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Abstract: This work applies the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
to compute the mixed 2nd-order sensitivities of a polyethylene-reflected plutonium (PERP)
benchmark’s leakage response with respect to the benchmark’s imprecisely known isotopic number
densities and the other benchmark imprecisely known parameters, including: (i) the 6 x 180 mixed
2nd-order sensitivities involving the total microscopic cross sections; (ii) the 6 x 21,600 mixed
2nd-order sensitivities involving the scattering microscopic cross sections; (iii) the 6 x 60 mixed
2nd-order sensitivities involving the fission microscopic cross sections; and (iv) the 6 x 60 mixed
2nd-order sensitivities involving the average number of neutrons produced per fission. It is shown
that many of these mixed 2nd-order sensitivities involving the isotopic number densities have very
large values. Most of the large sensitivities involve the isotopic number density of 2*Pu, and the
microscopic total, scattering or fission cross sections for the 12th or 30th energy groups of 2Pu or
'H, respectively. The 2nd-order mixed sensitivity of the PERP leakage response with respect to the
isotopic number density of 2>Pu and the microscopic total cross section for the 30th energy group of
H is the largest of the above mentioned sensitivities, attaining the value —94.91.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities; isotopic number
density; fission spectrum; expected value; variance and skewness of leakage response

1. Introduction

In Parts I-1V [1-4], which are precursors of this work, the Second-Order Adjoint Sensitivity
Analysis Methodology (2nd-ASAM) conceived by Cacuci [5-7] has been successfully applied to
the subcritical polyethylene-reflected plutonium (acronym: PERP) metal fundamental physics
benchmark [8], to compute the exact values of the 1st-order and 2nd-order sensitivities of the
PERP’s benchmark leakage response with respect to the 180 group-averaged total microscopic cross
sections [1], 21,600 group-averaged scattering microscopic cross sections [2], 120 fission process
parameters [3], and 10 source parameters [4]. This work presents the results obtained for the mixed
2nd-order sensitivities of the PERP benchmark’s leakage response with respect to the benchmark’s
six isotopic number densities. Table 1 summarizes the dimensions and material composition of the
PERP benchmark; additional details are presented in Part I [1]. As shown in Table 1, the six isotopic
number densities correspond to each of the isotopes contained in the PERP benchmark, respectively.
The isotopic number density is one of important parameters that contribute to the accuracy of the
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neutron transport calculation, as it appears in the definitions/constructions of the total, scattering and
fission macroscopic cross sections, as well as the source term of the neutron transport equation.

Table 1. Dimensions and material composition of the PERP benchmark.

Materials Isotopes Weight Fraction Density (g/cm?) Zones
Isotope 1 (***Pu) 9.3804 x 107!
Material 1 Isotope 2 (*4°Pu) 5.9411 x 1072 196 Material 1 is assigned to zone 1,
(plutonium metal)  Tsotope 3 (¥Ga) 1.5152 x 1073 : which has a radius of 3.794 cm.
Isotope 4 ("1Ga) 1.0346 x 1073
Material 2 Isotope 5 (C) 8.5630 x 107! Material 2 is assigned to zone 2,
(polyethylene) Isotope 6 (H) 1.4370 x 1071 0.95 which has an inner radius of 3.794 cm

and an outer radius of 7.604 cm.

The mixed 2nd-order sensitivities of the leakage response with respect to the isotopic number
densities are computed by specializing the general expressions derived by Cacuci [5-7] to the PERP
benchmark. This work is organized as follows: Section 2 presents the numerical results for the 6 x 180
mixed 2nd-order sensitivities with respect to the isotopic number densities and total microscopic cross
sections. Section 3 summarizes the numerical results for the 6 X 21600 matrix of mixed 2nd-order
sensitivities to the isotopic number densities and scattering microscopic cross sections. Section 4
presents the numerical results for the 6 x 60 mixed 2nd-order sensitivities to the isotopic number
densities and fission microscopic cross sections. Section 5 reports the numerical results for the 6 x 60
mixed 2nd-order sensitivities to the isotopic number densities and the average number of neutrons per
fission. The conclusions drawn from the numerical results presented in this work are summarized in
Section 6.

2. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Isotopic Number Densities and Total Cross Sections

As described in Part I [1], the neutron flux is computed by solving numerically the neutron
transport equation using the PARTISN [9] multigroup discrete ordinates transport code. For the PERP
benchmark under consideration, PARTISN [9] solves the following multi-group approximation of the
neutron transport equation with a spontaneous fission source provided by the code SOURCES4C [10]:

BS(x)pd(r,Q2) = Q3(r), ¢=1,...,G, (1)

P2(ry, Q) =0,Q-n<0, ¢g=1,...,G, @)

where r; denotes the external radius of the PERP benchmark, and where

BS ()8 (1, Q) £ VS (r, Q) + (1) (1, Q)

G 4 ’ ’ ’ ’ G 4 ’ ’ ’
Y [Z78(rna 5 0)es ()i x50 Y [ W) () 8 (), ©)
§'=l4n §'=l4n
& SF, SF 2 AN E/ \/_
Q¥(r) 2 Y AN Sy (—6—4] f dEe E/%sinh /b, E. )
kzl Kok a3 by E8+1

In Equation (1), the vector & denotes the “vector of imprecisely known model parameters”, which

has been defined in Part I [1] as o = [(rt; Os; 01V, P;q; N]Jr. The vector-valued components oy, 05, & Iz
v, p, q and N comprise the various model parameters for the microscopic total cross sections, scattering
cross sections, fission cross sections, average number of neutrons per fission, fission spectra, sources,
and isotopic number densities, respectively. For convenient reference, the components of the vector of
model parameters « are reproduced in Appendix A.
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The PARTISN [9] calculations used the MENDF71X [11] 618-group cross sections collapsed to
G = 30 energy groups, with group boundaries, E¢, as presented in [1]. The MENDF71X library uses
ENDEF/B-VIIL.1 Nuclear Data [12].

The total neutron leakage from the PERP sphere, denoted as L(«), will depend (indirectly, through
the neutron flux) on the imprecisely known model parameters and is defined as follows:

L((x)édeZG: fdﬂﬂ-n(pg(r,ﬂ). (5)

S $~lanso

Ashasbeen shown by Cacuci [5], the 2nd-order mixed sensitivities 9L (&) / dNJdo; can be computed
using two distinct expressions, involving distinct 2nd-level adjoint systems and corresponding 2nd-level
adjoint functions, by considering either the computation of 9*L(cx)/dNdo; or the computation of
J?L(cx) /do1dN. These two distinct paths will be presented in Sections 2.1 and 2.2, respectively. The
end results produced by these two distinct paths must be identical to one another, thus providing
a mutual “solution verification” which ensures that the respective computations were performed
correctly. Moreover, the computation of 9°L(«)/dNdo; can be significantly more efficient than the
computation of d°L(«)/dc;9dN, as will be further illustrated by the numerical results presented in
Section 2.3.

2.1. Computing the Second-Order Sensitivities d*L () /INI o}

The PERP benchmark comprises six distinct isotopes and two distinct materials; the respective
isotopes are not repeated in the two materials. Therefore, only the following isotopic number densities
exist for this benchmark: Ny 1,N»1,N31,Ny1,N52,Ng 2, so that the vector N is defined as follows:

:
N=[ny,...,ny,] 2 [N11,Not, N3t Nag, Noo, Neol', Ju =6. (6)

The vector oy is defined in Part I [1] and in Equation (A6) in Appendix A.

The equations needed for deriving the expression of the 2nd-order sensitivities 9*L(cx) /INdo;
are obtained by particularizing Equations (158), (167), (177) and (204) in [5] to the PERP benchmark
and adding their respective contributions. The expression obtained by particularizing Equation (158)
in [5] takes on the following form:

1) G 25 ¢
9 P ES(t)
(anjafmz) - —gél i dv [, doypMa(r, Q)ps(r, Q) TR

y 7
- Zl favi, dﬂ[%i)rg(n Q)8 (r, Q) + lpgi),g(r, Q)es(r, Q) agi,it)’ (7)
g:

forj=1,... Jumy=1,..., ]

The multigroup adjoint fluxes ¢()€(r, 1), g = 1,...,G, appearing in Equation (7) are the solutions

of the following 1st-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157)
of [5]:

A(l)'g(oc)lp(l)'g(r,ﬂ) =Q-né(r-ry), g=1,...,G, (8)

lp(l)’g(m,ﬂ)IO,Q'H>0/8:L~--/G/ )
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where the adjoint operator A8 (o) takes on the following particular form of Equation (149) in [5]:

A(l),g(a)¢(1),g(r 0)

G ’ — ¢/ ’ ’ ’
2 -0V (r, Q) + T () pWE(r,0) - ¥ [dO'557 (505 Q)pDE(r,0) 10)
&'=lan

~vZi(f) ;14fdnxg¢ ¢(ra’), g=1,...,G

The 2nd-level adjoint functions wgz{),g and ll}gzj),g/ i =1....Jug = 1,...,G, appearing in
Equation (7) are the solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS)
obtained from Equations (164)-(166) of [5]:

BS (o)) (1r,00) = ~of P2 (), =1L i §=1,...,G, (11)
P28 (r,0) =00 n<0i=1,...,Jug=1...,G, (12)
(1)'g<(x0)¢§2].)’g (r, Q) = -5, pVL(r,Q), ] e g=1,...,G, (13)
/ A
P81, 0) =0,0:n>0i=1,...,Jwg=1,...,G. (14)

The parameters n; and t,,, in Equation (7) correspond to the isotopic number densities and

microscopic total cross sections, respectively, and will therefore be denoted as nj = Nj, ,; and

