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Abstract: A multi-input-port bidirectional DC/DC converter is proposed in this paper for the energy
storage systems in DC microgrid. The converter can connect various energy storage batteries to the
DC bus at the same time. The proposed converter also has the advantages of low switch voltage
stress and high voltage conversion gain. The working principle and performance characteristics of
the converter were analyzed in detail, and a 200 W, two-input-port experimental prototype was built.
The experimental results are consistent with the theoretical analysis.
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1. Introduction

Due to global issues like the greenhouse effect and energy shortage, renewable energy generation
has developed rapidly in recent years [1–3]. Renewable energy generation is greatly affected by
natural environmental factors, output power of which exhibits intermittence and randomness [4,5].
DC microgrid and energy storage systems, like batteries and supercapacitors, are usually used to
smooth the fluctuating and stochastic output power of the renewable energy generation system [6,7].
A DC/DC converter with the capability of bidirectional energy conversion is the key device to connect
batteries and the DC bus of the DC microgrid.

In recent years, many studies have been conducted on bidirectional DC/DC converters [8,9].
Many battery cells were connected in series to achieve high voltage [10]; however, a charge equalization
circuit needs to be introduced to solve the problem of unbalanced battery charging [11]. On the contrary,
many batteries can also be connected in parallel to achieve high reliability [12], but the output voltage
of these batteries is low, and a high voltage gain converter is required in such an application [13,14].
Coupled inductors, switch capacitors, or voltage multiple cells can be used to improve the voltage
conversion ratio [15–19]; however, most of the above converters are single input and single output,
which means a large number of converters have to be used to connect each battery energy storage unit
to the DC bus respectively [20,21], as Figure 1a shows.
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Figure 1. A DC microgrid with various battery energy storage systems. (a) traditional converters; (b) 
proposed converter. 

The paper is organized as follows. The working principle, performance analysis, and extension 
of the proposed converter are described in Sections 2–4, respectively. In Section 5, the efficacy of the 
proposed converter is verified experimentally using a 200 W prototype. 

2. Operation Principle of the Proposed Multi-Input-Port Bidirectional DC/DC Converter 

The operation principle of the proposed converter will be presented in this section based on a 
topology with two input ports shown in Figure 2. To simplify the analysis, the following assumptions 
are made: 
1. The currents iL1 and iL2 of the inductors L1 and L2 are both continuous. 
2. All devices are ideal, regardless of the influence of parasitic parameters. 
3. The switches S1 and S2 are regulated by an interleaved control strategy with the duty cycle 

greater than 0.5. While the switches Q1 and Q2 are controlled by an interleaved control strategy 
with the duty cycle less than 0.5. The operation principle of the converter can be analyzed based 
on the discharging or charging modes. 
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Figure 2. A multi-input-port bidirectional DC/DC converter for energy storage systems in a DC 
microgrid. 

2.1. Discharging Mode (Boost) 

In this mode, S1 and S2 are interleaved with 180° phase shift to turn on, and Q1, Q2 are turned off. 
During a switching period Ts, there are three Sub-modes. The main waveforms of the converter 
working in steady state are shown in Figure 3, and the equivalent circuit of each Sub-mode is shown 
in Figure 4. The control signals of S1 and S2 are denoted by ugs1 and ugs2, respectively. 

Figure 1. A DC microgrid with various battery energy storage systems. (a) traditional converters;
(b) proposed converter.

In [22–24], some multi-input-port bidirectional converters have been presented; however,
these converters have some common disadvantages, such as a large number of devices, large size,
and high cost. A multi-input-port bidirectional DC/DC converter is proposed in this paper, many battery
energy storage units can be connected to the DC bus by this converter together, as Figure 1b shows.
Both in charging and discharging mode, the power flow to every battery can be controlled easily.
Apparently, the cost of the whole system can be reduced.

The paper is organized as follows. The working principle, performance analysis, and extension
of the proposed converter are described in Sections 2–4, respectively. In Section 5, the efficacy of the
proposed converter is verified experimentally using a 200 W prototype.

