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Abstract: Short-term load forecasting is integral to the energy planning sector. Various techniques
have been employed to achieve effective operation of power systems and efficient market management.
We present a scalable system for day-ahead household electrical energy consumption forecasting,
named HousEEC. The proposed forecasting method is based on a deep residual neural network,
and integrates multiple sources of information by extracting features from (i) contextual data
(weather, calendar), and (ii) the historical load of the particular household and all households present
in the dataset. Additionally, we compute novel domain-specific time-series features that allow the
system to better model the pattern of energy consumption of the household. The experimental
analysis and evaluation were performed on one of the most extensive datasets for household electrical
energy consumption, Pecan Street, containing almost four years of data. Multiple test cases show
that the proposed model provides accurate load forecasting results, achieving a root-mean-square
error score of 0.44 kWh and mean absolute error score of 0.23 kWh, for short-term load forecasting for
300 households. The analysis showed that, for hourly forecasting, our model had 8% error (22 kWh),
which is 4 percentage points better than the benchmark model. The daily analysis showed that our
model had 2% error (131 kWh), which is significantly less compared to the benchmark model, with
6% error (360 kWh).

Keywords: short-term load forecasting; day ahead; feature extraction; deep residual neural network;
multiple sources; electricity

1. Introduction

Electrical energy (EE) is one of the most significant driving forces of economic development,
and is considered essential to daily life. Although EE is a clean form of energy when it is
used, the production and transmission of electricity can have a negative effect on the environment.
Additionally, overproduction of EE is problematic, because storing excess electricity is challenging and
difficult even with today’s technological advances. Hence, a system that can accurately predict EE
consumption can be used for electricity production planning, and significantly reduce the problems
with storage and overproduction.

In recent years, with the introduction of deregulation and liberalization of the energy markets, EE
consumption forecasting has become even more relevant. An accurate short-term load forecasting
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(STLF) system can play a crucial role in effective power system operation and efficient market
management. Such a system has multiple benefits: (i) it can optimize the production process, thus
reducing the cost of overproduction and improving equipment utilization; (ii) it is eco-friendly,
with fewer resources used to produce electricity; (iii) it can help in optimizing power grid load and
strengthening reliability; (iv) it can potentially decrease EE consumption costs for households by better
planning the production/buying of EE in advance; and (v) it emphasizes EE trading possibilities.

The massive development of smart grid technologies in the residential sector brings many
challenges to the load forecasting community. It allows EE consumption to be obtained in close to real
time, and allows extraction of valuable data that both the supply and demand side can use for efficient
management of the electricity load network.

In recent years, there have been various data-driven approaches for modeling and forecasting EE
consumption. Most of them focus on industrial objects, factories, and companies, and some are more
focused on households. Furthermore, some focus on short-term forecasts (hourly, daily) with a small
prediction horizon (an hour in advance), and some focus on long-term forecasts (weekly, monthly).
The studies that focus on STLF with a large prediction horizon (at least one day ahead) are quite
limited. Therefore, in this paper, we present the household electrical energy consumption (HousEEC)
forecast system, which provides day-ahead household electrical energy (EE) consumption forecasts,
using a deep residual neural network (DRNN) that combines multiple sources of information. The key
contributions of the paper are as follows:

• A review of the existing EE consumption approaches and a highlight of their current limitations
(Section 2).

• An extensive analysis and evaluation of the Pecan Street dataset, the largest and richest household
EE consumption dataset (Section 3).

• A novel deep learning (DL) method with a scalable architecture that can work with different
numbers of households. It is based on DRNN and includes multisource feature extraction,
regression learning, and forecasting of hourly EE consumption of multiple households one day in
advance. The proposed DRNN uses pre-activation residual blocks and separate input branches
for different types of features (Section 4).

• Novel domain-specific historical time series, from which numerous time and frequency features
are extracted (Section 4). These features give new insight into the time-series dynamics and
significantly increase the performance of the forecast models.

• An extensive evaluation of the method, including: (i) a comparison of our proposed method
with seven machine learning (ML) algorithms, five deep learning (DL) approaches, and three
benchmark/reference approaches; (ii) error analysis of different application scenarios (hourly, daily
and monthly EE consumption); and (iii) a comparison of achieved results for household STLF
with results from other state-of-the-art approaches (Sections 5 and 6).

• A practical implementation of the system in a prototype web application, where ML models are
deployed and execute the forecasts on a daily basis (Section 7).

• A discussion about the results, the forecasting efficiency and its significance, and potential use of
the model in a commercial EE monitoring system (Section 8).

2. Related Work

Selecting a forecasting method depends on multiple factors, including the availability and
relevance of historical data, desired prediction accuracy, the forecast horizon, and so forth. In recent
years, the STLF problem has been tackled by utilizing various methods, each one characterized by
different advantages and disadvantages in terms of training complexity, prediction accuracy, limitations
in the forecasting horizon, etc. In general, the related work in STLF can be divided into two categories,
depending on the type of user (industrial entities or households) and method used (e.g., statistical,
ML, DL).
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2.1. Related Methods

With the advent of statistical software packages and artificial intelligence techniques, numerous
methods have been proposed to model future EE consumption and improve forecasting performance.
These methods can be divided into two categories: conventional statistical methods and methods
based on artificial intelligence (AI).

Statistical methods provide explicit mathematical models where the load is represented as a
function of several input factors. These were the first used methods, and for years represented the
benchmark among systems for STLF. All of these methods, which include smoothing techniques, data
extrapolation and curve fitting, assume that the load data have an internal structure. Autoregressive
moving average (ARMA) models were among the first used in STLF [1–3]. Soon they were replaced by
autoregressive integrated moving average (ARIMA) models [4] and seasonal ARIMA models [5] to deal
with time variance often exhibited by load consumption profiles. Other examples of statistical methods
used in STLF are multiple regression [6], exponential smoothing [7], adoptive load forecasting [8,9] and
Kalman filtering [10,11]. The major weakness of these approaches is their assumption of the linearity
of the observed system. EE forecasting is a complex multivariable and multidimensional estimation
problem, and these methods are not always suitable for finding the nonlinear relationship between the
independent influencing variables and the EE consumption.

On the contrary, advanced ML methods are suitable for finding patterns and regularities in
the data and use them to forecast future EE consumption. ML based methods have shown great
performance in the field of STLF. The most commonly used ML algorithms for STLF are support vector
machines (SVM) [12,13], random forest [14,15] and artificial neural networks (ANNs) [16]. However,
as shown in numerous studies and in the benchmark Global Energy Forecasting Competition 2012
(GEFCom2012) [17], very often, simple ML methods applied to manually crafted complex features
(polynomial and exponential interaction features combining multiple variables) achieve better and more
robust performance [18]. These features often use the lagged and recency effect, first introduced in [19].
One of the winning teams [20] at GEFCom2012 used lagged hourly and average daily temperature
variables in the competition. They applied a gradient boosting algorithm to learn the dependencies
between features and target variables. Another winning team at GEFCom2012 [21] used exponentially
smoothed temperature variables. They used generalized additive models and kernel regression for
long-term load and medium-term forecasting, and random forests for short-term load forecasting.