& where the subscripts i; and m; denote the isotope and material associated with the

th =0 trlmz

parameter n;, while the subscripts iy,, gm, and m,,, denote the isotope, energy group and material
associated with the parameter t,,,, respectively. The following derivatives will be used in Equation (7)

and subsequently in this work:

Y ZN o¥
&Ztg(t) _ X8 () . (m 1i=1 M S N 15
Otmy, 9o a2 T 8my8 iy Mimy 1 (15)
tlmz tlmz
Prow _ pnsw RSO/ [(mZthN'”’G“)/ i ]
(9 ‘at = gm = 8m = 8m
n] ny aNi]. m aaf,imzz do “mzz Jo tzmzz
(16)
a[afi‘
_ gl 5. .
=~y = Oijin, Oguy g/

timy

where 6g,, ¢ denotes the Kronecker-delta functionals (e.g., 0g,,,¢ = 1 if gm, = & 0g,,¢ = 0if g, # ).
Inserting the results obtained in Equations (15) and (16) into Equation (7), yields:

O
22 — 1),8m m
(91’1/8%7,12 ) - _5ijimz fV dVLT( d0¢( ) § 2 (1’, Q)@g 2 (1’, Q)

(2),8m 2),gm 17
_1‘\ll'mz’mm2 fV deT[ dn[l’bl,i) 8my (1’, Q)lp(l)/ng (7’, Q) + wé/i 8my (7’, Q)(Pgmz (7’, Q):l, ( )
forj=1,..., Jumy=1,...,]st
The contributions stemming from Equation (167) in [5] have the following expression:
(2)
2 — . (2).8 IZAS(t)
(7o) = £ foavfoaaol s oppse ) + o S mps |5,

forj:]v-"/ll’l/ mZ _1/'-'1](7t/
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where the 2nd-level adjoint functions 9( ]) ,and 9( ]) ,i=1,...,Jisg=1,...,G, are the solutions of
the following 2nd-Level Adjoint Sen51t1V1ty System resulted from Equatlons (164) (166) of [5]:

G ISCT
2), ' —

Bg<a0)9§’]?g (o)=Y (21 +1)%, 5Py(0) )of (1), T g=1,...,G, (19)

g’=11=0
028 (r,0) = 0,00 <0 =1,...J; g=1,...,G (20)

1,]' ds 7 /] reccstny g VARENA Sl
) G ISCT Do
A(l)'g(ao)é);j)’g(r,ﬂ) =Y Y @+1)0 f’;gp @M, j=1,...,Jug=1...,G, (1)
g’=11=0

0281, Q) =0,Q-n>0j=1,...,Jug=1,...,GC. 22)

2,j

In Equations (19) and (21), of/l?g denotes the I""-order Legendre-expanded microscopic scattering
cross section from energy group ¢’ into energy group g for isotope i}, as defined in Equation (A7) in

Appendix A. The I"-moments qo;‘g (r) and El(l)’g (r) are defined as follows:

() = f4 4OPY(Q)p%(r,02), 23)
V8 () & f4 4P Q)8 (r,00). 24)

Inserting Equation (15) into Equation (18) yields:

L & (2),8m (2),gm
(a”?afmz ) - _Nimz’mm2 fV dV\L;T( dn[ell] ? (r’ Q)¢(1)13ﬂ12 (r/ Q) + 62,] 2 (r/ Q)(Pgmz (r/ Q):l’ (25)
forj=1,....Jn; ma=1,...,Jst

The contributions stemming from Equation (177) in [5] have the following expression:

(3) G 9
(72) =—ngfvdVLndﬂ[uf}'g<r,mw(”fg(r,n) WS, s (r, )| B2,

tm2 (26)
forj=1,....Jn; my=1,...,]5t,
where the 2nd-level adjoint functions ugz) € and u( )8 ,j=1,...,Jug=1,...,G, are the solutions of
the following 2nd-Level Adjoint Sensitivity System ‘obtained from Equatlons (183)—(185) of [5]:
(2) G ’ ’ ’
g(~0Y, ()8 _ . g ¢ g _ o
BS(x )ul/j (r,Q) = x Z‘lvif of 95 (=1 S §=1,-..,G, (27)
=
ugzj?'g(rd,n) =0,Qn<0j=1,....Jw g=1,...,G, (28)
2), (1
ADS (@) (r, ) = v, Z BT, i=1,0 g =1,...,G, (29)
w8 0)=0,Q0>0j=1,..., Jg=1,...,G (30)
2,]' ds 7 /] JARRN }’l/g JARENA L

In Equations (27) and (29), the Oth-moments are defined as follows:

o8(r) £ f4 a0 (10), (1)
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gél),g(r)él; dﬂl,l)(l)’g(r,ﬂ)- (32)

Inserting Equation (15) into Equation (26) yields:

2 \®) (2),8m 2),gm
(7) = Niwy o ¥ o 0072, Qg0 1,0) 4157572 )5 ()|,
fori=1,....0n; ma=1,...Jo.

