 83.5%.

A review of research on divisive protection and emergency automation can be found in some
papers. Onisova [29] has reviewed the basic functions and principles of divisive protections in
electric power systems, formulated new requirements for divisive protections, and has proposed
improvements in devisive voltage automation. Fishov et al. [30] considered the problem of integrating
small generation into electric networks. They offer new technical solutions aimed at ensuring the
reliability and cost-effectiveness of systems with distributed small generation through highly automated
emergency control in line with the modern SMART GRID concept. Ilyushin et al. [31] presented the
features of separation of power plants from the power system with their own needs and load at a
voltage of 6–20 kV. Formulated requirements for the speed of unloading during the forced separation of
the power plant from the power system. Ilyushin [32] formulated possible limitations in the application
of multi-parameter dividing automation related to the peculiarities of active power regulation and
the settings of relay protection devices of generating installations of distributed generation facilities.
Shabad [33] considered schemes and calculations of the settings of divisive protection, designed to
prevent various emergencies in distribution electric networks and power plants. Kalentionok et al. [34]
examined the problem of creating divisive automation in industrial enterprises that have their own
generating units. The authors’ proposed algorithms for the operation of dividing automation, which
ensure the minimum possible power imbalances in the allocation of generating units for stand-alone
operation, as well as possible parameters for its operation.

3. Data and Materials

Small generation in Tajikistan includes SSG plants with a capacity of 10–10,000 kW. From 1990–2013,
many SHPPs of various capacities were built and commissioned in Tajikistan. Gulomzoda et al. [35]
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reflect this in their analysis of the development of small hydropower in Tajikistan. The construction
dynamics of these SHPPs is shown in Figure 1.
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Figure 1. Construction dynamics of the small-scale hydropower plants (SHPPs) from 1990–2013. 
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for power supply in the majority of the country’s regions, including the Lahsh district of the Rasht 

grids. The Rasht region has 6 SHPPs [3], and the generation retrospective is shown in Figure 2. 

Figure 1. Construction dynamics of the small-scale hydropower plants (SHPPs) from 1990–2013.

The country continues to build SHPPs under the “Long-term program for the construction of
SHPPs during 2009–2020.” Construction of 189 SHPPs is part of the program, with a total installed
capacity of 103 MW (Table 1).

Table 1. The prospect of SHPP building according to the program.

Stages/Capacity Short-Term Stage
(2009–2011), Units

Medium-Term Stage
(2012–2015), Units

Long-Term Stage
(2016–2020), Units

Up to 100 kW 20 21 21
100 to 1000 kW 34 37 25
Over 1000 kW 12 12 7

Total 66 70 53
Total power, kW 43,350 32,850 26,801

The “Barqi Tojik” Open Joint-Stock Holding Company (OJSHC) energy company is responsible
for power supply in the majority of the country’s regions, including the Lahsh district of the Rasht
grids. The Rasht region has 6 SHPPs [3], and the generation retrospective is shown in Figure 2.

As can be seen from the figures above, the plant utilization factor (which means the ratio of the
total actual energy produced or supplied by SHPPs in the Rasht grid over a definite period, to the
energy that would have been produced if the plant had operated continuously at the maximum rating)
differs from the assigned one, since the capacity of SHPPs is not used correctly. The reasons for the
decrease in power generation are mainly frequent disturbances in the grid leading to the shutdown of
power units, the operation of the generation units only in stand-alone mode, the impact of external
factors, and others.
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Frequent disturbances in the Lahsh grid strongly affect consumers, since they lose power both
from the main grid and from the local SHPPs. Consequently, it is crucial to solve the problem of
customer outage, reducing energy not served, ensuring the quality of supplied power, and improving
the reliability of the power system in the Lahsh district of the Rasht grid in Tajikistan. Figure 3 shows a
geographical map of the grid under study in the Lahsh district.
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4. Methodology

