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Abstract: In this article, a Quasi Z-source inverter (QZSI)-based unified power quality conditioner
(UPQC) backed by the solar photovoltaic (SPV) is presented in order to enhance power quality.
The UPQC consists of converters connected in parallel and series. The active power filters (APFs)
connected in parallel and series is one of the versatile custom power circuitries to reduce current and
voltage instabilities. The main functions of QZSI can increase the variable direct current (DC) voltage
to any given alternating current (AC) output voltage, reduce the necessary elements, and alleviate
harmonic content. The UPQC’s compensation function primarily relies on the control system used for
the generation of reference current and voltage. The enhanced second order generalized integrator
(ESOGI) is used in this proposed system to extract the reference current of QZSI-UPQC. The proposed
UPQC uses the SPV system, which has an energy storage unit to offset long-term current and voltage
disruptions and fulfill the active power demands of the grid. The experimental results confirm that
the proposed SPV-supported QZSI-UPQC generates sinusoidal grid currents of about 1.2% of total
harmonic distortion (THD), thus increasing the power efficiency of the interconnected SPV power
distribution network.

Keywords: solar photovoltaic system; quasi Z-source; second order generalized integrator; unified
power quality conditioner; voltage source inverter; total harmonic distortion

1. Introduction

As non-linear electrical loads are used more frequently, the power quality impacts are increasing.
The power quality issues are increasing, which have great implications for industrial and domestic
consumers. These problems of power quality encountered by customers include harmonic distortions,
the inaccuracy of the measuring scheme, improper operation of protective relays, and circuit breakers
and heating of the transformer winding. Active filters are power-conditioning circuits integrated
with controlled direct current/alternating current (DC/AC) converters [1,2]. The efficiency of the
power-conditioning circuits depends primarily on the control system that has been implemented.
The most important cost-effective parts for custom power devices are sensors and electronic controllers.
The source, load, and compensation current information are essential in order to achieve the shunt
active power filter (APF) reference signal. In addition, the measurement of the source voltage is
crucial to estimate the harmonic power taken by the load. The source voltage data are needed to
perform reactive power and harmonic compensation, which extends control system complexity [3–8].
The proportional integral (PI) controller is also used in the shunt APF as a DC-link voltage controller
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to maintain specified levels of voltage. This DC voltage control system for the DC-link requires
voltage sensors to obtain information about the voltage. Energy storage units, such as condensers
and batteries, are used to manage the load when a tension and disturbance emerges [9–11]. The use
of these energy storage units restricts the unified power quality conditioner’s (UPQC’s) ability to
compensate because energy storage capacities are limited. The performance of the active filters
depends primarily on the reference signal production pattern, while errors in the reference signal lead
to inappropriate compensation. Various control algorithms have been used for the UPQC reference
current and voltage determination [12–15]. The shunt active power filter is used mainly to connect the
renewable energy generation system to the power grid [16]. Demand for renewable energy has become
extremely important because of the shortage of non-renewable energies, such as fossil fuels and nuclear
fuels. The conventional energy sources have disappeared globally to an enormous extent, since these
resources have long been used. The impact of the climate and the scarcity of the non-renewable energy
supply motivate scientists to envision the generation of energy via renewable energies, such as solar,
wind, biogas, hydro, and more. In isolated areas, probable energy generation may be accessible to
ease the access to alternative energy sources in the locality. The single-stage solar photovoltaic (SPV)
systems linked to the grid are currently trustworthy for their topology and high effectiveness [17].