Finally, the contribution stemming from Equation (204) in [5] has the following expression:

(4) G
2 _ (2), ) TS (t)
(anjafmz ) = _ggl fV dVLn ngLj g(r, Q)lp(l) g(r, Q) a;mz , (34)

forj = 1/‘“/]1’!; mz = l/“‘l](ft/
where the 2nd-level adjoint functions g§2j),g ,i=1,...,]Js; §=1,...,G,are the solutions of the following
2nd-Level Adjoint Sensitivity System resulted from Equations (200) and (202) of [5]:

g
2), SFi; |
BS (o)) (r, ) = — =1 i §=1,..,G, (35)
j
(2).8 _ . Ci o —
81 (rs, Q) =0,0-n<0;j=1,...,J,; g=1,...,G. (36)

The (a, n) source is zero for the PERP benchmark. Only the spontaneous fission source is present
in the PERP benchmark, which implies that

M N

Q=0 =), )%, (37)

m=1k=1

where the spontaneous source rate density in group g for isotope k is defined as follows [10]:

2 ab ES
Qi = MNemXp e = MNewF v ——— f dEe”"/®sinh ybyE. (38)

In Equation (38), the quantity Ax denotes the decay constant for isotope k, while X§P,k includes the
spontaneous fission branch ratio and the spontaneous fission neutron spectra, which are approximated
by a Watt’s fission spectra using two evaluated parameters (a; and by).

Inserting Equation (15) into Equation (34) yields:

(4)
(92 (2)rgm 1),2m
(3"1'9%"12) - _Nimz'mmz fV dVLn dﬂ[gl,j 2(7/Q)¢( ):gmy (T,Q)], (39)
fOrj: 1/"~/]71/ m2 - 1""/]Ut'
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Combining the partial contributions obtained in Equations (17), (25), (33) and (39) yields the
following expression:

2L

9ty
~Niy sy Jy @V [y, 4O ll)ll V8m )y Mg (7, )
~Niy iy, Jy 4V [, 40|06 28 () (r,Q
“Niy iy oV f; d0u (2 2 Q)W (7, )

Q) (r, Q2

~Niy i, JydV [, dQ g’“Z(r,

4 (1)
= -21(‘9”?‘292“2) = _6ijin12 fV dVL dﬂlp(l)’gml (1", Q)(Pgmz (1’, Q)
i=
2),8m
P (1, 00) 2 (1, )

_|_
Y (r,0) + 0,5 (r, )2 (1, Q)
+

2,j

(2]) /8imy (r, Q)™ (1, Q)

)
)
)
)

y(sm(r,

2.2. Alternative Path: Computing the Second-Order Sensitivities 9°L( o) /d01ON

, for j=1,. . Jumy=1,...,

(40)

As mentioned earlier, the mixed 2nd-order sensitivities 9°L(«)/dNdo; can be alternatively
computed by using the symmetric expression 9*L(cx) /do;dN. The equations needed for deriving the
expression for ’L(«)/dodN are obtained by particularizing Equations (158), (159), (160) and (162)
in [5] to the PERP benchmark. The combined expression obtained by particularizing these equations
takes on the following form:

G 2
RPL 1), PEE(Y)
ity _gél [, dv [, d0ypWE(r, )8 (r, Q) atjénn,z

G
(2).8 , (2).8 IS (1)
- L v, 20[y ) (r, )5, 0) + 975 (r, Q)3 (7, 0) | B
G G =8 (.00
+ Zl fV dv LT[ dnlzbfj),g(r/ Q) Zl LT[ dnlw(l)/g’ (7’, Q/) (92§ 35,:1(; Q')
8= 8=

- GE ‘/ (@] Q G ¢ —g ’
(2),8 ’ ’ ’ azs (S,’Q —>Q)
g=1 fv i Ln ? 1102,]' Q) gél L” QS (r, )T

. G , (=) (0
+ L fodv dn¢§2?’g(r,0) L fin 4008 (rfﬂ’)xg[(#{z]

v £ fav [ 00500 )“VL £ e g0 . 00)

nmz

, dQ8(
+ 21 deVLn dn]]ljz,] (r’ )M for] - 1 ]Ut;mz = 1/"'/]}1/
9=

(41)

where the adjoint functions ¢ € and ¢(2) € ,j=1,...,Jot;§ =1,...,Gare the solutions of the 2nd-LASS
presented in Equations (32), (34) (39) and (40) of Part I [1], which are reproduced below for convenient

reference:

Bg(oco)[’[]iz)’g( ) = _6g]gN1/ m/(p (7’, ) = ]ot, =1,...,G,
lPlz)g(V 0)=00Qn<0;j=1,...,J;g=1,...,G,
(1),g(a0)ll)2],g(r’ Q) = _6g,gN1],m]¢(1)'g(rr Q)/ ] = 1/ see I]Utl‘ g = 1/ ey