4.1. Microgrids Control and Operation

At present, the transition from a centralized control of power supply to a decentralized one,
especially for remote consumers, is highly relevant. In this case, it allows the use of electric power sources
distributed over the grid, including RES, called distributed generation (DG). Gulomzoda et al. [36] and
Ismoilov et al. [37] considered technologies for controlling the modes of local power supply systems
with a low generation, as well as their system effects. Along with the development of power electronics
and control theory, the concept of the Microgrid [9–11] arose. The microgrid is a small and independent
system that combines small-scale generation (SSG), consumers, energy storage systems, as well as
control devices, forming an integrated controlled power supply system. Figure 4 shows the basic
structure of a hybrid microgrid.Energies 2020, 13, x FOR PEER REVIEW 8 of 19 
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The microgrid can be either in interconnected mode, where the microgrid exchanges power with
the main grid through the distribution substation transformer, or in the islanded mode, where the
microgrid is disconnected from the main grid, and operates autonomously, serving its own local
demand using DG and other distributed energy resources. During contingency Microgrid can be
independently disconnected from the main grid and operate autonomously. After eliminating the
contingency, microgrid can again reconnect to the main grid. Thus, microgrid is an intelligent automated
system that is able to reconfigure by itself, maintain power balance and distribute power flows.

This study presents the solution of microgrid (on the base of small generation) connection problem
by means of synchronous coupling or the use of microgrid in the grid without centralized control.
A prerequisite is the integration of SHPPs into the grid, the integration of several local power supply
systems (on the base of SHPPs) into islanded or interconnected power systems.

4.2. Combined Use of Emergency Control and Reclosers

Proactive automatic islanding (PAI) is one of the most important elements for solving the problems
under consideration. Gezha et al. [38] considered automation to solve the problem of safe direct
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connection to the main network of a local power supply system based on small generation. This type
of emergency control has proven its efficiency, and it can be applied both to future SSG projects and to
existing facilities, which were not initially considered for use in that way. In order to ensure reliable
parallel operation of the microgrid in terms of emergency control, a unique method of emergency
control was suggested and implemented. Fishov et al. [39] developed a method for emergency control
of the mode of parallel operation of synchronous generators in electric networks. The concept behind
it is the proactive islanding of the microgrid at selected points when a contingency occurs. After that,
the transition to the island mode is made with the synchronization and transition to normal operating
conditions with a proper equipment loading schedule. This type of emergency control has already
proved its efficiency in test conditions. It was tested in the Berezovoe district, Pervomayskiy area of
Novosibirsk, in the Russian Federation.

Another key element of decentralized operation and control of Microgrids is an automatic
recloser. Fishov et al. [40] considered a decentralized reconfiguration of the electrical network with
a microgrid using advanced reclosers. Reclosers perform the functions of isolation and redundancy
in 6–10 kV distribution grids of radial and network types with long transmission lines. The recloser
includes a vacuum circuit-breaker, power conversion systems, an auxiliary DC control power system,
a microprocessor-based protection and control system, and SCADA communications ports and software.
Previously Buzin et al. [41] investigated modern relay protection and automation of 6–10 kV overhead
power lines.

The reclosing is that the lines connecting the microgrid to the power system are restricted for grids
with generation facilities (SSG in this case). The synchronization conditions should be met in order for
these lines to be switched on. If not, out-of-step switching may result in significant dynamic torque,
which represents a possible threat to generators and their auxiliaries. Hachaturov [42] presented the
principles of synchronization and the consequences of the non-synchronous inclusion of power plant
generators in the network. It should be considered when reclosers are to be installed in grids with
generation facilities. This work examines whether it is possible to use reclosers for the recovery of
power generators parallel operation.

Modern reclosers do not possess synchronization properties needed in grids with SSG penetration.
Since reclosers are located away from generators, the synchronization is not carried out using the
generator circuit breakers but the reclosers. The following modification was made: the synchronization
package was added to the control cabinet of a vacuum circuit-breaker. The functional control diagram
is shown in Figure 5.