Over the past few years, DL has been a subject of intense study in many fields, especially in
time-series prediction. Deep neural networks (DNNs) have shown the capability to approximate any
complex function with arbitrary precision. In [22], the authors showed that some DNN architectures are
able to outperform classical ML approaches in the load forecasting task. The authors of [23] proposed
convolutional neural network (CNN), as an effective and accurate approach for household-level load
forecasting. They showed that CNN is able to capture short-term trends in load data and that a
data-augmentation technique can improve the load forecasting accuracy. Compared with conventional
feedforward neural networks, recurrent neural networks (RNNs) have the particular advantage of
coping with historical data through a feedback connection. In [24], the authors presented a deep
RNN to predict electricity consumption for commercial and residential buildings. As an extension
of RNN, long short-term memory (LSTM) networks have been used in the load forecasting field
in the last few years [25]. The authors of [26] utilized two types of LSTM networks (standard and
encoder-decoder architecture) to make predictions for one household. The authors of [27] proposed
enhanced-LSTM for EE consumption forecast of a metropolitan power system in France. Their method
takes into account the periodicity characteristic of the load consumption by using multiple sequences
of input time lags, and achieves higher performance than a single-sequence LSTM. Moreover, different
hybrid architectures have been explored in order to avoid the limitations of individual models. A
hybrid approach for STLF is presented in [28], where the authors processed the load signal in parallel
with a LSTM and CNN. The features generated by the two networks were then used as input in a
fully connected network in charge of forecasting the day-ahead load. The authors of [29] proposed



Energies 2020, 13, 2672 4 of 29

a hybrid model which combines general regression neural network (GRNN), minimal redundancy
maximal relevance technique and empirical model decomposition. The efficiency of the model is
validated on aggregated load data from a power system in China. It shows higher forecasting accuracy
than single GRNN and SVM. In [30], a hybrid method is proposed, which combines LSTM, empirical
mode decomposition and similar-days selection to build a prediction architecture for short-term load
forecasting. The authors concluded that the robustness of individual methods in the hybrid scheme
can be an advantage for the forecasting model.

2.2. Related Studies According to User Type

According to the type of user, EE consumption forecasting approaches can be divided into
those that focus on industrial entities (industrial consumption) and those that focus on households
(residential consumption). The industrial approaches focus on entities such as factories, enterprises and
companies, and have substantial commercial potential because industry consumes significant amounts
of EE. STLF for industrial entities in Spain is discussed in [31]. The authors presented a neuro-fuzzy
system with a backpropagation learning algorithm and compared the results achieved with those of
other techniques, such as multilayer perceptron and statistical ARIMA processes. In [32], the authors
present a model for STLF for a hospital in China. They combined LSTM and CNN and explored
the network performance by considering coupling of electrical loads, gas and heating. The authors
of [33] introduced an ARMA model for load forecasting of industrial companies, with focus on EE
consumption profiles where stochastic changes in the regime can be observed. In [34], a set of multiple
linear regression models are developed for modeling industrial loads. The data used in the study
were collected from an Italian factory. In this study, the authors showed how few qualitive variables
characterize the production schedule. In [35], the authors develop different models for forecasting the
next hour load using data from a Spanish industrial pole. With an optimized model for single-hour
prediction, a hybrid strategy was applied to build a complete day-ahead hourly load forecasting model.
In general, the studies related to industrial EE consumption provide more accurate models compared
to households, probably because industrial entities have strict regulations (i.e., shifts and working
time), which makes the forecasting less challenging.

On the other hand, residential EE consumption is more challenging to forecast. Each household
has its own pattern and electricity consumption profile, which are determined by the number of
occupants, their lifestyle, the household area, electrical appliances present in the household, etc.
Additionally, household-level EE consumption can vary considerably from one day to the next due
to work schedules, holidays, weather conditions, etc. Therefore, most of the approaches in this field
tend to avoid such uncertainty by using load aggregation: they focus on forecasting EE consumption
of clusters of households, usually grouped by location (i.e., buildings and neighborhoods). Load
aggregation usually reduces the inherent variability in load consumption, which results in smoother
load shapes that are more predictable. This effect is illustrated in Figure 1.

In [36], the authors used clustering method to divide different types of households. For each
cluster, a neural network is fitted, and their forecasts are added together to form predictions for the
aggregated load. The authors demonstrate that clustering significantly increases forecast accuracy.
Similarly, in [37], the authors propose a three-step process, consisting of clustering approaches, load
forecasting for each cluster, and aggregating the forecasts to obtain results at a system level. The authors
of [38] also show that aggregating more households improves the relative forecasting performance.
They compare load forecasting accuracy at various levels of aggregation for many forecasting methods.
In [39], the load consumption forecasting problem is addressed using random forest and support
vector regression (SVR). Predictions are made on three spatial scales, and the obtained results show
that combination of K = 32 clusters and random forest yields highest forecasting accuracy.

The systems that focus on neighborhoods lose vital information about each household; thus, they
have lower commercial value, i.e., such systems cannot monitor and learn the behavior of individual
households. Therefore, they cannot offer personalization and planning of EE consumption, which
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will be useful for cost reduction. There are just a handful of recent studies covering short-term load
forecasts (e.g., day-ahead, hourly) for individual households, since they are still very challenging.
The authors of [40] present a pooling-based deep recurrent neural network (PDRNN), which batches
groups of customer EE consumption profiles into a pool of inputs. The authors of [41] applied Kalman
filtering to single household data for a sampling period and forecast horizon of one hour. In [42],
an approach is proposed to model the load of individual households based on daily schedule pattern
analysis and context information.Energies 2020, 13, 2672 5 of 30 
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Figure 1. Weekly electrical energy (EE) consumption of: (a) 1 household, (b) 15 households,
(c) 50 households, (d) 100 households.

However, the authors focus on predicting consumption with a prediction horizon shorter than
one day, which does not have the same economic value as one-day-ahead hourly forecasts. Typically,
the results of day-ahead forecast are used as a baseline for planning of the 24 h period of the next
day, while forecasts with forecast horizon shorter than one day (intraday forecast) are mostly used for
adjustment of day-ahead purchases [43]. Accurate day-ahead forecast minimizes the possibility of
overproduction and underproduction, and satisfies load requirements in a more economical way, thus
reducing the total operation costs [44].

Our proposed solution for EE consumption forecasting includes short-term forecasting (day-ahead
forecast, for each hour of the day separately) for household consumption, which has significant
economic and industrial value. In our study, we focus on STLF of individual households, which
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we believe is very specific and challenging due to the variability in consumption and randomness
of households.

3. Dataset

3.1. Pecan Street Dataset

In order to develop a model that can accurately and reliably forecast the EE consumption,
we performed a thorough analysis of the existing datasets. We analyzed most of the datasets in this
domain and then selected Pecan Street dataset as the most appropriate one for our study. An extensive
analysis of other relevant datasets and their characteristics can be found in Appendix A.

The Pecan Street dataset is one of the richest datasets related to residential EE consumption.
It consists of EE consumption data, obtained from approximately 1000 households in the USA, mainly
Austin, Texas. The dataset contains the actual EE consumption values from each household in
one-minute intervals, collected by eGauge devices [45]. Our analysis is based on hourly household
EE consumption, given in kilowatt-hours (kWh). Descriptive statistics of the EE consumption are
provided in Table 1.