¢2)g(r Q)—O,Qn>0,]:1//]Ut/g:]'//G

G,

(42)
(43)
(44)

(45)
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The parameters ¢; and n,,, in Equation (41) correspond to the total cross sections and isotopic

number densities, and are therefore denoted as ¢ = o‘tg;_ and 1, = Nj
Aj

iy iy » TESPECtively. The following

results will be used in subsequent derivations:

N; ,,0°.1/do
PrS(t) PR [ (mzlzzl v “)/ f] B ‘9[58;‘8Niwmi] s s (46)
at]‘anmz aatgj] aNimz My aNimz My aNimz My Lilmy ~ 887

3Ztg(t) _ 8Ztg(t) (mzl 121 Ni mO l) g

= = =0y, 47
Iy ONiyp N,y i, by (47)
i (50-0) T (s0-0) .
' R 21+ 1)0578 P -0 48
Moy INiy i, § (2 +1)ag, . (@) (48)
(50 ) x50 »a) e
, — ’ _ 2 DN 78p(0 - O 4
aan aNinIZ'mmz g ( l+ )Gs’l’l"’z l( )’ ( 9)
s d Z Z Ni mlvo d Z Z N; v oul
o(vs) (6) _ m=li=1 inl f) == _ 8 o8 (50)
anmz aNinQ,mmz aNimz My tmy f'imz ’
k4 0 Z Z N; u(vo 0 Z Z N; v c7
8nm2 aNi’”Z'm”’z aNimz My imy ~ frimy "
N¢
d AN g g
I (qr, Q) 9Q mzl kg N EEPUY S Qs i, _ Qe i, (52)
anmz anmz aNimZ My " XSF’imZ Nim2 My my '

Inserting the results obtained in Equations (46)—(52) into Equation (41), and performing the
respective angular integrations yields the following expression for Equation (41):

2 . .
r?t;z?anz = —61'/-;',"2 f\/ av jﬁ;n dQlP(]),g] (7’, Q)(Pg/ (7' Q)

- E fvdvfh a0[2)S (r Q)OS (1, Q) + 7 (r, Q)3 (1,00 o

tlmz

G
o8 £ ()+Z Z (21+1) deVEZI,() Y o 7508 () (53)

sllm2 a=11=0 g1 Gllmz

+z T ) fyaves
g 11=0

\ OQ\
I Mo

G , G ¢
+ ): fvdvxx,gzjjo (r) ):1V? 0% (r) + z J, avvs ]?,(; G X EDE (1)
,— 1 =

g
tmy flm Ty ffmz

vadw:z]o rQs Sty fOT T =L ot =1, ]

where
SAOE f4 _dOP(0)yE(,.0), (54)
SYACEN LTI (55)
25 = [ anyse0) 56)

LN (r) £ f 40y, (r,00). (57)
" 4n g
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2.3. Numerical Results for 9*L() /INdoy

The second-order absolute sensitivities, 9°L( ) /dNJoy, of the leakage response with respect to the
isotopic number densities and the total cross sections for all isotopes of the PERP benchmark have been
computed using Equation (40), and have been independently verified by computing 0°L( ) /do 10N
using Equation (53). Regarding computational requirements: computing d°L(«)/JdNdo; requires
16 forward and adjoint PARTISN transport computations for obtaining the various 2nd-level
adjoint functions 1#5,2].)"%', l/’gj)'g' ij)’g, lezj)’g, ufj)’g, ugj)’g and gg,z].)’g, j=1...,Jug =1,...,G needed
in Equation (40). In contradistinction, computing 9°L(«)/d06:dN using Equation (53) would require
Jot = GxI = 30x6 = 180 forward and adjoint PARTISN computations for obtaining the adjoint
functions lllg,zj)/g and gbg].)’g, j=1,...,Jo8 =1,...,G which are needed in Equation (53). It is thus
evident that computing 9’L(«)/dNdo; using Equation (40) is about 10 times more efficient than
computing 9*L(cx) /do;ON using Equation (53).

The matrix &2L/8nj8tm2,]’ =1,...,.Ju;;mx = 1,..., ] has dimensions [, X Jo(= 6 X 180);
corresponding to this matrix is the matrix denoted as S(Z)(Ni,m, of k) of 2nd-order relative sensitivities,
which is defined as follows:

8

J*L Nimoy

2 S\ & /
Spct) # e

&Ni,maafk I J, i,k=1,...,66m=12 ¢=1,...,30. (58)

To facilitate the presentation and interpretation of the numerical results, the J,, X Jo¢(= 6 X 180)
matrix S (N i af k) has been partitioned into J, X I = 6 X 6 submatrices, each of dimensions
1xG =1x30. The ’summary of the main features of each of these submatrices is presented in Table 2
in the following form: when a submatrix comprises elements with relative sensitivities with absolute
values that are greater than 1.0, the total number of such elements are counted and shown in the shaded
cells of the table. Otherwise, if the relative sensitivities of all the elements of a submatrix have values
that lie in the interval (-1.0,1.0), only the element having the largest absolute value in the submatrix
is listed in Table 2, together with the phase-space coordinates of that element. The sub-matrices in
Table 2, which comprise components with absolute values greater than 1.0, will be discussed in detail
in subsequent sub-sections of this section.