In Figure 5, the high-voltage equipment includes the Q—vacuum circuit-breaker; ST1,
ST2—auxiliary transformers; TV1, TV2—voltage transformers, and a TA—current transformer.
The control cabinet is the power supply unit; the control system unit; the relay protection and
the control unit (RP and A); the measurement unit; the battery; the GSM modem (in case if SCADA
connection is not provided); the monitor and the synchronization package.

The recloser operation modification allows extending the range of control capabilities by adding
the synchronization package to the cabinet. The synchronization package receives such measurement
signals as voltage module and phase measured by voltage transformers (TV1, TV2) and frequency on
both sides of a vacuum circuit-breaker.

The following synchronization conditions are to be met:∣∣∣Ui −U j
∣∣∣ < dUph.∣∣∣δi − δ j
∣∣∣ < δperm.∣∣∣ fi − f j
∣∣∣ < sperm.

 (1)

where Ui—root-mean-square voltage value in the “from” bus of the transmission line, kV;
U j—root-mean-square voltage value in the “to” bus of the transmission line, kV; dUph.—permissible
voltage drop of the transmission line, kV; δi—voltage phase angle in the “from” bus of the transmission
line, el.; δ j—voltage phase angle in the “from” bus of the transmission line, el.; δperm.—permissible
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phase angle difference of the transmission line, el.; fi—frequency in the “from” bus of the transmission
line, Hz; f j—frequency in the “to” bus of the transmission line, Hz; sperm.—permissible slip of the
transmission line, Hz.

If based on values of the mentioned parameters, the synchronization conditions are met, then the
synchronizer transmits a signal to the control unit passing through the relay protection and control
unit in order to switch on the vacuum circuit-breaker. The process of synchronization can be seen on
the monitor.
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Such microprocessor-based devices as «AC-М» [43], «Sprint-М» [44] and «SYNCHROTACT» [45]
are used as synchronizers. These devices provide compliance with all synchronization conditions.
They carry out the functions of measurement, analysis, and, if necessary, synchronization parameters
adjustment. When all conditions are met, the synchronizer sends a signal to switch on the recloser.
Additionally, the synchronizers are capable of self-testing and displaying state data, which can be
considered as an advantage.

4.3. Methods of Ensuring Generators Stability

Parallel operation of power plants in a local grid or connection with a bulk power system exerts a
considerable impact on such things as improvement of adequacy and operational reliability of power
supply, power losses reduction, optimization of generation reserves to increase export interconnection
power flows, among others.

However, any unforeseen disturbance of the power system state (for example, any kind of fault)
causes swinging of synchronous machines, and if strong enough, machines or entire power plants
may fall out of synchronism, threatening the whole power system stability. Therefore, stability studies
of power plants are still of high relevance and importance, regardless of the way a power system
is controlled.



Energies 2020, 13, 3673 10 of 18

Swinging of synchronous generators might be caused by sudden sharp load drop or rise, outage
of a transmission line, a transformer, or a generator, with a fault being the most dangerous one.
Generally, transmission outages are followed by sudden changes in the output of power plants. Rotors
of generators and turbines respond to disturbances with some time delay due to significant inertia.
As a result, the power balance between generator and turbine shifts, resulting in excess torque of the
generator, in turn causing rotor speed increase.

According to the fixed-point iteration method [12], the rotor acceleration is:

α =
∆M
T j

=
∆P
T j

(2)

where T j—inertia constant, kg·m2/s2; ∆M = Mmech −Mel—excess torque of turbine, determined
by the difference between mechanical torque and electrical torque, Nm; ∆P—excess power of the
generator, MW.

Taking into account that angular acceleration of the rotor is the second derivative of rotor angle
with respect to time α = d2δ/dt2; and the difference between turbine power and generator power
output ∆P = P0 − Pm · sin δ, the swing equation of rotor is:

T j
d2δ

dt2 = P0 − Pm sin δ (3)

Solving the Equation (3) shows how to load angle changes over time and allows the estimation of
generator stability.