2. Operation Principle of the Proposed Multi-Input-Port Bidirectional DC/DC Converter

The operation principle of the proposed converter will be presented in this section based on a
topology with two input ports shown in Figure 2. To simplify the analysis, the following assumptions
are made:

1. The currents iL1 and iL2 of the inductors L1 and L2 are both continuous.
2. All devices are ideal, regardless of the influence of parasitic parameters.
3. The switches S1 and S2 are regulated by an interleaved control strategy with the duty cycle greater

than 0.5. While the switches Q1 and Q2 are controlled by an interleaved control strategy with the
duty cycle less than 0.5. The operation principle of the converter can be analyzed based on the
discharging or charging modes.
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Figure 2. A multi-input-port bidirectional DC/DC converter for energy storage systems in a DC 
microgrid. 

2.1. Discharging Mode (Boost) 

In this mode, S1 and S2 are interleaved with 180° phase shift to turn on, and Q1, Q2 are turned off. 
During a switching period Ts, there are three Sub-modes. The main waveforms of the converter 
working in steady state are shown in Figure 3, and the equivalent circuit of each Sub-mode is shown 
in Figure 4. The control signals of S1 and S2 are denoted by ugs1 and ugs2, respectively. 

Figure 2. A multi-input-port bidirectional DC/DC converter for energy storage systems in a
DC microgrid.
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2.1. Discharging Mode (Boost)

In this mode, S1 and S2 are interleaved with 180◦ phase shift to turn on, and Q1, Q2 are turned
off. During a switching period Ts, there are three Sub-modes. The main waveforms of the converter
working in steady state are shown in Figure 3, and the equivalent circuit of each Sub-mode is shown in
Figure 4. The control signals of S1 and S2 are denoted by ugs1 and ugs2, respectively.Energies 2020, 13, x FOR PEER REVIEW 3 of 18 
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Figure 3. The main waveforms in one switching period Ts.

Sub-mode 1 [t0–t1, t2–t3]: as Figure 4a shows, S1 and S2 are on. The voltages of the inductors
L1 and L2 are equal to uin1 and uin2, respectively. The inductor currents increase linearly at the rates
of uin1/L1 and uin2/L2, respectively. The current through the capacitor C1 is zero, while the capacitor
voltage is unchanged.

Sub-mode 2 [t1–t2]: as Figure 4b shows, S1 is on, and S2 is off. Same as Sub-mode 1, the voltage of
the inductor L1 is still uin1, and the current through it increases linearly at the rate of uin1/L1. However,
the current through the inductor L2 decreases at the rate of (uin2 + uC1 − uo)/L2. The capacitor C1 is
being discharged. The voltage of C1 decreases linearly, and the current of C1 is equal to iL2.

Sub-mode 3 [t3–t4]: as Figure 4c shows, S1 is off, and S2 is on. The current through the inductor
L1 decreases at the rate of (uin1 − uC1)/L1. The voltage of the inductor L2 is uin2, and the current of L2

increases at the rate of uin2/L2. The capacitor C1 is being charged. The current of the capacitor C1 is
equal to iL1, and the voltage of C1 increases linearly.
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Figure 4. The equivalent circuits in the discharging mode for (a) Sub-mode 1; (b) Sub-mode 2;
(c) Sub-mode 3.

2.2. Charging Mode (Buck)

In this mode, Q1 and Q2 are interleaved with 180◦ phase shift to turn on, and S1, S2 are off. During
a switching period Ts, there are three Sub-modes. The main waveforms of the converter working in
steady state are shown in Figure 5, and the equivalent circuit of each Sub-mode is shown in Figure 6.
The control signals of Q1 and Q2 are denoted by ugQ1 and ugQ2, respectively.

Sub-mode 1 [t0–t1]: as Figure 6a shows, Q1 is on, and Q2 is off. The current through the inductor
L1 increases at the rate of (uC1 − uin1)/L1. The voltage of the inductor L2 is uin2, and the current of
L2 decreases at the rate of uin2/L2. The capacitor C1 is being discharged. The voltage of C1 decreases
linearly and the current of C1 is equal to iL1.

Sub-mode 2 [t1–t2, t3–t4]: as Figure 6b shows, Q1 and Q2 are off. The voltages of the inductors L1

and L2 are uin1 and uin2, respectively. The inductor currents decrease linearly at the rates of uin1/L1

and uin2/L2, respectively. The current through the capacitor C1 is zero, while the capacitor voltage
is unchanged.