Almost all [i.e., 1072 out of J, X J(= 1080)] of the elements of the matrix s (Ni,m,atgk) , L, k=
1,...,6; m=1,2;,¢ =1,...,30 have negative values. The remaining 8 elements have very small (of the
order of 107 or less) positive values; they are all related to the isotopic number densities of isotopes
240Py or 71Ga. The results shown in Table 2 indicate that, 125 elements (of the total of 1080 elements)
have very large relative sensitivities, greater than 1.0. The majority (123 out of 125) of those large
sensitivities involve the isotopic number densities of 29Pu or 'H (namely, N1 and Ng») and/or the
microscopic total cross sections of isotopes 2>Pu or 'H (namely, ai , and of o). Of the sensitivities

summarized in Table 2, the single largest relative value is $(?) (Nl,l/ ofg) = —94.91. The results in Table 2
also indicate that when the 2nd-order mixed relative sensitivities S(?) (Ni,m, atg k) involve the isotopic

number densities of isotopes ®?Ga and 7! Ga or the microscopic total cross sections of isotopes ®*Ga and
71Ga, their absolute values are all smaller than 1.0. Moreover, as shown in Table 2, the element with the
most negative value in each of the submatrices involves the microscopic total cross sections for the
12th or the 30th energy group of the isotopes.
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Table 2. Summary presentation of the matrix S(z)(Ni/m,afk), ik=1,...,6 m=12¢=1,...,30

k=1 k=2 k=3 k=4 k=5 k=6
**Pu) (**°Pu) *Ga) ('Ga) (© (‘H)
2 g 2 8 2 8 2 &g 2 g 2 g
s )(Nlll"jt,l) s )(lel’at,z) ! >(N1r1’at,3) ! >(N1,1,atl4) s )(Nl/l'gt,S) s )<N1r1’gt,6)
i=1 18 elements 1 element Min. value Min. value 12 elements 22 elements
Pu) with with =-451x =-3.06 X with with
absolute absolute 1072 1072 absolute absolute
values >1.0 value >1.0 atg=12 atg=12 value >1.0 values >1.0
2 8 2 8 2 8 2 8 2 g 2 8
s )(Nzrl’at,l) ! )(Nllfoz,z) s! >(N2'1’Gt,3) ! )(szl"’t,z;) s )(N2/1'0t,5) S )(NZJ'Gt,é)
i—9 10 elements Min. value Min. value Min. value 1 element 9 elements
(240Pu) with =-2.05x% =-545x =-3.70 x with with
absolute 1071 1073 1073 absolute absolute
values >1.0 atg=12 atg =12 atg =12 value >1.0 values >1.0
2 8 2 8 2 &g 2 g 2 &g 2 8
SO N3y, 01,) SP(Ns1,05,) SPNsnofy) SP(Ns,af,) SP(N3n o) SP(Nsy o)
i—3 Min. value Min. value Min. value Min. value Min. value Min. value
(69Ga) =-714x =-4.52 x =-3.78 x =-1.40 x =-3.06 X = -3.66 X
1073 1074 1073 1075 1073 1072
atg =12 atg =12 atg=12 atg =13 at g =30 atg =30
2 g 2 8 2 8 2 8 2 g 2 8
S@(Na,ofy) SP(Na,af,) 8P (Nay, ;) SP(Nay,of,) SP(Nuy,ofs) 8P(Nuy, o)
i—4 Min. value Min. value Min. value Min. value Min. value Min. value
(71Ga) =-4.51x =-2.85x% =-132x =-2.56 X =-1.95x =-233 X%
1073 1074 1075 1073 1073 1072
atg =12 atg =12 atg=13 atg =12 atg =230 atg =230
2 8 2 8 2 8 2 g 2 g 2 8
S®(Nsa,05;) SP(Nsa,0f,) 8P(Nsa, ;) SPI(Nsz0f,) SP(Nsz0fs) 8P(Nsz o)
i—5 9 elements Min. value Min. value Min. value 1 element 11 elements
(C) Wlth =-1.14 x = —513 X = —351 X Wlth Wlth
absolute 107! 1073 1073 absolute absolute
values >1.0 atg =12 atg =12 atg =22 value >1.0 values >1.0
2 8 2 8 2 8 2 &g 2 g 2 8
s )(N@Z’Gt,l) ! )(Nﬁrz’ Ot,z) 5! )(N@Z’ at,3) s >(N6/2’ Gt,4) s )(N6/2’ Gt,S) s )<N6/2’at,6)
i—6 11 elements Min. value Min. value Min. value 1 element 19 elements
('H) with =-1.83x =-821x =-6.23 X with with
absolute 1071 1073 1073 absolute absolute
values >1.0 atg=12 atg =12 atg =22 value >1.0 values >1.0