The stable parallel operation of two power plants can be estimated using the fixed-point iteration
method and equal area criterion. The power output of each power plant is:

P1 = E2
1y11 sinα11 + E1E2y12 sin(δ12 −α12)

P2 = E2
2y22 sinα22 − E1E2y12 sin(δ12 + α12

)  (4)

where P1, P2—the power output of the first and the second power plant, respectively; E1, E2—EMF
of the first and the second power plant, respectively; y11, y22, y12—self-admittances of both power
plants and mutual admittance, respectively; δ12—angle difference between power plants; α11, α22,
α12—absolute acceleration of the first power plant generator rotor, the second power plant generator
rotor, and their relative acceleration, respectively.

Absolute rotor acceleration of both power plants, and also their relative acceleration is:

α1 =
360 f
T j1

∆P1

α2 =
360 f
T j2

∆P2

 (5)

α12 = α1 −α2 = 360 f
(

∆P1

T j1
−

∆P2

T j2

)
(6)

where f —utility frequency;
∆P1, ∆P1—excess power of generators:

∆P1 = P0 − P1 · sin δ

∆P2 = P0 − P2 · sin δ

}
(7)

Hence, the stability of power plants working in parallel can be estimated based on the equal area
criterion (equality of deceleration and acceleration areas).
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The stability of systems with complex structures can be analyzed using the superposition technique.
The power equation for a system with n—generators is:

P1 = E2
1y11 sinα11 + E1E2y12 sin(δ12 −α12)+E1E3y13 sin(δ13 −α13)+ . . .+ E1Eny1n sin(δ1n −α1n);

P2 = E2E1y21 sin(δ21 −α21)+E2
2y22 sinα22 + E2E3y23 sin(δ23 −α23)+ . . .+ E2Eny2n sin(δ2n −α2n);

. . .
P(n−1) = E(n−1)E1y(n−1)1 sin(δ(n−1)1 −α(n−1)1)+E(n−1)E2y(n−1)2 sin(δ(n−1)2 −α(n−1)2)+. . .
. . .+E2

(n−1)
y(n−1)(n−1) sinα(n−1)(n−1) + E(n−1)Eny(n−1)n sin(δ(n−1)n −α(n−1)n);

Pn = EnE1yn1 sin(δn1 −αn1)+EnE2yn2 sin(δn2 −αn2)+. . .
. . .+EnE(n−1)yn(n−1) sin(δn(n−1) −αn(n−1))+E2

nynn sinαnn


(8)

Consequently, the excess power of each generator can be found using the methods mentioned
above, despite the complexity of the system structure. Expressions (5)–(7), and angle-time curves form
the basis of generators stability analysis.

4.4. Power Flow Studies Software

The Rustab software (package of RastrWin3) was used in this study. This software is widely
used in Russia and CIS countries for transient studies in power systems [13]. RastrWin3 includes
Eurostag and Mustang libraries, which makes power flow and optimization studies possible, as well
as adequacy estimation and faults analysis (including asymmetrical load flow).

The huge range of Rustab capabilities was used in the research in order to create a model of
the small hydro of the Lahsh Microgrid and to study its transient stability and power flow states.
The examples of models considered were a fault, substation relay protection, recloser-based PAI,
auto-reclosing with synchronism check, and others. In addition, seasonal variations of load were
simulated as well.

5. Results and Discussions

Simulations were carried out for a grid of rural areas in the Lahsh district in Tajikistan, Central
Asia. The two small hydro plants are located in the area. Power is supplied in either island mode or
using the external 10 kV grid interconnection. This is due to frequent disturbances in the external grid,
which may lead to generator outages in case of parallel operation and, therefore, the whole feeder
interruption. Reclosers installation in different parts of the feeder is suggested (Figure 6), considering
the high values of outage rates, loss of load, and energy not supplied.

Four reclosers were suggested to be placed, two of which (R1, R2) separated the microgrid from
the external one (highlighted part of the grid in Figure 6) and reconnected them if synchronization
conditions were met. Recloser R3 is used to connect (switched-on state) two parts of the microgrid
in the island mode and to avoid shunt connection (switched-off state). Recloser R4 was used for
under-frequency load shedding (UFLS).