Sub-mode 3 [t2–t3]: as Figure 6c shows, Q1 is off, and Q2 is on. The current of the inductor L1

decreases at the rate of uin1/L1. However, the current through the inductor L2 increases at the rate of
(uo − uin2 − uC1)/L2. The capacitor C1 is being charged. The current of the capacitor C1 is equal to iL2,
and the voltage of C1 increases linearly.
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3. Performance Analysis

3.1. Voltage Conversion Ratio

Discharging Mode (Boost): According to the analysis of the above working principle, the operating
characteristics of the proposed converter can be derived from the three Sub-modes in one switching
cycle Ts, based on the voltage-second balance of the inductors L1 and L2.

DS1uin1 + (1−DS1)(uin1 − uC1) = 0 (1)

DS2uin2 + (1−DS2)(uin2 + uC1 − uo) = 0 (2)

From Equations (1) and (2), Equations (3) and (4) can be derived:

uC1 =
uin1

1−DS1
(3)

uo =
uin1

1−DS1
+

uin2

1−DS2
(4)

According to Equation (4), it can be clearly seen that the voltage conversion ratio of the proposed
converter is twice that of the traditional boost converter.

When the input voltages uin1, uin2, and the duty cycle DS1, DS2 are the same, respectively,
the voltage conversion ratio of the proposed converter can be derived:

MBoost =
uo

uin
=

2
1−DBoost

(5)

Charging Mode (Buck): According to the analysis of the above working principle, the operating
characteristics of the proposed converter can be derived from the Sub-three modes in one switching
cycle Ts, based on the voltage-second balance of the inductors L1 and L2.

DQ1(uC1 − uin1)+(1 −DQ1)(−uin1) = 0 (6)

DQ2(uo − uin2 − uC1)+(1 −DQ2)(−uin2) = 0 (7)

From Equations (6) and (7), Equations (8) and (9) can be derived:

uC1 =
uin1

DQ1
(8)

uo =
uin1

DQ1
+

uin2

DQ2
(9)

When the output voltages uin1, uin2, and the duty cycle DQ1, DQ2 are the same, respectively,
the voltage conversion ratio of the proposed converter can be derived:

MBuck =
uin

uo
=

DBuck

2
(10)

According to Equation (10), it can be seen that the voltage conversion ratio of the proposed
converter is half of that of the traditional buck converter.

3.2. Relationship between the Currents of the Two Inductors

Discharging Mode (Boost): During a switching cycle Ts, in Sub-mode 3, the capacitor C1 is charged
for (1 − DS1)Ts and the current of C1 is equal to iL1. In Sub-mode 2, the capacitor C1 is discharged for
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(1 − DS2)Ts, and the current of C1 is equal to iL2. In Sub-mode 1, the current of the capacitor C1 is zero.
Due to the ampere-second balance of the capacitor C1, the following can be derived:

IL1(1−DS1)Ts = IL2(1−DS2)Ts (11)

IL1(1−DS1) = IL2(1−DS2) (12)

When the duty cycles DS1 and DS2 are equal, the two input currents are also equal. Thus, automatic
current sharing is realized. The power of the two ports can be adjusted through controlling DS1 and
DS2, respectively.

Charging Mode (Buck): During a switching cycle Ts, in Sub-mode 1, the capacitor C1 is discharged
for DQ1Ts, and the current of C1 is equal to iL1. In Sub-mode 3, the capacitor C1 is charged for DQ2Ts,
and the current of C1 is equal to iL2. In Sub-mode 2, the current of the capacitor C1 is zero. Due to the
ampere-second balance of the capacitor C1, the following can be derived:

IL1DQ1Ts = IL2DQ2Ts (13)

IL1DQ1 = IL2DQ2 (14)

When the duty cycle DQ1 and DQ2 are equal, the two input currents are also equal. Thus, automatic
current sharing is realized. The power of the two ports can be adjusted through controlling DQ1 and
DQ2, respectively.