2.3.1. Second-Order Relative Sensitivities S(2) (NM, atgl), g=1,..,30

Table 3 shows the results obtained for the 2nd-order mixed relative sensitivity of the leakage
response with respect to the isotopic number density and the microscopic total cross sections of isotope 1
(339Pu), denoted as s (Nlrl, afl) = (QZL/8Ni:1,m:18atgk:1)(Nlrlotgl /L), g=1,...,30. The 18 elements
that have values greater than 1.0, shown bold in this table, involve the total cross sections of isotope
29Pu for the energy groups ¢ = 6,...,22 and g = 30. The largest negative value in this submatrix is
attained by the relative 2nd-order mixed sensitivity S (2)(N 11, af: 1:12) = —17.172, which involves the

isotopic number density and the 12th energy group of the total cross sections of isotope 2*Pu.
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Table 3. Second-Order Relative Sensitivities S(z)(Nm,af 1 ), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 -0.005 16 —10.430
2 —0.009 17 —4.783
3 —0.026 18 —2.885
4 -0.122 19 —2.242
5 —-0.621 20 -1.883
6 -1.795 21 -1.631
7 -10.307 22 -1.168
8 —9.440 23 —0.934
9 -10.951 24 —-0.597
10 -10.978 25 —-0.687
11 —10.064 26 —-0.732
12 -17.172 27 -0.219
13 —-15.138 28 —-0.044
14 -12.627 29 —-0.392
15 -9.217 30 —5.241

2.3.2. Second-Order Relative Sensitivities $(2) (Nlll,afz), g=1,...,30

The matrix S© (Nl,lfafz) = (82L/8N1-:1,m:180§k:2)(Nmaf,z/L),g = 1,...,30, comprising the
2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 1
(**Pu) and the microscopic total cross sections of isotope 2 (***Pu), contains a single large element that

has an absolute value greater than 1.0, which is 52 (N1,1, afzzu) = —1.005.

2.3.3. Second-Order Relative Sensitivities $(2) (Nlrl, of: 5), g=1,...,30

The submatrix S(Z)(Nlll, 0‘55) = (32L/3Ni:1,m:130‘§k:5)(N1,10§5/L)r g=1,...,30, comprising the
2nd_order relative sensitivities of the leakage response with respect to the isotopic number density of
isotope 1 (?**Pu) and the microscopic total cross sections of isotope 5 (C), is presented in Table 4. This
submatrix includes 12 elements that have absolute values greater than 1.0, noted in bold, involving the
total cross sections of isotope C for the energy groups ¢ = 12,...,22 and g = 30. The largest negative
value is displayed by the 2nd-order relative sensitivity of the leakage response with respect to the
isotopic number density for 2Pu and the 30th energy group of the total cross section for C, namely,

S®(Nyy, 085 %) = -7.952.

Table 4. Second-Order Relative Sensitivities S(z)(NM,a‘fS), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.720 x 107 16 —2.034
2 —2.276 x 107 17 -1.657
3 -1.017 x 1074 18 —1.441
4 —6.664 x 107* 19 -1.315
5 —-7.945 x 1073 20 -1.219
6 —-0.019 21 -1.136
7 —-0.218 22 —1.040
8 —0.328 23 -0.962
9 —-0.332 24 —0.870
10 -0.387 25 —0.824
11 —-0.439 26 —-0.758
12 —-1.118 27 —0.674
13 -1.363 28 —0.623
14 —-1.402 29 —0.605
15 —1.245 30 —7.952
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2.3.4. Second-Order Relative Sensitivities S(2) (Nlll, atg 6), g=1,...,30

Table 5 lists the values of the components of the submatrix S(z)<N 1,1, of 6) =
(82L /ONj=1 m=1 &atg e 6)(N 11 af 6 / L), g =1,...,30, comprising the 2nd-order mixed relative sensitivities
of the leakage response with respect to the isotopic number density of isotope 1 (**Pu) and the
microscopic total cross sections of isotope 6 (*H). This submatrix includes 22 elements that have
absolute values greater than 1.0, shown in bold; the large sensitivities involve the total cross sections of
isotope 'H for energy groups ¢ = 9, ...,30. The largest negative value is for the 2nd-order relative
sensitivity of the leakage response with respect to isotopic number density of isotope >*Pu and the
30th energy group of the total cross section of isotope 'H, i.e., S (NM, afZB'O) = —94.909.