Table 1. Descriptive statistics of EE consumption.

Number of
Samples Minimum Maximum Mean Standard

Deviation
25th

Percentile
50th

Percentile
75th

Percentile

4,832,504 0.001 35.19 1.28 1.32 0.43 0.82 1.66

Figure 2 shows the average daily EE consumption, i.e., each line in the figure represents average
EE consumption for one day in the dataset. Each line is obtained by averaging the load consumption
values for each hour in the day separately. The dashed line represents the mean EE consumption at
hourly intervals.
Energies 2020, 13, 2672 7 of 30 

 

 

Figure 2. Average daily EE consumption. 

Additionally, the Pecan Street dataset contains extensive weather data for the observed region. 

STLF is mainly influenced by weather parameters, because heating, ventilation and air-conditioning 

(HVAC) are highly dependent on outdoor temperature, humidity, wind speed, etc. Figure 3 shows a 

two-dimensional heatmap of EE consumption. The heatmap represents average hourly consumption 

in appropriate time intervals with predefined colors, where warmer colors represent higher 

consumption. Figure 3 shows that there is a noticeable increase in average electricity consumption in 

the summer months. This is specific to this dataset, i.e., it is collected in Texas, USA, where the 

summer temperature is significantly high, and there is increased use of air-conditioning. Therefore, 

the steady increase in EE consumption during the summer months can be attributed to the use of air-

conditioners.  

 

Figure 3. Heatmap of average EE consumption in a week. 

The data used in this study were collected from 925 households for a period of almost four years 

(2015, 2016, 2017, and nine months of 2018). In order to accurately evaluate the proposed forecasting 

model’s performance, we divided the data into three parts: (i) 27 months were used for training data 

(6 even-numbered months of 2015, all of 2016, and the first 9 months of 2017). (ii) Six months (odd-

Figure 2. Average daily EE consumption.

Additionally, the Pecan Street dataset contains extensive weather data for the observed region.
STLF is mainly influenced by weather parameters, because heating, ventilation and air-conditioning
(HVAC) are highly dependent on outdoor temperature, humidity, wind speed, etc. Figure 3 shows a
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two-dimensional heatmap of EE consumption. The heatmap represents average hourly consumption in
appropriate time intervals with predefined colors, where warmer colors represent higher consumption.
Figure 3 shows that there is a noticeable increase in average electricity consumption in the summer
months. This is specific to this dataset, i.e., it is collected in Texas, USA, where the summer temperature
is significantly high, and there is increased use of air-conditioning. Therefore, the steady increase in EE
consumption during the summer months can be attributed to the use of air-conditioners.
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Figure 3. Heatmap of average EE consumption in a week.

The data used in this study were collected from 925 households for a period of almost four years
(2015, 2016, 2017, and nine months of 2018). In order to accurately evaluate the proposed forecasting
model’s performance, we divided the data into three parts: (i) 27 months were used for training
data (6 even-numbered months of 2015, all of 2016, and the first 9 months of 2017). (ii) Six months
(odd-numbered months) from 2015 were taken for validation data. (iii) The last 12 months were chosen
for test data (last 3 months of 2017 and 9 months of 2018).

3.2. Dataset Preprocessing

One of the most important steps towards developing an accurate ML model is data preprocessing.
This process prepares the data for analysis by dealing or removing the data that is incorrect, incomplete,
irrelevant, duplicated or improperly formatted. The preprocessing of the dataset included the
following steps:

• Handling incorrect values for certain variables—In particular, we encountered instances with
negative values for consumed electricity, which is impossible and indicates a mistake. In this case,
we were able to calculate the value from other variables available in the dataset. For instance,
we calculated the total EE consumption as the sum of consumed power from the solar grid and
power drawn from the electrical grid.

• Handling outliers (instances which greatly deviate from the expected range) and missing values—If
the outliers or missing values pertained to weather-related variables, the true value could be
extracted from other instances referring to the same moment in time. However, in the case that
the reported load consumption was incorrect from the start, the particular instance was omitted
from the dataset entirely.

• Handling sequential values for EE consumption that are identical—In some situations, the sensors
in certain households reported a constant value over a prolonged period of time. In this case, we
assumed there was a fault with the sensor. Due to the large number of distinct households in the
dataset, we could remove these instances.
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4. Methodology

In the day-ahead electricity market, generation companies and retailers submit supply and
demand orders for every hour of the following day. Therefore, the focus of our work was to create a
model that can forecast electricity consumption one day ahead, at 10:00, for every hour of the following
day (shown in Figure 4) [46].
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This timeline allows planning of the production for the following day in accordance with the
day-ahead electricity market. According to this timeline, we developed two models that make
predictions for different hours of the next day: one for the hours from midnight to 09:00, and one for the
rest of the day. The main reason for developing two models is that we want to include the 24-h-before
load consumption value for the hours from midnight to 09:00, which, at the time when the predictions
are made (at 10:00), are only available for these hours. We considered this as valuable additional
information that can improve forecasting for the first nine hours of the following day, because the
periodic nature of EE consumption makes the most recent EE consumption values the dominant factor
in STLF [47].

4.1. Feature Engineering

EE load forecasting is a complex multivariable and multidimensional estimation problem. The
impacts of many influencing factors that affect load consumption need to be studied in order to develop
a precise load forecasting model. Thus, we extracted several features from multiple sources, which can
mainly be grouped into two categories: contextual and historical load features.

4.1.1. Contextual Features

• Weather features

The weather is a crucial driving factor in EE consumption. That is why it is a common EE
consumption forecasting practice to include weather variables, such as wind speed, humidity and
precipitation intensity, in forecasting models. The factor that has the most influence on EE consumption
is temperature. Several weather-related features were extracted, and the main focus was on the
temperature-related features.

• Calendar features

The social element is part of the reason for the hourly, daily and weekly patterns in EE
consumption [48]. To allow forecast models to take into account the EE consumption variations
which are tied to days, times of the day and seasons, we included some calendar data as nominal
features. We also included information about the special days according to the area of interest,
Austin, Texas.
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• Interaction features

We also used interaction features, i.e., combinations of two existing features [49]. The hours in
the days of a week may result in different loads due to human activities. For instance, there may be
a smaller load on weekend mornings than weekday mornings, because people usually do not get
up as early as when they have to go to work. This results in lower EE consumption values. The
implementation of this group of features was simply done by multiplying two features.

For a full table with all extracted contextual features, see Appendix B.

4.1.2. Historical Load Features

Load consumption is highly related to historical load, due to its periodic nature. Thus, in this
study, historical loads of up to one week were used to predict the day-ahead hourly load.

• Standard features

Due to the strong daily patterns of EE consumption, it is highly correlated to consumption at the
same hour of previous days [50–52]. That is why the following lagged values were used in the training
process of the forecasting model:

1. Historical EE consumption values by individual household for particular hours: loadt-24h, loadt-25h,
loadt-26h, loadt-48h, loadt-49h, loadt-50h, loadt-72h, loadt-96h, loadt-120h, loadt-144h, and loadt-168h

2. Average historical load consumption values from all households for particular hours:
avg_loadt-24h, avg_loadt-25h, avg_loadt-26h, avg_loadt-48h, avg_loadt-49h, avg_loadt-50h,
avg_loadt-72h, avg_loadt-96h, avg_loadt-120h, avg_loadt-144h, and avg_loadt-168h

Features loadt-24h, loadt-25h and loadt-26h are used only for the first model, for the hours from
midnight to 09:00 (see Section 4).