3.3. Voltage Stress of Switch

The voltage stresses of S1, S2, Q1, and Q2 can be derived as follows:

1. Discharging Mode (Boost):
uS1 = uC1 (15)

uS2 = uQ2 = uo − uC1 (16)

uQ1 = uo (17)

2. Charging Mode (Buck):
uS1 = uC1 (18)

uS2 = uQ2 = uo − uC1 (19)

uQ1 = uo (20)

3.4. Current Stress of Switch

Discharging Mode (Boost): To begin with the time of S1 turning on, in the following cycle Ts,
the inductor currents iL1, iL2 can be represented as

iL1 =

 IL1 −
uin1DS1Ts

2L1
+ uin1

L1
t, 0 < t ≤ DS1Ts

IL1 +
uin1DS1Ts

2L1
−

uC1−uin1
L1

t, DS1Ts < t ≤ Ts
(21)

iL2 =


IL2 +

1−DS2
2L2

uin2Ts +
uin2
L2

t, 0 < t ≤ (DS2 −
1
2 )Ts

IL2 +
uin2DS2Ts

2L2
−

uo−uC1−uin2
L2

[t− (DS2 −
1
2 )Ts], (DS2 −

1
2 )Ts < t ≤ Ts

2

IL2 −
uin2DS2Ts

2L2
+ uin2

L2
(t− Ts

2 ), Ts
2 < t ≤ Ts

(22)
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According to the three Sub-modes of the circuit, in a switching cycle, the currents through S1 and
S2 at every stage can be derived as follows:

iS1 =

{
iL1, 0 < t ≤ DS1Ts

0, DS1Ts < t ≤ Ts
(23)

iS2 =


iL2, 0 < t ≤ (DS2 −

1
2 )Ts

0, (DS2 −
1
2 )Ts < t ≤ Ts

2
iL2, Ts

2 < t ≤ DS2Ts

iL1 + iL2, DS2Ts < t ≤ Ts

(24)

From Equations (21)–(24), the currents through S1, S2, Q1, and Q2 can be derived as follows:

iS1 = iQ1 = IL1 +
uin1DS1Ts

2L1
(25)

iS2 = IL1 +
uin1DS1Ts

2L1
+ IL2 +

DS2 − 1
2L2

uin2Ts (26)

iQ2 = IL2 +
uin2DS2Ts

2L2
(27)

Charging Mode (Buck): To begin with the time of Q1 turning on, in the following cycle Ts,
the inductor currents iL1 and iL2 can be denoted by

iL1 =


uC1−uin1

L1
t, 0<t ≤ DQ1Ts

IL1 +
(uC1−uin1)DQ1Ts

2L1
−

uin1
L1

(t−DQ1Ts), DQ1Ts<t ≤ Ts
(28)

iL2 =


IL2 +

(uo−uC1−uin2)DQ2Ts
2L2

−
uin2
L2

( 1
2 −DQ2)Ts −

uin2
L2

t, 0 < t ≤ 1
2 Ts

IL2 −
(uo−uC1−uin2)DQ2Ts

2L2
+

(uo−uC1−uin2)
L2

(t− 1
2 Ts), 1

2 Ts < t ≤ ( 1
2 + DQ2)Ts

IL2 +
(uo−uC1−uin2)DQ2Ts

2L2
−

uin2
L2

[t− ( 1
2 + DQ2)Ts], ( 1

2 + DQ2)Ts < t ≤ Ts

(29)

According to the three Sub-modes of the circuit, in a switching cycle, the currents through Q1 and
Q2 at each stage can be derived as follows:

iQ1 =

{
iL1, 0<t ≤ DQ1Ts

0, DQ1Ts<t ≤ Ts
(30)

iQ2 =


0, 0 < t ≤ 1

2 Ts

iL2, 1
2 Ts < t ≤ ( 1

2 + DQ2)Ts

0, ( 1
2 + DQ2)Ts < t ≤ Ts

(31)

From Equations (28)–(31), the currents through S1, S2, Q1, and Q2 can be derived as follows:

iS1 = iQ1 = IL1 +
uin1(1 −DQ1

)
Ts

2L1
(32)

iQ2 = IL2 +
uin2(1 −DQ2

)
Ts

2L2
(33)

iS2 = IL1 +
uin1(1 −DQ1

)
Ts

2L1
+ IL2 −

uin2(1 −DQ2

)
Ts

2L2
+

uin2

L2
(

1
2
−DQ1)Ts (34)
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3.5. Power Flow