The complication of the control system of the shunt APF has recently been increased because of
the need for the sensors and the addition of calculations to obtain a current signal reference [18]. In
addition, due to the lack of energy storage ability of the DC-link, the conventional shunt APF limits in
compensation capacity. The aim of this article is to offer cost-efficient long-term current and voltage
disturbance compensation in the industrial and domestic consumer loads by a voltage sensor-less
PV-shunt APF. The Quasi Z-source inverter (QZSI) can convert the DC voltage from a solar cell to
the desired AC voltage [19,20]. QZSI’s features make high quality power output, terrific capability
to boost bucks, remove the dead tie, and allow the shoot through state. By introducing a shoot
through operating mode, the QZSI can improve the output voltage. In order to fulfil UPQC DC-link
voltage requirements, the suggested topology uses the renewable energy source with electricity storage.
The control system for the shunt inverter relies on the use of enhanced second order generalized
integrator (ESOGI) to estimate the current signal reference. There is no need for a proportional integral
(PI) regulator for the shunt inverter control algorithm, and there is no need for more calculations
for determining the energy consumption of the loads. The SPV-UPQC system is used for measuring
load and inverter currents by simply two current sensors. The ESOGI control scheme makes simple
control loops involving two analogue inputs for the field-programmable gate array (FPGA) XC6SLX25
and the three-phase pulse width modulation (PWM) output for QZSI switches. Most compensation
devices are designed to reduce power quality disruptions in the supply system, and the PV power is
not transmitted into the load. The literature review shows that less effort has been made in connection
with the UPQC integration of the SPV system and no attempts have begun to combine a UPQC with
a battery-operated QZ source network. In this article, a UPQC-integrated photovoltaic system with
battery provides energy saving and compensation for current and voltage distortions.

The UPQC supported by the proposed SPV and battery provides a long-term compensation for the
current and voltage disturbances by using the simplified control system for three-phase electric power
distribution systems. The solar PV interfaced QZSI-UPQC with the enhanced second order generalized
integrator (SOGI) control scheme is equipped with the following salient features. The enhanced
SOGI control algorithm has good filtering capabilities, improved stable states, and adaptive response
capabilities and has less difficulty in implementation. This control scheme has fast transient responses
and it maintains the voltage and current profile under a dynamic condition of source and loads.
The SPV-interfaced QZSI operated as UPQC avoids the need of cascaded DC-DC converters, which
are used in the conventional UPQC. In the proposed system, QZSI is utilized to boost the output
voltage of the SPV array to compensate the long-term voltage and current disturbances in the power
distribution system. Multi-mode working ability; when SPV irradiation is 0, the system performs the
functions of UPQC, i.e., harmonics mitigation, power factor correction, load balancing, etc., and when
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SPV insolation shows up, the system acts as an SPV-shunt APF; thus, it accomplishes both functions of
active power transfer and power quality improvement. Even in a severe fault condition, QZSI-UPQC
stabilizes the voltage of the utility grid and maintains the power required for the load.

The experimental outcomes are provided to confirm the effectiveness of the suggested control
system and QZSI-UPQC topology backed by the SPV. The rest of the paper will be structured as
follows. The next section discusses the topology of the Z-source network-based UPQC. Section 3
explains SPV-UPQC’s control scheme. Section 4 presents and discusses the experimental validation,
in which the ESOGI control scheme is used. The last section includes the concluding remarks of this
QZSI-UPQC, supported by the SPV with the ESOGI control scheme for grid interconnection and
enhancement of power quality.

2. QZ-source Network-Based UPQC Topology

The QZ-source-based UPQC circuit backed by the SPV is illustrated in Figure 1. The three-phase
grid connected to the SPV-UPQC system supplied both linear and nonlinear loads for consumers.
A 3-leg QZSI was connected parallel to the consumer load via the interfacing inductor. The SPV
power generator supplied DC to the QZ-source network, which was used to sustain the DC link
voltage. The SPV power generation system included the SPV panel, a DC-DC boost converter, and
a battery bank. In order to maintain the UPF DC-link voltage, the QZ source network was used.
The excess power generation of the SPV power generation scheme could be transported via a DC-DC
conversion to an energy storage unit and started supplying battery-stored energy once an SPV system
was not powerful enough. An uncontrolled rectifier with a resistor and inductor were connected as a
non-linear load in the load point. A current transformer was used for measuring the current from the
nonlinear load.
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Figure 1. Proposed solar photovoltaic-supported unified power quality conditioner topology.