• Domain-specific historical load features

Based on the fact that future EE consumption is highly related to historical load, we additionally
analyzed four types of time series. The first two take into account the strong daily pattern of EE
consumption, and consist of historical load data from the day previous to the day when the predictions
are made (all 24 h): one refers to the average load consumption in each hour, calculated from all
households present in the system, and the other refers to the load consumption of each household in
the same hours. The other two types of time series take into account the significance of the lagged
values of EE consumption related to the same hours of previous days. More specifically, one of these
time series consists of average values for load consumption (from all households) from hour 24, 48, 72,
96, 120, 144 and 168 prior to the forecasted hour, and the other consists of load consumption of each
household in the same hours. As mentioned before, the 24-h-before EE consumption value is only
used for instances referring to the first defined interval (midnight to 09:00). It should be noted that in
the previous section, the lagged values of EE consumption were used as actual features, but in this
section they are used for constructing time series from which additional time and frequency features
will be extracted.

To include valuable characteristics about the manner of EE consumption in the feature vector, for
each instance we generated a comprehensive set of features based on these four types of time series. The
features were extracted using the TSFRESH (https://tsfresh.readthedocs.io/en/latest/text/list_of_features.
html) Python package, which offers extraction of time and frequency domain features from time-series.
We generated 400 new features for each instance. These features include minimum, maximum, variance,
correlation, covariance, skewness, kurtosis, number of times the signal is above/below its mean, signal
mean change, its autocorrelations (correlations for different delays), etc. These new features give new
insight into time-series dynamics, and we believe that they can be significant in improving forecast

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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accuracy. Figure 5 shows how the four time series are constructed for a forecast for a particular
household at 08:00.
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4.2. Deep Residual Neural Network

DL is part of ML, and is based on artificial neural network architecture [53]. DL allows models
comprised of numerous processing layers to learn data representations with multiple levels of
abstraction. DL architectures have been applied to many fields, where they have produced results
comparable, or in some cases superior, to those of human experts.

One type of DNN that was recently proposed is the deep residual neural network (DRNN). This
type of deep network has performed extremely well on natural language processing tasks [54,55]
and has emerged as a state-of-the-art architecture in computer vision, image segmentation and object
detection [56,57] More recently, architectural variants of DRNN have also been used in load forecasting,
where they have shown improvement in aggregated load forecast compared to conventional regression
models [58,59]. Therefore, in this work we further explore the effectiveness of DRNN architecture in
day-ahead load forecasting for single households. A DRNN can easily be constructed by stacking
several residual blocks (Figure 6a). In the residual block, a mapping from x to Θ is learned, where Θ is



Energies 2020, 13, 2672 11 of 29

a set of weights related to the residual block. Accordingly, the general representation of the residual
block can be written as shown in Equation (1):

H(x) = F(x, Θ) + x. (1)
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The forward propagation of the structure, where k residual blocks are stacked, can be represented
as shown in Equation (2):

xK = x0 +
K∑

i=1

F(xi−1, Θi−1) (2)

where x0 and xK are the input and the output of the residual network, respectively, and
Θi = {Θ i,l

∣∣∣ 1 ≤ l ≤ L
}

is the set of weights related to the ith residual block, L being the number
of layers within the block. Basically, x has no parameters and only adds the output from the previous
layer to the layer ahead. The original structure of a residual block used for building a DRNN is shown
in Figure 6b.

As DRNNs gain more and more popularity in the research community, their architecture is more
intensely studied. There are many proposed interpretations of DRNN architecture and variants of
residual blocks. For our DRNN architecture, we used a pre-activation variant of the residual block,
proposed in [60]. In this residual block, the activation function rectified linear unit (ReLu) and batch
normalization (BN) are used as pre-activation of the weight layers, in contrast to the conventional
approach of post-activation. The residual block used for building the DRNN architecture is shown in
Figure 6c. In our case, instead of using convolutional layers as weight layers within the block, we used
dense layers, making the network more applicable for feature-based input.

4.3. Proposed Architecture for Household Electrical Energy Consumption Forecast (HousEEC)

In this section, we present our proposed architecture for STLF, which is based on a deep residual
neural network. First, we collect daily EE consumption, weather and calendar data. Weather
and calendar data are used for extracting contextual features (see Section 4.1.1). From the daily
EE consumption data, we extract standard historical load-related features referring to a particular
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household, or average values for all households in the system. Additionally, we define four time
series (see Section 4.1.2) to extract domain-specific historical load features. The values of the extracted
contextual and load-related features are then transformed in such a way that their distribution is
centered around 0 (has a mean value 0) with a standard deviation of 1. This is done feature-wise,
i.e., independently for each feature.

The structure of the DRNN for load forecasting is illustrated in Figure 7. The input features are
separated into two groups, and each group is used as input in a separate branch. One branch uses
contextual features in combination with the classical historical load features as input, and the other uses
only domain-specific features. The left branch starts with a residual block containing 32 neurons in the
fully connected layers, while the right branch starts with a residual block containing 64 neurons in the
fully connected layers. The use of fully connected layers instead of the original convolutional layers in
the residual blocks makes the network more applicable for feature-based input and regression [61].
The output of the first two branches is then concatenated with the raw input features, and as such is
fed to a DRNN with five additional residual blocks. Each residual block consists of two fully connected
layers, activation function and batch normalization. The fully connected layers in the blocks consist
of 64, 32, 16, 16 and 8 neurons, consecutively. All such layers in the residual blocks use ReLu as the
activation function. Mathematically, it is defined as f(x) = max(0,x), which makes it suitable for the
STLF problem, since the forecasted consumption cannot have negative values. Additionally, we used a
dropout rate of 0.1 in order to reduce the chances of overfitting. A total of 6 levels of residual blocks are
stacked (1 input level with 2 residual blocks and an additional 5 levels after the concatenation block),
forming a 12 layer DRNN.Energies 2020, 13, 2672 13 of 30 
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5. Experimental Setup

5.1. Evaluation Metrics

In order to evaluate and compare the models, several evaluation metrics were used:
root-mean-square error (RMSE) [62], mean absolute error (MAE) [63], and R2 score [64], which
are well-known metrics used to measure performance on regression tasks.

MAE and RMSE are directly interpretable in terms of the used measurement unit (kWh in our
case). RMSE is a measure that shows how much the residuals are spread out. Residuals are the
difference between actual and predicted values. The definition of RMSE indicates that large errors
have higher weight. Since in our regression problem the forecasted values are in a small range, large
errors are particularly undesirable. Since we want to penalize large errors more, we focused more on
RMSE. MAE shows how close the forecasted values are to actual values. It is calculated as a mean of
the absolute values of each prediction error on all instances of the test dataset. R2 expresses how well
the model replicates the observed outcomes, based on the proportion of total variation of outcomes
explained by the model. This metric is positively oriented, and its highest value can be 1. RMSE, MAE
and R2 scores are calculated as shown in Equation (3)–(5):

RMSE =

√√
1
n

n∑
i=1

(
ypredicted − ytrue

)2
, (3)

MAE =
1
n

n∑
i=1

∣∣∣ypredicted − ytrue
∣∣∣, (4)

R2 = 1−

∑n
i=1 (ypredicted − ytrue)

2∑n
i=1

(
ytrue − yaverage

)2 , (5)

where n is the number of data samples.