Discharging Mode (Boost): The inductor current iL1 increases as the duty cycle DS1 increases,
and the inductor current iL2 decreases as the duty cycle DS2 decreases. Since the two input voltages uin1,
uin2 are equal, the ratio of the power of the two ports is equal to the ratio of the two inductor currents.
Therefore, when DS1 < DS2, iL1 < iL2, iL1/iL2 < 1; when DS1 = DS2, iL1 = iL2, iL1/iL2 = 1; when DS1 > DS2,
iL1 > iL2, iL1/iL2 > 1. Making DS1: 0.5–0.8 as the x-axis, DS2: 0.8–0.5 as the y-axis, and iL1/iL2 as the
z-axis, the following three-dimensional figure can be obtained as Figure 7 shows.
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Figure 7. iL1/iL2 3D graph (Discharging Mode (Boost)).

Charging Mode (Buck): The inductor current iL1 increases as the duty cycle DQ1 decreases, and the
inductor current iL2 decreases as the duty cycle DQ2 increases. Since the two output voltages uin1, uin2

are equal, the ratio of the power of the two ports is equal to the ratio of the two inductor currents.
Therefore, when DQ1 < DQ2, iL1 > iL2, iL1/iL2 > 1; when DQ1 = DQ2, iL1 = iL2, iL1/iL2 = 1; when DQ1 > DQ2,
iL1 < iL2, iL1/iL2 < 1. Making DQ1: 0.5–0.2 as the x-axis, DQ2: 0.2–0.5 as the y-axis, and iL1/iL2 as the
z-axis, the following three-dimensional figure can be obtained as Figure 8 shows.
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3.6. Comparison of the Proposed Converter with Other Converters

Some quantitative comparisons between some existing multi-input-port topologies, and the
proposed converter are given in Table 1. As can be seen, compared to [22–24], the number of devices of
the proposed converter is less, which means fewer losses and a lower cost.

Table 1. Comparison of the converters.

[22] [23] [24] Proposed

No. of ports 3 4 3 3
No. of switches 12 4 6 4
No. of diodes 0 4 0 0

No. of inductors 6 4 2 2
No. of capacitors 3 5 2 2
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4. Extension of the Topology

4.1. Topology of the N-Input-Port Bidirectional DC/DC Converter

Based on the topology of the two-input-port bidirectional DC/DC converter shown in Figure 2,
the n-input-port bidirectional DC/DC converter topology can be derived as Figure 9 shows. To simplify,
assumptions are made as follows:

1. Currents of the inductors iL1, iL2, . . . , and iL2 are all continuous.
2. All devices are ideal, regardless of the influence of parasitic parameters.
3. Discharging Mode (Boost): during a switching period Ts, S1, S2, ..., and Sn interleaved with 360◦/n

phase shift are turned on with the duty cycle greater than (1 − 1/n), and Q1, Q2, ..., and Qn are
turned off. Charging Mode (Buck): during a switching period Ts, Q1, Q2, ..., and Qn interleaved
with 360◦/n phase shift are turned on with the duty cycle less than 1/n, and S1, S2, ..., and Sn are
turned off.Energies 2020, 13, x FOR PEER REVIEW 11 of 18 
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4.2. Voltage Conversion Ratio

Discharging Mode (Boost): Due to the voltage-second balance of the inductors L1, L2, . . . , and Ln,
it can be derived:

DS(i−1)uin(i−1) = (1−DS(i−1))(uC(i−1) − uC(i−2) − uin(i−1)) (35)

DSiuini = (1−DSi)(uo − uC(i−1) − uini) (36)

uCi =
i∑

p=1

uinp

1−DSp
(1 ≤ i ≤ n− 1) (37)

uo =
n∑

i=1

uini
1−DSi

(38)

When DS1 = DS2 = . . . = Dsn = DBoost, the ratio of the output voltage uo, and each input voltage
uini is the voltage gain Mi of each input port.