A solar photovoltaic (SPV) array, boost DC-DC converter, and battery storage unit were included
in the presented SPV power generating unit. A maximum power point tracking (MPPT) function was
developed for the DC-DC boost converter to reach the maximum power during the solar reduction
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period [21–23]. Three modes of operation were used in the suggested PV interfaced UPQC. The modes
were (1) the mode of generation of PV power; (2) the mode of battery backup; and (3) the mode of
continuous supply.

(1) Mode of generation of PV power

The mode of photovoltaic generation of power was activated during the day or when solar
irradiation was much more accessible to produce enough energy. The SPV-sustained UPQC was used
as harmonics and a reactive power compensator and surplus power was stored via a battery. Figure 2
shows the current flow diagram for the mode of generation of PV power.
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(2) Mode of battery backup

The battery back-up mode was supported throughout the night or due to the unavailability
of sunlight. UPQC supported by the battery compensated for the reactive power and harmonics.
The mode of battery backup was operated via QZSI to effectively manage the continuity of compensation.
Figure 3 shows the current flow diagram for mode of battery backup.
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(3) Mode of continuous supply

The scheme of SPV-UPQC offers uninterrupted supply to critical/delicate loads during the voltage
interruption period. In such circumstances, the power supply to the connected load was provided
either by the SPV power generating system or by a battery. The power supply source of the utility
network was disconnected via the semiconductor switches. Figure 4 shows the current flow diagram
for mode of continuous supply.
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Figure 4. Current flow diagram for mode of continuous supply.

3. SPV-UPQC Control Scheme

In order to provide current compensation, the ESOGI-based control scheme was used for
three-phase SPV-UPQC. The load current, as well as compensation currents, was assessed as a feedback
signal. In this voltage stateless ESOGI control system, the source reference current of individual phase
currents can be evaluated. Therefore, the source current reference values were obtained from three
ESOGI controllers.

3.1. Extraction of Fundamental Component

Recently, SOGI-based phase locked loop (PLL) algorithms proposed the extraction of the
fundamental component [24]. However, the problem with SOGI is that its second output is
sensitive both to the DC component and to the subharmonic components. The signal detection
using SOGI was therefore not an appropriate option for the weak grid. To overcome this drawback,
an enhanced SOGI-PLL was proposed to cancel the input DC component with the third integrator in
the SOGI-based fundamental component extractor, which can improve performance without making
it more complicated. The schematic diagram of the enhanced SOGI-based fundamental component
extractor is shown in Figure 5. In order to improve DC offset rejection ability, the DC offset was
estimated by a third integrator with the gain of kDC, which was then subtracted from the input.
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The enhanced SOGI transfer function was obtained by Equations (1)–(3) [24]

vdabc (s)
Vsabc (s)

=
kDC ω s2

s3 + (k + kDC) ω s2 +ω2s + k ω3 (1)

vqabc(s)

VSabc(s)
=

kDC ω
2 s

s3 + (k + kDC) ω s2 +ω2 s + k ω3 (2)

VDC(s)
VSabc(s)

=
kDC ω (s2 +ω2)

s3 + (k + kDC) ω s2 +ω2s + k ω3 (3)

where VDC is estimated as the DC term, VSabc represents the source voltage (V), kDC is a gain in the DC
offset approximation channel, ω is the resonant frequency (rad/s), k represents the damping coefficient,
vd represents the d-axis component, vq represents the q-axis component, and k represents the damping
coefficient. The optimal parameters are k = 1.414 and kDC = 0.4.

3.2. Estimation Source Reference Current for Shunt APFs

Figure 6 depicts the block diagram of the ESOGI-based control algorithm for SPV-UPQC.
The current reference signal was used to prevent harmonic distortions and to balance the system’s
reactive power. Because the nonlinear load was connected to the network, a non-sinusoidal load
current passed through the impedance of the device and generated distorted voltages at the point of
common coupling.
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The instantaneous load current is stated in Equations (10)–(12) [25].

iLa = ILa1 sin (wt−φa1)+
∞∑

n=2

ILan sin (n wt−φan) (4)

iLb = ILb1 sin (wt−φb1)+
∞∑

n=2

ILbn sin (n wt−φbn) (5)

iLc = ILc1 sin (wt−φc1)+
∞∑

n=2

ILcn sin (n wt−φcn) (6)

In Equations (7)–(9), after compensation, the fundamental real components of the source current
are calculated.