5.2. Reference Models

A reference model or benchmark uses simple summary statistics to create predictions. These
predictions are used to measure the benchmark performance, and then this result becomes what
we compare our ML model results against. For this study, we implemented three baseline models.
One model provides the amount of consumed EE by a specific user 24 or 48 h before the hour of
prediction. The 24-h-before value is used for prediction of instances in the first interval, midnight
to 09:00, and the 48-h-before value is used for prediction of instances in the second interval, 10:00 to
23:00. Another baseline model is the Vanilla multiple regression Benchmark model [19]. This model
uses multiple sources of data to predict future load; in particular, polynomials of temperature and
their interaction with calendar variables. To enhance the accuracy of STLF, we augmented the Vanilla
multiple regression model by adding some lagged load variables, as well as other combinations of
variables that enhance the interaction effect. The last benchmark model is seasonal autoregressive
integrated moving average (SARIMA) [65].

For more detailed explanation of the reference models, see Appendix C.

6. Experimental Results

To explore the performance of our proposed model in EE consumption forecast, we did a series of
experiments. Sections 6.1–6.5 present numerous comparisons of results for disaggregated hourly load
forecast, and Section 6.6 presents the efficiency of the proposed method in aggregated load forecast.
Section 6.7 presents a general model to overcome the cold start issue.
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6.1. Comparison of Forecasting Techniques

To verify the predictive performance of our STLF model, we made comparison with the previously
mentioned benchmarks (see Section 5.2), as well as other ML algorithms—linear regression [66],
K-nearest neighbors (KNN) [67], decision tree regressor [68], random forest [69], linear SVR [70],
gradient boosting [71,72] and xgboost [73] (see Appendix D). We also considered a classic DRNN,
comprising five residual blocks, that takes all features together as input for the first residual block.

Table 2 shows RMSE, MAE and correlation R2 score for each model and the two benchmarks.
A comparison of the performance of the models using different sets of features was also conducted. In
the first scenario, only contextual features and standard historical load features were used as input. In
the second scenario, the proposed domain-specific historical load features were also included. From the
results, the benefit of including domain-specific historical load features can be seen. In almost all cases,
the proposed domain-specific historical load features significantly improved the model performance.
In addition, the results show that our proposed input structure of the DRNN significantly improves the
forecasting accuracy. Our proposed model outperformed all other models in both scenarios, achieving
RMSE of 0.44 kWh, MAE of 0.23 kWh and R2 score of 0.90.

Table 2. Performance of methods using different feature sets.

Method Contextual + Standard Historical
Load Features

Contextual + Standard Historical
Load Features + Domain-Specific

Historical Load Features

RMSE ↓ MAE ↓ R2
↑ RMSE ↓ MAE ↓ R2

↑

Linear SVR 1.89 1.27 −0.80 1.91 1.28 −0.84
KNN 1.05 0.59 0.44 1.04 0.59 0.46

Decision tree 1.35 0.80 0.09 0.89 0.47 0.60
Linear regression 0.89 0.52 0.60 0.81 0.48 0.67
Gradient boosting 0.89 0.50 0.60 0.72 0.4 0.74

XGBoost 0.89 0.49 0.60 0.71 0.4 0.74
Random forest 0.96 0.59 0.54 0.64 0.33 0.79

DRNN 0.88 0.49 0.61 0.51 0.28 0.87

Statistical benchmark 1.13 0.60 0.35
SARIMA [65] 1.21 0.75 0.28

Vanilla benchmark [19] 1.00 0.58 0.50

HouseEEC (ours) 0.44 0.23 0.90

Computation time for execution of models’ training and testing is important for practical
implementation in a system, in the case of models retraining with new data and making daily
predictions. The training and testing times of the models used in the experiments are shown in Table 3.
In all, 2,544,962 instances were used for training and 1,654,499 for testing the models. The deep learning
models were trained and tested on NVIDIA Titan X GPU, with 12 GB GDDR5X memory and memory
bandwidth of 480 GB/s, while the conventional ML models were trained and tested on AMD Ryzen 7
2700 CPU with 8 cores and maximum clock frequency of 4.1 GHz.

Table 3. Computation time for model training and testing.

Method Training Time (s) Testing Time (s)

Linear SVR 2.428 3
KNN 239 10.053

Decision tree 1.849 6
Linear regression 204 3
Gradient boosting 8.383 12

XGBoost 12.232 22
Random forest 12.222 32

DRNN 948 331
HouseEEC 1.016 336
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6.2. Error Analysis of Application Scenarios

• Hourly forecast

Figure 8 shows the RMSE score for each hour of the day. The results are obtained by averaging
the errors for all users for each hour. Larger error can be observed for 03:00, 23:00, and the afternoon
hours when most people return from work and perform different activities at home.
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However, our model reports quite low error for the morning hours, which is significant because
morning hours are related to increased EE consumption, especially on workdays. Overall, there is no
significant difference in the reported error for any specific part of the day. Our model significantly
outperforms the benchmark model for each hour of the day.

• Weekday forecast

Figure 9 shows the RMSE score for each day of the week. The results are obtained by averaging
the errors for all users for each day. The benchmark makes a larger error for weekend days; they are
more challenging to forecast due to vacations, trips and irregularities in peoples’ lives. However, our
model performs similarly for each day of the week, regardless of the uncertainties that are usually
present on weekend days.
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• Monthly forecast

Figure 10 shows the RMSE score for each month of the year. The results are obtained by averaging
the errors for all users for each month. Both the benchmark and our proposed method follow a similar
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trend in terms of the prediction error; the RMSE score is lowest for the spring months when there
is no need for heating or cooling. The largest error made by our model can be observed for May,
when the cooling season starts. However, after some time, the increased trend of EE consumption
is incorporated into the extracted features, so the prediction errors start decreasing. This is a very
important characteristic of our model, since the rest of the summer months are also characterized by
increased EE consumption. This is certainly not the case with the benchmark model, which reports the
largest error when EE consumption is at its peak.
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6.3. Comparison with Other Deep Learning Approaches that Use only Time Series

We additionally made performance comparisons between our method and the most recent DL
architectures relevant to load forecasting, described in [74]. The authors present seven architectures
designed for 24 h prediction and evaluate them using the individual household electric power
consumption (IHEPC) [75] dataset, which contains 47 months of EE consumption data of single
households. Based on their results, we chose the five best architectures and evaluated them using the
Pecan Street dataset with classical feedforward neural network (FFNN), deep residual neural network
(DRNN), temporal convolutional network (TCN), long short-term memory (LSTM) and gated recurrent
unit (GRU). This DRNN uses different residual blocks compared to the one in our proposed model. All
mentioned networks are described in detail in the paper. For this evaluation, we used seven week-long
time series as input for the networks, two related to the historical load and five related to weather data.
The first time series is actual EE consumption by a specific household in the past week, and the second
is average load consumption by all households in the past week. The weather-related time series
are temperature, humidity, apparent temperature, wind speed and precipitation. The Pecan Street
dataset contains weather and load measurements for each hour, resulting in 168-hourly-measurements
long input and 24-hourly-measurements long output for the networks. Since the results in the paper
showed that including calendar information improves prediction accuracy, we additionally included
the following information: hour of the day, day of the week, month and work-/non-workday. For
training, we used the multiple input–multiple output (MIMO) strategy, meaning that a single predictor
is trained to forecast a whole 24 values-long output sequence in a single shot.