Mi =
uo

uini
(39)
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n∑
i=1

uini
uo

= 1−DBoost (40)

1
M1

+
1

M2
+ · · ·+

1
Mn

= 1−DBoost (41)

When uin1 = uin2 = . . . = uinn,

M1 = M2 = · · · = Mn =
n

1−DBoost
(42)

Charging Mode (Buck): Due to the voltage-second balance of the inductors L1, L2, . . . , and Ln,
it can be derived:

(1−DQ(i−1))uin(i−1) = DQ(i−1)(uC(i−1) − uC(i−2) − uin(i−1)) (43)

(1−DQi)uini = DQi(uo − uC(i−1) − uini) (44)

uCi =
i∑

p=1

uinp

DQp
(1 ≤ i ≤ n− 1) (45)

uo =
n∑

i=1

uini
DQi

(46)

When DQ1 = DQ2 = . . . = DQn = DBuck, the ratio of each output voltage uini and the input voltage
uo is the voltage gain Mi of each output port.

Mi =
uini
uo

(47)

n∑
i=1

uini
uo

= DBuck (48)

M1 + M2 + · · ·+ Mn = DBuck (49)

When uin1 = uin2 = . . . = uinn,

M1 = M2 = · · · = Mn =
DBuck

n
(50)

4.3. Relationship between the Currents of the Inductors

It is assumed that the average values of the inductor currents iL1, iL2, ..., and iLn are IL1, IL2, ...,
and ILn, respectively.

Discharging Mode (Boost): Due to the ampere-second balance of the capacitors C1, C2, . . . , and Cn,
it can be derived as follows:

IL1(1−DS1) = IL2(1−DS2) = · · · = ILn(1−DSn) (51)

When DS1 = DS2 = . . . = Dsn, IL1 = IL2= . . . = ILn. Thus, automatic current sharing is realized.
The power of all the ports can be adjusted through controlling DS1, DS2, . . . , and DSn, respectively.

Charging Mode (Buck): Due to the ampere-second balance of the capacitors C1, C2, . . . , and Cn,
it can be derived:

IL1DQ1 = IL2DQ2 = · · · = ILnDQn (52)

When DQ1 = DQ2 = . . . = DQn, IL1 = IL2 = . . . = ILn. Thus, automatic current sharing is realized.
The power of all the ports can be adjusted through controlling DQ1, DQ2, . . . , and DQn, respectively.
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In practical applications, the efficiency of the converter will drop along with the increase in the
number of input ports.

5. Experimental Results

To verify the analysis presented in the previous sections, experiments were conducted based on
a 200 W two-input-port prototype developed from the proposed converter. The specification of the
prototype is given in Table 2, and the experimental results are presented and discussed as follows.

Table 2. Specification of the prototype.

Parameters Values

Voltage (uin1, uin2) 24 V
Voltage (uo) 200 V

Output power (Po) 200 W
Switching frequency (f s) 100 kHz
Switch (S1, S2, Q1, Q2) C3M0280090D

Capacitors Co: 10 uF, C1: 4 uF
Inductors (L1, L2) 400 uH

5.1. Constant Duty Cycle

Discharging Mode (Boost): Figure 10a shows the waveforms of ugs1, ugs2, uin1, and uin2, where the
duty cycles are around 0.76. Figure 10b shows the waveforms of uo, uCo, and uC1. It can be seen that
the DC values of uC1 and uo are about 100 V and 200 V, respectively. The voltage conversion gain is
around 8.3, which is consistent with that calculated by Equation (5). Figure 10c shows that the voltage
stresses of S1, S2, and Q2 are all about 100 V, while the voltage stress of Q1 is about 200 V. These are
consistent with that obtained by Equations (15)–(17). Figure 10d shows that the currents of L1 and L2

are both about 4 A. Apparently, the measured results are all consistent with the previous analysis.
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Charging Mode (Buck): Figure 11a shows the waveforms of ugQ1, ugQ2, uin1, and uin2, the duty
cycles are near 0.24. Figure 11b shows the waveforms of uo, uCo, and uC1; it can be seen that the
DC values of uC1, uo are about 100 V, 200 V, and the conversion gain is approximately 0.12, which is
consistent with Equation (10). Figure 11c shows voltage stresses of S1, S2, Q2 are nearly 100 V, and the
voltage stress of Q1 is about 200 V, which are consistent with Equations (18)–(20). Figure 11d shows the
waveforms of iL1, iL2. The DC values of iL1, iL2 are both about 4 A; evidently, the measured results are
all consistent with the theoretical analysis.Energies 2020, 13, x FOR PEER REVIEW 14 of 17 
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5.2. Varying Duty Cycle