Isam = |ILa1| cos φa1 (7)

Isbm = |ILb1| cos φ b1 (8)

Iscm = |ILc1| cos φ c1 (9)

Because of switching loss, filter loss, and load changes, the SPV-UPQC DC-link voltage can differ
from its specified value. The DC-link voltage controller was used to maintain UPQC’s DC-link voltage
at its reference value.

In the balanced system, the maximum source current (Ism) value can be defined as:

Ism =
( Isam + Isbm + Iscm

3

)
+ ISL (10)

where ISL is the voltage controller output. In order to better compensate for the same magnitude as ISm,
the reference source current should be sinusoidal during the source current in phase with the voltage.
The unit vectors (Upa, Upb, Upc) are estimated by using the unit vector template [13].

Upa =
vda√

v 2
da + v 2

qa

(11)

Upb =
vdb√

v 2
db + v 2

qb

(12)

Upc =
vdc√

v2
dc + v2

qc

(13)

The DC-link voltage error is demonstrated by Equation (14) at nth sampling instant.

VDCe(n) = V∗DCe(n) −VDC(n) (14)

The PI controller output is estimated at the nth instant of the sample [13].

Im(n) = I m (n−1) −K PV DC

(
V DCe (n) −V DCe (n−1))+K IVDC V DCe (n) (15)

Let KPVDC and KIVDC be the proportional and integral gains of the PI controller-based DC-link
voltage regulator. Consequently, the estimated source current peak value is multiplied by the unit
template (Upa, Upb, Upc), which is in phase with the supply voltage. The instantaneous reference source
current (I∗sa) is calculated as follows [13]:
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The instantaneous three-phase reference source currents are:

I∗sa = Isam sinωt (16)

I∗sb = Isbm sin(ωt−
2π
3
) (17)

I∗sc = Iscm sin(ωt +
2π
3
) (18)

where I∗sa, I∗sb, and I∗sc represent the source reference current (A) of three-phases a, b, and c, respectively,
and Isam, Isbm, and Iscm maximum source current (A) of three-phases a, b, and c, respectively.

Equation (19) estimates the actual reference compensation current (I∗ca) or the filter current [11].

I∗ca = I∗sa − ILa ; I∗cb = I∗sb − ILb ; I∗cc = I∗sc − ILc (19)

In order to estimate the error signals, reference compensation currents were compared with the
real compensation or filter currents. Thus, the compensation error (∆Ica) signals are:

∆Ica = I∗ca − Ica ; ∆Icb = I∗cb − Icb ; ∆Icc = I∗cc − Icc (20)

3.3. Estimation of Reference Voltages for Series APFs

By comparing the source end voltage with load-side voltages in the three phases, a series APF
controllers estimate the reference values to be injected by the series injection transformers [21].

V ∗Se x = V ∗L desired −VL x (21)

where x represents the specified phase (a, b, or c), V∗L desired represents the desired load voltages in
three-phases, V∗Se x is the reference voltages of series APF(V), and VLx is the terminal voltages measured
in the system (V).

The compensation current and voltage errors were provided to the hysteresis band comparator
as the input signal to generate the firing pulse of the shunt and series APF switches. Due to the
firing pulses, the compensation currents and voltages injected varied so that the current and voltage
distortions were compensated.

4. Simulation and Experimental Validation

This section focuses on the performance indication of the proposed SPV-UPQC and enhanced
SOGI control scheme for voltage and current harmonic mitigation with energy conservation capability.
The results are presented in the simulation and experimental study before and after the operations
of the SPV-UPQC scheme. The system parameters of solar photovoltaic-based unified power quality
conditioner system are presented in Table 1.