Table 4 shows the results: HousEEC shows better results in terms of RMSE, MAE and R2 compared
to end-to-end DL-based methods for load forecasting on the household level. The main conclusion that
can be drawn from these results is that the time-series consisting of 168 historical load values does not
contain enough information for proper training of DL end-to-end architectures. However, one-week
historical load appears to be enough for proper training of the feature-based DRNN, especially when it
is trained with extensive feature sets consisting of the domain-specific features which give new insights
into the load time-series dynamics.
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Table 4. Performance of end-to-end deep learning (DL) approaches.

Method RMSE MAE R2

FNN 1.05 0.70 0.47
DFNN 0.84 0.55 0.53
TCN 0.78 0.50 0.59

LSTM 0.81 0.54 0.54
GRU 0.80 0.54 0.54

HousEEC 0.44 0.23 0.90

6.4. State-of-the-Art STLF on Household Level

The STLF field lacks a unified comparison between conducted studies. There are many studies in
this field that address different segments related to load forecasting, and most of them are not directly
comparable. Nevertheless, we believe that a summary of the results achieved with state-of-the-art
methods might be informative and useful for new studies in a few ways. Authors can select the
most commonly used dataset for their work in order to produce comparable results, and it can help
researchers to avoid selecting nonrepresentative data for evaluation of their methods. In this section,
selected studies relevant to STLF on the household level are presented. The two criteria for study
selection were the forecasting horizon (up to 24 h) and the evaluation metric (RMSE). In order to
include more relevant studies, we additionally considered studies reporting normalized root mean
squared error (NRMSE), calculated as shown in Equation (6):

NRMSE =

√
1
n
∑n

i=1

(
ypredicted − ytrue

)2

1
n
∑n

i=1 ytrue
. (6)

We ended up with 12 relevant studies, including ours. Table 5 presents a summary of the studies
in terms of forecasting horizon, number of households used for evaluation, duration of the test data,
and results achieved in terms of RMSE (NRMSE). One parameter that should be considered in this
comparison is the size of the data used for evaluation. EE consumption is highly affected by the weather;
a lot of electricity is used for cooling in summer and heating in winter. This leads to the conclusion that
studies that use shorter periods for their evaluation might present unreliable results without checking
model performance in different seasons. Only one of the selected studies evaluated their methods
using data collected in a period of 12 months. In order to show how robust the proposed methods are,
more households are needed for evaluation. This is because there are different types of users, such as
elderly people who spend most of the time at home, people who go to work, students who have a
dynamic lifestyle, etc. Only four studies considered datasets with fewer than 100 households.

Table 5. Summary of state-of-the-art STLF studies.

Authors Forecasting
Horizon

Number of
Households

Duration of
Evaluation RMSE NRMSE

Shi et al. [40] 1 h 920 1 month 0.45 –
Lusis et al. [76] 30 min 27 28 days 0.52 –

Muralitharan et al. [77] 24 h – – 0.62 –
Gasparin et al. [74] 24 h 1 12 months 0.75 –

Yildiz et al. [78] 24 h 14 – 0.80 –
Ali et al. [79] 1 h 34 6 months 0.80 –

Ganz et al. [80] 24 h 74 2 months 0.85 –
Gerossier et al. [81] 24 h 226 2 months – 0.43

Vos et al. [82] 24 h 200 6 months – 0.53
Wijaya et al. [83] 24 h 782 6 months – 0.61

Humeau et al. [50] 24 h 782 6 months – 0.80

HousEEC 24 h 297 12 months 0.44 0.34
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For our work, we addressed the previously mentioned challenges; our model provides forecasting
one day ahead, and the results are evaluated on 297 households over a period of one year. We believe
that our results are very promising, considering that they show great performance of the model for a
large number of households evaluated for a period of 12 months.

6.5. Analysis of Different Lengths of Training Set

Over time, new households with different EE consumption patterns can appear in the forecasting
system. Therefore, it is a common practice for forecasting models to be trained with new data after a
certain time. This section presents the HousEEC model’s performance for three subsets of the initial
test set, when additional data is used for training. For comparison, we used the final HousEEC model
(trained with 27 months) to predict the EE consumption of the three new test subsets. Table 6 shows
the RMSE, MAE and R2 scores for different train-test splits.

Table 6. Performance of models with different train-test splits.

Train-Test Splits (M—Months).

27 M vs. 9 M 30 M vs. 9 M 27 M vs. 6 M 33 M vs. 6 M 27 M vs. 3 M 36 M vs. 3 M

RMSE 0.43 0.46 0.47 0.48 0.45 0.45
MAE 0.28 0.27 0.27 0.28 0.24 0.25

R2 0.92 0.9 0.9 0.9 0.9 0.92

Even though it is expected that constant inclusion of new data expands the knowledge of the
existing model, the results from this analysis showed that there was no significant benefit of it when
there were no changes in the dataset in terms of new households.

6.6. Aggregated Consumption Forecasting

Forecasting of aggregated load can be implemented by the standard strategy of direct forecast
of the aggregated load, or by aggregating the forecasts for individual households. In Figure 11, we
observe the curve of aggregated forecasts for all households and compare it to the actual aggregated
load curve. The observed period is the first week of July. It is one of the hottest months in the year,
characterized with increased EE consumption due to air-conditioning (Figure 3). Since the peak EE
consumption is the most challenging to forecast, we more closely observed the model’s performance
for a whole week in July—the month during which the EE consumption is the highest in our dataset. It
is obvious that the forecast successfully follows the trend of actual consumption, even for July 5, when
a significant drop of EE consumption is noted, which is not typical for the time period observed.
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Finally, we calculated total consumption of all households and total error for hourly and daily
analysis. The hourly analysis showed that, on average, the aggregated EE consumption of the
households is 263 kWh. Our model makes 8% error on average per hour forecast (22 kWh); the Vanilla
multiple regression benchmark makes 12% error (32 kWh). The daily analysis showed that, on average,
the aggregated EE consumption of all households is 6140 kWh. Our model makes 2% error on average
per day forecast (131 kWh); the baseline makes 6% error (360 kWh).

6.7. Cold Start Issue

In order to predict next-day EE consumption of a new household in the system, the HousEEC
model requires the household’s historical EE consumption of the previous week. This means that
it suffers from a one-week cold start, which is a technical limitation of the model. To overcome this
limitation, we trained an additional general model that does not use household-specific standard
historical load features and domain-specific historical load features that are extracted from the third
type of time-series (see Figure 5). This model will to serve as a model for prediction of household EE
consumption for only the first week. We used the same HousEEC architecture, and the only difference
was the number of input features. The performance of this model on the same test set used in the
previous experiments can be seen in Table 7. As expected, this general model provided less precise
results compared to the final HousEEC model. However, we consider these results as acceptable, given
that this general model would be used for only a short period of time in an actual implementation of
the system. The presented results are also additional evidence of the significance of domain-specific
historical load features for a particular household.