Discharging Mode (Boost): Figure 12a shows the changes of iL1 and iL2 when the duty cycle DS1

and DS2 are adjusted. With the increase of the duty cycle, the inductor current increases, and the power
of the branch circuit increases.
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Charging Mode (Buck): Figure 12b shows the changes of iL1 and iL2 when the duty cycle DQ1 and
DQ2 are adjusted. With the increase of the duty cycle, the inductor current decreases, and the power of
the branch circuit decreases.

5.3. Converter Efficiency and Conversion Ratio

Based on the experimental results, the converter efficiency and the conversion ratio are analyzed
and presented in this sub-section.

Discharging Mode (Boost): Figure 13a shows the curve of efficiency changing with output voltage
after changing the duty cycle and the curve of efficiency changing with output power after changing the
load. The calculated loss distribution of the experimental prototype is shown in Figure 13b. The main
losses are switching losses 9.59 W, anti-parallel diode losses 3.6 W, and inductor losses 2.874 W. As is
shown in Figure 13c, the voltage conversion ratio changes with the duty cycle. When the duty cycle is
more than 0.7, the difference between the actual gain and the theoretical gain gradually increases as
the duty cycle increases.
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Figure 13. Discharging mode (Boost): (a) efficiency curves of the prototype; (b) loss distribution of the
prototype; (c) conversion ratio (M) vs. duty cycle (D) graph.

Charging Mode (Buck): Figure 14a shows the curve of efficiency changing with output voltage
after changing the duty cycle and the curve of efficiency changing with output power after changing the
load. The calculated loss distribution of the experimental prototype is shown in Figure 14b. The main
losses are anti-parallel diode losses 9 W, switching losses 4.38 W, and inductor losses 2.874 W. As is
shown in Figure 14c, the voltage conversion ratio changes with the duty cycle. When the duty cycle is
less than 0.3, the difference between the actual gain and the theoretical gain gradually increases as the
duty cycle decreases.
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Author Contributions: Conceptualization, B.Z.; methodology, B.Z. and H.H.; software, B.Z. and H.H.; writing—
original draft preparation, H.H.; writing—review and editing, B.Z. and H.H.; supervision, H.W. and Y.L.; 
funding acquisition, B.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China, grant number 
51707103. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wu, Y.-E.; Hsu, K.-C. Novel Three-Port Bidirectional DC/DC Converter with Three-Winding Coupled 
Inductor for Photovoltaic System. Energies 2020, 13, 1132, doi:10.3390/en13051132. 

2. Zhu, B.; Zeng, Q.; Chen, Y.; Zhao, Y.; Liu, S. A Dual-Input High Step-Up DC/DC Converter with ZVT 
Auxiliary Circuit. IEEE Trans. Energy Convers. 2018, 34, 161–169, doi:10.1109/tec.2018.2876303. 

3. Zhu, B.; Ding, F.; Vilathgamuwa, D.M. Coat Circuits for DC–DC Converters to Improve Voltage 
Conversion Ratio. IEEE Trans. Power Electron. 2020, 35, 3679–3687, doi:10.1109/tpel.2019.2934726. 

Figure 14. Charging mode (Buck): (a) efficiency curves of the prototype; (b) loss distribution of the
prototype; (c) conversion ratio (M) vs. duty cycle (D) graph.
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A multi-input-port bidirectional DC/DC converter for DC microgrid energy storage system
applications is proposed in this paper. Comprehensive analyses on the working principle and
performance of the proposed converter are given. Experimental results are presented, and it is verified
that, compared to the traditional buck and boost converter, the proposed bidirectional converter has
the following advantages: (1) a wider range of voltage conversion can be achieved and the voltage
stresses of the switches are lower; (2) the power flow of each port can be adjusted easily through the
controlling of duty cycles; (3) the number of input ports of the proposed converter can be expanded,
which makes it more applicable.
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