The study was conducted under three different conditions, namely balanced source voltages with
balanced loads, balanced source voltage with an unbalanced load current, and unbalanced source
voltage and current.

4.1. Balanced Supply Voltages and Load Currents

SPV-supported QZSI-UPQC performance was tested under a balanced voltage and load currents.
In order to assess the voltage compensation, the balanced voltage sag was applied. When the
voltage decrease was detected by the SPV-UPQC, compensation voltage was injected by the injection
transformer. Figure 7 shows the simulation results of the supply voltage, injected compensation
voltage, load voltage, source voltage, and source current. Figure 8 shows the simulation results under
steady state voltage and current: (a) load current; (b) injected compensation current; (c) source current;
and (d) DC link voltage.
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Table 1. Solar photovoltaic-based unified power quality conditioner system parameters.

Parameters Value

Three-phase (phase voltage) 230 V
Shunt APF Lf, Rf 26 mH, 1.5 Ω

DC-link Voltage Vdc 520 V
DC-link capacitors Cdc 2200 µF
Filter (series APF) Lse, Cse, Rsw 5 mH, 80 µF, 1.5 Ω

Switching frequency fs 10 kHz
DC-DC converter

Inductor L 1 µH
Capacitance C 200 µF

Switching frequency fsd 20 kHz
No. of SPV cells 6 × 10

Nominal SPV voltage 12 V
Maximum power Pmp 230 W

Voltage at Pmp Vmp 35.5 V
Current at Pmp Imp 6.77 A

Open Circuit Voltage Voc 43.6 V
Short Circuit Current Isc 7.37 A
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Figure 8. Simulation results under steady state voltage and current: (a) load current; (b) injected
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The QZSI-based UPQC DC link was supported by the PV power generating system. The PV
system and DC link measurements can be observed through the simulation results. Figure 9 shows the
simulation results of the PV array voltage, PV current, DC link current, and PV output power under
steady state voltage and current.
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Fast Fourier transform (FFT) analyses were carried out for the load current before and after
compensation to validate the harmonic compensation of PV-supported QZSI-based UPQC. Figure 10
shows the results of simulation tests of the total harmonic distortion (THD) of load current prior to
compensation and the THD of source current after compensation at a balanced voltage and current.
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Figure 10. Simulation results under steady state voltage and current: (a) total harmonic distortion
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Experimental studies check the feasibility of the proposed system. QZSI, a low step-up DC-DC
converter, batteries, and a load are part of the experimental PV-supported QZSI-based UPQC.
The control algorithm and coordination logic are implemented in the FPGA XC6SLX25 processor
to produce a PWM pulse and control the switches of the UPQC. The hardware prototype of the
QZSI-based UPQC is shown in Figure 11.
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Figure 11. Hardware prototype of the Quasi Z-source inverter (QZSI)-based unified power quality
conditioner (UPQC).

Figure 12 shows the experimental results of the supply voltage, load current, and harmonic
distortions in the load current before connecting the QZSI-based UPQC.
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Total harmonic distortion (THD) level of source current before connecting the solar
photovoltaic-supported QZSI-unified power quality conditioner is shown in Figure 13.
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Figure 13. THD level of source current before connecting the solar photovoltaic supported QZSI-unified
power quality conditioner.

Figure 14 shows the source current after connecting the QZSI-UPQC, injected voltage, load voltage,
and source current and source voltage.
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THD level of source current after connecting SPV-supported QZSI-UPQC is displayed in Figure 15.
The performance of the proposed SPV-UPQC with the ESOGI control system was tested with balanced
load conditions under a balanced voltage. For this condition, the UPQC was tested in the experimental
study with the suggested control scheme, and the source current harmonic content with the proposed
technique was 1.1 (%) after compensation.
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Figure 15. THD level of source current after connecting solar photovoltaic-supported QZSI-unified
power quality conditioner.