Table 7. Comparison of performance of general and HousEEC models.

Method RMSE MAE R2

General model 0.50 0.26 0.87
HousEEC 0.44 0.23 0.90

7. HouseEEC System Prototype

This section presents the practical implementation of the HousEEC system and deployment of
the ML model in a prototype web application. The system enables end users to quickly and easily
access a service that allows different analyses. One of the most important features of this system is that
it can be easily implemented in larger systems that have different monitoring devices for electricity
consumption in households. The only prerequisite for implementing such a system for analyzing and
forecasting electricity consumption is access to the measured values of household EE consumption.
The system contains three main modules:

• Graphical user interface (GUI), through which forecasts of EE consumption can be accessed.
• Back end, which provides the functionality that is served to users through the graphical interface.

This section is also responsible for communication with the database, deployment and launch of
the forecast module, and similar functions. It also provides application program interfaces (APIs)
for interconnection with the ML module and the GUI.

• ML module, which is responsible for deployment of the ML model and its practical use. It contains
all the steps required for an ML pipeline: preprocessing data and dealing with missing data;
extracting features; and predicting with the ML model. For the implementation, we used libraries
including Pandas, Sklearn, NumPy, Tsfresh, SciPy, Keras and Tensorflow.

A visualization of the system and its households is shown in Figure 12. For better visualization,
multiple households that are very close geographically are presented as a group (blue circles on the
map). Note that this is a simulation, and the geographic locations are for illustration purposes only;
the dataset does not contain location information about the households. Next, the application provides
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access to a table of measured EE consumption of all households for the last 24 h. In addition, there is
an option to search for a specific household, which can provide insight into its individual time series of
EE consumption. This table also enables easy control of the accuracy of household measuring devices:
whether they show values or whether there are erroneous values in the metered data (negative values
for consumed electricity or values outside the expected range). If unexpected data are spotted in the
table, they can be deleted from the database, preventing them from affecting prediction by the ML
model in the following days.
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The next service of the system represents daily predictions of EE consumption for each hour
of the next day. These forecasts are obtained by executing the ML model at 10:00 every day. This
allows sufficient time for planning the actions of the day-ahead electricity market, which, as mentioned
before, closes at 12:00. Although forecasts are obtained at the household level, they are presented at
the aggregated level for all households. Figure 13 shows three lines, representing predicted electricity
consumption achieved by the three chosen models: random forest, benchmark and our final HousEEC.
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The final service offered by the system is the performance analysis of the ML models (Figure 14).
With this service, users can load predictions for the past period and compare them to actual consumption
values. First, the user selects the interval of interest and the models. Then the system outputs the
predictions and true consumption. For example, Figure 14 shows predictions of the random forest and
HousEEC models and the true consumption for the randomly selected period from 1–15 June 2018.
The user can visually inspect the model errors.
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When using real-time data collection devices, it is inevitable that some amount of data gets lost
due to different circumstances (sensor fault, communication error, environmental disturbance, etc.). In
this context, the use of techniques that deal with missing data is a crucial part of the implementation of
a forecasting system. To guarantee that our forecasting system would work smoothly, we considered
two cases of missing data and appropriate techniques to handle it. The first case is missing values
of EE consumption for one hour for a particular household. For this case, we implemented linear
interpolation, a mathematical method that adjusts a function to the existing data and uses it to
extrapolate the missing data. The second case is when sensor readings are missing for two or more
consecutive hours for a particular household. In this case, the missing values are replaced with the
forecasted values for those hours by the HousEEC model (or the general model, if the missing values
occur in the first week of the data collection process for the household; see Section 6.7).

8. Conclusions

The paper presents the HousEEC system, which provides day-ahead household EE consumption
forecasting using a deep residual neural network. The experimental evaluation was performed on
one of the richest datasets for household EE consumption, the Pecan Street dataset. The DL approach
combines multiple sources of information by extracting features from (i) contextual data (e.g., weather,
calendar), and (ii) the historical load of the particular household and all households present in the
dataset. Additionally, we computed novel domain-specific time-series features that allow the system
to better model the pattern of household energy consumption. Their contribution to reducing the error
is shown in Table 2. Finally, we assessed performance by comparing the results achieved with our
model with those of seven other ML algorithms, five DL and two benchmarks widely used in this area.

The experimental results show that in all cases, our model outperformed every other algorithm
and approach, achieving RMSE of 0.44 kWh, MAE of 0.23 kWh and R2 score of 0.90. The analysis
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shows the great potential of including our domain-specific historical load features in improved load
forecasting. The hourly analysis showed that all customers used 263 kWh per hour on average. Our
model makes 8% error on average per hour forecast (22 kWh), which is 4 percentage points better than
the benchmark model results. The daily analysis showed that all households used 6140 kWh per day
on average; our model makes 2% error on average per day forecast (131 kWh) and the benchmark
model makes 6% (360 kWh). The comparison between end-to-end DL architectures and our proposed
DL feature-based architecture showed that our method performs better, achieving significantly lower
RMSE compared to the best performing end-to-end DL architecture, the temporal convolutional
network. We believe that the main reason for this improvement is the domain-specific features, which
give the algorithms the most relevant information derived from the raw data for future load forecasting.
According to the analysis of similar studies for STLF for households, we can say that our achieved
results are very promising compared to the state-of-the-art approaches. We also believe that our study
shows reliable results because the method was tested on a significantly large number of households
over 12 months using a 24 h forecasting horizon.

The proposed method, which predicts EE consumption on an individual household level, offers
great commercial potential because it is scalable and not dependent on the current number of households
in the system. In addition, predicting individual forecasts enables their aggregation, which yields
better forecasting for the aggregation level compared to the conventional strategy of direct forecast of
the aggregated load [25,84]. Our method also has significant value because it is not dependent on the
number of households included in the system. Implementation of the system does not suffer from
cold start; we addressed the cold start problem by introducing a new general model that does not use
household-specific historical load features. This model is intended to provide predictions for each
new household that appears in the system for the first week, until the required data for the HousEEC
model is collected. Another important detail that we considered in the system implementation is the
occurrence of missing data. We tackled this by using two techniques, interpolation and the use of
forecasted values to fill the missing data in the EE consumption of a particular household.

We expect that the final model could perform well on other datasets which contain EE consumption
data for households with similar economic status, located in places with similar weather conditions.
It was trained with data from a large number of households, which make it more general, robust and
able to adapt to many different EE consumption patterns. Additionally, if the HousEEC architecture
is used for model re-training with new data, we expect it to show equally good performance, since
it incorporates data from multiple relevant sources that affect the EE consumption of households.
However, further investigation of the model’s performance on other datasets is considered for
future work.

Another improvement would be to introduce additional features, such as EE price, number
of household members, age of users, daily schedule of users (working hours), size of household,
and means of heating and cooling. We believe that these attributes would improve the accuracy;
however, this requires additional private information about households, which might not be easy
to obtain.