Without those reclosers, generators of small hydropower plants would fall out of synchronism
each time a disturbance occurs. An example of such an event is shown in Figure 7.

Figure 7 shows that after a disturbance, the generator falls out of synchronism since its rotor angle
constantly increases. In this case, the power plant has lost its stability.

As suggested, reclosers are placed according to the power balance of power generators capacity
and customer load (Figure 6). Such placement allows automatic rapid separation of the microgrid from
the external grid during disturbances. The PAI was used to perform this function [20,21]. The improved
recloser was used for disturbance recovery. The combined use of all mentioned devices and methods
has prevented generators from falling out of synchronism and has maintained stable operation in the
island mode. In addition, the smooth transition from the latter to parallel operation with the external
grid was achieved (Figures 8–11).
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Figure 8 shows a curve of the change in the angle of the generator’s rotor, and Figures 9–11 show
the curves of the transition process on the microgrid network when an emergency disturbance occurs.
On the listed curves, the vertical bars indicated by the letters A–E are action indicators. Curves 9–11
show the following dependencies: changes in currents through reclosers R1, R2—I (R1), I (R2), A;
power of generators G1–G4—P (G1), P (G2), P (G3), P (G4), MW; Microgrid frequency—f, Hz. The PAI
acted according to the algorithms aimed at forcing generator outages depending on the value of the
microgrid load. The simulation scenario was as follows: when a fault occurs (Figure 6), PAI acts ahead
of current relay protection and sends signals to reclosers R1, R2 to switch off and to recloser R3 to
switch on (point A, at t = 1.5 s, Figures 9–11) and generators to turn off (point C, at t = 2.27 s, G1, G2
on Figure 9 and G3, G4 in Figure 10). It eliminates excess power in the microgrid being separated.
In case of power shortage in the Microgrid UFLS acts and sends a signal to recloser R4 to switch off

(point C, at t = 4.85 s, Figure 11); then current relay protection acts (point B at t = 2 s, Figures 9–11)
and sends signals to circuit-breaker Q6 to switch off, causing a fault to self-clear and circuit-breaker
Q6 to reconnect automatically (point D, at t = 5 s, Figures 9–11). When voltage appears on both
sides of reclosers R1, R2, the mechanism of auto-reclosing with a synchronism check is triggered. If
synchronization conditions are met, then reclosers R1, R2 switch on, and recloser R3 switches off (point
E, at t = 6, 5 s, Figure 9, Figure 10, and Figure 11). The power supply of customers is restored. No more
load losses occur due to the available generation in the grid.

The simulation results prove the efficiency of the suggested method, which leads to the
improvement of the small hydro plant stability. This, in its turn, provides the required power
quality and power supply reliability for customers in the Lahsh district. The suggested method of
power system control is planned to be applied in other regions of Tajikistan in Central Asia with
distributed generation. In addition, at the next stage of the study, this method will be applied for
studying voltage control capabilities, reliability analysis, and the influence of reclosers placement on
these parameters.

6. Conclusions

The suggested method of distributed synchronization of the microgrid connection to the external
grid was studied. The obtained data of the object under study was analyzed and used in the simulation.
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The wide range of Rustab package functions was used to simulate disturbances and study transient
stability of the small hydro plants in the Lahsh Microgrid in Tajikistan.

The suggested modified recloser was used in the study. Using such reclosers makes it possible to
decentralize emergency control, provide independent operation of the sectionalizing point, minimize
human error, ensure fast recovery of supply in areas untouched by disturbance, and, as a consequence,
keep the values of energy not served to a minimum. Automation and control in overhead power lines
based on reclosers were considered by Vorotnickij et al. [46,47].

According to the results of the simulation, the suggested method has a positive impact on the
ability of small hydropower plants in the Rasht grid to withstand disturbances. It provides the required
power quality and improves power supply reliability in remote areas of Tajikistan’s Lahsh district.
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