DC-link of QZSI-UPQC was supported by the SPV system for the voltage and current-based
compensation. The experimental system was used to compute the DC-link voltage and QZSI condenser
voltages. Figure 16 shows the voltage across capacitor C1, the voltage across capacitor C2, and the
DC-link voltage of the UPQC.

4.2. Balanced Voltages with Unbalanced Loads

Linking the single-phase rectifier circuit between three-phase lines offered unbalanced load
currents. Figure 17 shows the simulation results of the load current, injected compensation current,
and source current and source voltage. Figure 18 shows the harmonic load current distortions before
QZSI-based UPQC was connected and the THD level after connecting QZSI-UPQC support to the SPV.
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Figure 19 shows the experimental results of supply voltage, load current, and harmonic load
current distortions before QZSI-based UPQC was connected. Injected voltage, load voltage, and
injected current and source current after connecting QZSI-UPQC is shown in Figure 20. After
connecting QZSI-UPQC support to the SPV, THD source current levels decreased to a tolerable level.
The experimental results show that a control approach was implemented in the three-phase four-wire
electric power systems, which decreased the harmonic elements and voltage distortion.Energies 2020, 13, x FOR PEER REVIEW 18 of 26 
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Figure 19. Experimental results under balanced voltages with unbalanced loads: (a) supply voltage; (b)
load current; (c) load current, source current, and injected current; and (d) THD level of source current
before connecting solar photovoltaic-supported QZSI-unified power quality conditioner in a phase-A.
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voltage interruption compensation was tested by disconnecting the source voltage. The supply 
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Figure 20. Experimental results under balanced voltages with unbalanced loads: (a) injected voltage;
(b) compensated source current; (c) load voltage; and (d) THD level of source current after connecting
solar photovoltaic-supported QZSI-unified power quality conditioner in a phase-A.

The performance of the proposed SPV-UPQC with the ESOGI control system was tested with
unbalanced load conditions under balanced voltage. For this condition, the UPQC was tested in the
experimental study with the suggested control scheme, and the source current harmonic content with
the proposed technique was 1.2 (%) after compensation. Figure 21 shows the voltage of the SPV array
and voltage over the condensers in the Z-source network.
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At the same load, the effectiveness of ESOGI control schemes for UPQC was checked by
experiments, and the level before the compensation of source current harmonics was 25.5%, 24.7%,
and 26.2%, decreasing to 1.2%, 1.3%, and 1.1% after compensation. In experimental validation, the
voltage interruption compensation was tested by disconnecting the source voltage. The supply voltage,
injected compensation voltage, and compensated load voltage during the voltage interruption is
displayed in Figure 22.
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Figure 22. Experimental validation during a voltage interruption: (a) supply voltage; (b) injected
voltage for compensation; and (c) load voltage after compensation of voltage interruption.

4.3. Unbalanced Voltages with Unbalanced Loads

The simulation and experimental test were carried out under unbalanced voltages with unequaled
load currents. In order to assess the voltage compensation, the unbalanced voltage sag and swell was
applied. When the voltage decreased and increased, detected by the SPV-UPQC, compensation voltage
was injected by the injection transformer. The results of digital simulation of unbalanced distorted
load currents and compensated source current after SPV-UPQC connection are shown in Figure 23.
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Figure 23. The results of digital simulation under unbalanced voltage and current conditions:
(a) Unbalanced distorted load currents (b) Compensated source current after SPV-UPQC connection.

Figure 24 shows the simulation results of source voltage, injected compensation voltage, load
voltage after compensation, and a DC-link voltage under unbalanced voltages with unbalanced
load condition.
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Figure 24. Simulation results of (a) source voltage; (b) compensation voltage; (c) after compensation
load voltage; and (d) DC-link voltage.