Finally, we plan to introduce the clustering of households, because there are different trends and
patterns for each household in the dataset and there are large variations in the electricity consumption
patterns at the household level. A clustering algorithm would group similar households into clusters
and, in a way, define household profiles. This way, there will be several prediction models for different
clusters of households. We believe this can increase the forecasting performance, because there are
several types of users (active users who regularly go to work, older users who spend the biggest part
of the day at home, etc.), and it is more difficult for the model to acquire a knowledge about the EE
consumption characteristics of different users.
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Appendix A

Table A1. Related datasets.

# Dataset User Type: Industrial
(I)/Household (H)

Collection
Period (Years)

Data Sampling
Resolution

No. of
Users

Weather
Data

Public
Access

1 Pecan Street [85] H 4 * 1 min 1000 * Yes Yes **
2 REFIT [86] H 2 8 s 20 Yes Yes
3 PLAID [87] H 0.5 1 s 56 No Yes
4 UK-DALE [88] H 2 1 s 5 No Yes
5 GREEND [89] H 1 1 s 8 No Yes
6 ECO [90] H 0.7 1 s 6 No Yes
7 REDD [91] H 0.3 1 s 10 No Yes
8 IHPEC [75] H 4 1 min 1 No Yes
9 HES [92] H 1 2 min 24 No No

10 CER [93] H 2 30 min 5000 No No
11 DOE [94] I 2 1 h 11 Yes Yes
12 EnerNOC [95] I 1 5 min 100 Yes Yes
13 GEFCom [96] I 4.5 1 h 1 Yes Yes

14 Industrial
Machines [97] I 0.3 1 s 1 No Yes

15 NREL RSF Measured
Data [98] I 1 1 h 1 No Yes

* Ongoing collection. ** Public access for research purposes by university members.

Appendix B

Table A2. Contextual features.

Weather Features Interaction Features Calendar Features

Tt Tt × H Day of week
Tt

2 Tt
2
× H Day of month

Tt
3 Tt

3
× H Month

Tt-24 Tt ×M Hour
Tt-25 Tt

2
×M Holiday

Tt-26 Tt
3
×M Working day

Tt-48 Tt × D
Tt-49 Tt

2
× D

Tt-50 Tt
3
× D

Tt-72 D × H
Tt-96 Tdavg × H
Tt-120 Tdavg

2
× H

Tt-144 Tdavg
3
× H

Tt-168 Tdavg ×M
Tdavg* Tdavg

2
×M

Tdavg
2 Tdavg

3
×M

Tdavg
3

humidity
wind speed
precipitation

apparent temperature

T, temperature; Tdavg, daily average temperature; H, hour; D, day of week; M, month.
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Appendix C

The Vanilla multiple regression benchmark model is a load forecasting model that uses multiple
sources of data to predict future load; in particular, polynomials of temperature and their interaction
with calendar features. The model can be defined as follows:

Lt = β0 + β1Trendt + β2Mt + β3Wt + β4Ht + β5WtHt + β6Tt + β7T2
t + β8T3

t
+ β9MtTt + β10MtT2

t + β11MtT3
t + β12HtTt + β13HtT2

t + β14HtT3
t

(A1)

where Lt is the load forecast for time t; βi are the coefficients calculated using the ordinary least square
method; Trendt is an increasing number which presents a linear trend at time t; Mt, Wt and Ht are
the month of the year, day of the week and hour of the day for time t, respectively; and Tt is the
temperature for time t.

The final benchmarking Vanilla model used in this work is defined as follows:

Lt = β0 + β1Mt +β2Wt + β3Ht + β4WtHt + β5Tt + β6T2
t + β7T3

t + β8MtTt

+ β9MtT2
t + β10MtT3

t + β11HtTt + β12HtT2
t + β13HtT3

t + β14Lt−26

+ β15Lt−25 + β16Lt−24 + β17Tt−26 + β18Tt−25 + β19Tt−24

+ β20TdavgH + β21T2
davgH + β22T3

davgH + β23TdavgM + β24T2
davgM

+β25T3
davgM + β26Tt−26H + β27T2

t−26H + β28T3
t−26H + β29Tt−25H

+β30T2
t−25H + β31T3

t−25H + β32Tt−24H + β33T2
t−24H + β34T3

t−24H
+β35Tt−26M + β36T2

t−26M + β37T3
t−26M + β38Tt−25M + β39T2

t−25M
+β40T3

t−25M + β41Tt−24M + β42T2
t−24M + β43T3

t−24M

(A2)

where Tdavg is the average daily temperature from two days before the forecasted day. This formula
represents the benchmark for obtaining the forecasts for the instances from the first interval, from
midnight to 09:00. Analogously, for the instances form the second interval (from 10:00 to midnight),
instead of using values referring to the time before 24, 25 and 26 h, we used values referring to the time
before 48, 49 and 50 h from the forecasted hour. Additionally, we removed the trend variable, since our
formulation of the forecasting problem does not meet the requirements for its calculation.

Autoregressive Integrated Moving Average (ARIMA) is one of the most commonly used methods
for time-series forecasting. In general, the ARIMA model is noted as ARIMA(p,d,q), where the p
parameter is an integer that confirms how many lagged series are going to be used to forecast periods
ahead; d parameter tells how many differencing orders are going to be used to make the series
stationary; and q is the number of lagged forecast error terms in the prediction equation. Seasonal
Autoregressive Integrated Moving Average (SARIMA) is seasonal ARIMA and it is used with time
series with seasonality. This model is generally termed as SARIMA(p,d,q) × (P,D,Q)S.

Appendix D

• Linear regression attempts to model the relationship between the features and the dependent
variable (in our case EE consumption) by fitting a linear equation to observed data. It learns a
model by fitting a linear equation to the training data. The model optimizes a function so that the
square of the errors is minimized.

• K-nearest neighbors (KNN) is an algorithm that uses feature-vector similarity to predict the value
of interest. This means that for each feature vector in the test data, it finds the K-nearest neighbors
in the training set and computes the average of the target class. This average value is then used as
a prediction of the model. In our experiments, we used the Euclidean and Manhattan metrics
for calculation of the distance between feature vectors. The empirical analysis showed that the
Manhattan distance is more appropriate, and it was therefore used in the experiments.

• Decision tree regressor is a machine learning model used to predict a target by learning decision
rules from features. Decision trees are constructed via an algorithmic approach that identifies
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ways to split a data set based on different conditions. After training the model, as a result we have
a tree with decision nodes with two or more branches representing values for the chosen feature,
and leaf nodes representing a numerical prediction of EE consumption.

• Random forest consists of a large number of individual decision trees that operate as an ensemble.
This method uses bagging to combine many decision trees as parallel estimators. The result is
based on the majority vote of the results received from each decision tree. Random forests reduce
the risk of overfitting and give higher accuracy than a single decision tree. The two concepts that
make it random are bootstrapping and feature randomness.

• Support vector machines (SVMs) are characterized by the use of kernel functions, which are used
to transform feature vectors into higher dimensional space, in which a separation hyperplane is
learned to best fit the training data. We tested several kernels, and empirically chose the linear
kernel function, which was used in the experiments.

• Gradient boosting is an algorithm which uses boosting method to combine individual decision
trees. Boosting means combining a learning algorithm in series to achieve a strong learner from
many sequentially connected weak learners.

• XGBoost is an implementation of gradient boosted decision trees designed for speed and
performance. It implements regularization and it offers possibilities for handling missing values.
It also uses parallelization of tree construction, which makes the training much faster.
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