Figure 25 shows the results of simulation tests of the THD of load current prior to compensation
and the THD of source current after compensation at unbalanced voltage and current.
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The unbalanced load currents, unbalanced source voltages, and harmonic distortions before the
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Figure 26. Experimental test results under unbalanced voltages with unequaled load currents: (a)
unbalanced load currents; (b) unbalanced source voltages; and (c) harmonic distortions before the solar
photovoltaic-unified power quality conditioner connection.
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Experimental results in unbalanced voltages with unbalanced load currents are shown in
Figure 27: (a) shunt active power filter injected current; (b) source current; (c) injected series active
power filter voltage; and (d) harmonic distortion after solar photovoltaic-unified power quality
conditioner connection.
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Figure 27. Experimental test results under unbalanced voltages with unequaled load currents: (a) shunt
active power filter injected current; (b) source current; (c) injected series active power filter voltage; and
(d) harmonic distortion after solar photovoltaic-unified power quality conditioner connection.

Before compensation, the THD of source currents was 26.6%, 25.6%, and 26.3%; they were reduced
to 1.2%, 1.2%, and 1.3%, respectively, after compensation. In terms of THD of source current, the
output of the SPV-UPQC was validated. The study compares the effectiveness of compensation based
on current harmonics in different cases. Table 2 shows the simulation and experimental results of
harmonic distortion of the source current with and without the QZSI-based solar photovoltaic-unified
power quality conditioner. From the results of experimentation, the level of measuring THD was very
low and ideal, as per the Institute of Electrical and Electronics Engineers (IEEE)-519-1992 standard for
grid-connected applications [26].
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Table 2. Harmonic distortions with and without the QZSI-based solar photovoltaic-unified power quality conditioner.

Phase

Simulation Results Experimental Results

Case: 1 Case: 2 Case: 3 Case: 1 Case: 2 Case: 3

Without
PV-UPQC

With
PV-UPQC

Without
PV-UPQC

With
PV-UPQC

Without
PV-UPQC

With
PV-UPQC

Without
PV-UPQC

With
PV-UPQC

Without
PV-UPQC

With
PV-UPQC

Without
PV-UPQC

Without
PV-UPQC

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

Current
THD (%)

A 25.72 1.15 25.74 1.20 25.91 1.12 26.7 1.2 25.5 1.2 26.6 1.2

B 25.57 1.21 25.65 1.25 25.75 1.20 26.6 1.1 24.7 1.3 25.6 1.2

C 26.02 1.16 26.21 1.21 26.13 1.23 27.2 1.1 26.2 1.1 26.3 1.3
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The actual THD measure of source current under the non-linear load currents for the proposed
method was about 1.2%, which was much less compared with existing methods, with a level of about
3.8%, as suggested by Yang et al. (2018) [18]. Figure 28 shows the THD level of source current before
and after compensation during the simulation and experimental study and harmonic distortion after
solar photovoltaic-unified power quality conditioner connection in the conventional system [18] under
unbalanced nonlinear load conditions.Energies 2020, 13, x FOR PEER REVIEW 24 of 26 
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5. Conclusions

In this paper, the enhanced SOGI control-based QZSI-UPQC was implemented in order to
incorporate solar PV into the grid with the presence of extremely non-linear load. This approach
was employed in the SPV interfaced three-phase four-wire QZSI-UPQC for the compensation of
reactive power, current harmonics, voltage sags/swell, and voltage interruption in the electric power
distribution networks. The SPV power generation system supports the DC link of the QZSI in order
to mitigate deep and long-term voltage and current instabilities in the power distribution networks.
In addition, the excess generated power can be shared and stored in the batteries by the SPV power
generation systems. The SPV power system facilitates the continuous delivery of clean power to
the load in different situations. It lowers electricity utility bills and removes the use of UPS and
stabilizer in a household, small industry, and education institution for individual facilities. This ESOGI
control algorithm effectively accomplishes the harmonic distortions, voltage, and current compensation
under dynamic condition of source and loads. The whole system was tested on an experimental
prototype laboratory platform and THD analyses were performed under both stable and dynamic
conditions. Experimental results show that the proposed scheme offsets the non-linearity of the load
effectively. The proposed system also integrates the PV system smoothly into the grid with minimal
grid distortions. The load current THD was reduced from 26.6% to 1.2%, which is less than the tolerable
limit of 5%, as specified by the IEEE standard.519-1992.
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