Table 5. Second-Order Relative Sensitivities S(z)(NM,af 6), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.001 x 107 16 -11.421
2 -2.325x 107 17 -11.674
3 -1.087 x 1074 18 -11.427
4 —-8.747 x 1074 19 —10.979
5 -7.585 x 103 20 —10.380
6 —-0.040 21 —9.744
7 —0.447 22 —-8.947
8 —0.646 23 —8.287
9 —1.001 24 —7.499
10 —1.250 25 -7.115
11 —1.478 26 —6.559
12 —-3.696 27 —5.860
13 —4.693 28 —5.479
14 —5.379 29 —5.490
15 —5.577 30 —94.909

2.3.5. Second-Order Relative Sensitivities $(2) (Nzrl,atgl), g=1,...,30

Table 6 shows the results obtained for the matrix S(Z)(Nz,l,atgl) =

(82L /ONi=2 m=1 &of k:l)(NM of, k1 / L), g = 1,...,30, comprising the 2nd-order mixed relative
sensitivity of the leakage response with respect to the isotopic number density of 24°Pu and the total
cross sections of 2?Pu. As highlighted in bold in this table, 10 elements of this submatrix have relative
sensitivities with absolute values greater than 1.0. These large mixed relative sensitivities involve the
total cross sections of isotope 2>?Pu for energy groups ¢ = 7, ..., 16, respectively. The largest negative

1:12) = —1.914, also occurring in the 12th energy group of the

value in this submatrix is 5(2)(N2,1, af
total cross sections.

2.3.6. Second-Order Relative Sensitivities S(2) (NZ,lr atg 5), g=1,...,30

The matrix S (N211’0§5) 2 (82L/9Ni:z,m:190fk:5)(Nz,1O‘fS/L),g = 1,...,30, comprising the
2nd-order sensitivities of the leakage response with réspect to the isotopic number density of isotope
2 (>*0Pu) and the microscopic total cross sections of isotope 5 (C), has only one large element with
absolute value greater than 1.0, namely, $(2) (szl, 055:30) = —1.067, which occurs for the 30th energy

group of the total cross sections of isotope C.
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Table 6. Second-Order Relative Sensitivities S(z)(Nzll,a‘f 1 ), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.881 x 1074 16 -1.136
2 -9.701 x 1074 17 -0.525
3 —2.796 x 1073 18 -0.320
4 -0.013 19 -0.254
5 -0.068 20 -0.216
6 —-0.198 21 -0.190
7 —1.148 22 -0.137
8 —1.052 23 -0.106
9 —1.221 24 -0.067
10 -1.223 25 -0.084
11 -1.121 26 -0.090
12 -1.914 27 -0.005
13 —-1.676 28 0.0002
14 —-1.386 29 -0.049
15 —1.007 30 —-0.639

2.3.7. Second-Order Relative Sensitivities S(2) (NZ,lr atg 6), g=1,...,30

Table 7 summaries the 2nd-order relative sensitivities in submatrix S(z)(Nzll,af 6) =

((92 L/0Nj— ;-1 aaf e 6)(N2,1 a‘f/ o L), g =1,...,30, of the leakage response with respect to the isotopic
number density of isotope 2 (>4°Pu) and the microscopic total cross sections of isotope 6 (‘H). As shown
in bold characters in this table, 9 elements in this submatrix have absolute values greater than 1.0.
These 9 elements are related to the energy groups g = 16, ...,23 and g = 30 of the total cross sections
of isotope 'H, respectively. The largest 2nd-order mixed relative sensitivity attained in this submatrix
involves the isotopic number density for 24°Pu and the 30th energy group of the total cross section for

'H,ie, S®(Nay,0f,*) = -12.741.

Table 7. Second-Order Relative Sensitivities S(Z)(N2,1,<7‘tg 6), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.446 x 10°° 16 -1.553
2 -1.222 x 1075 17 —1.568
3 —4.406 x 1075 18 —-1.526
4 -2.817 x 1074 19 -1.463
5 -1.977 x 1073 20 -1.381
6 —-8.680 x 1073 21 -1.295
7 -0.083 22 -1.189
8 -0.107 23 —1.099
9 -0.162 24 -0.996
10 -0.201 25 -0.944
11 —-0.234 26 —-0.868
12 -0.563 27 -0.763
13 -0.685 28 -0.730
14 —-0.762 29 —0.740
15 -0.773 30 —12.741

2.3.8. Second-Order Relative Sensitivities S(2) (N5,2, a‘fl ), g=1,...,30

A

Table 8  presents the results for the  submatrix s (N 52, Gf 1) =

(82L /IN, i:5,m:28a‘f: k:l)(N 5,20(3 1/ L), g =1,...,30, which comprises the 2nd-order relative sensitivities
of the leakage response with respect to the isotopic number density of isotope 5 (C) and the microscopic
total cross sections of isotope 1 (**Pu). This submatrix contains 9 elements that have absolute values
greater than 1.0, as shown in bold in this table. These 9 elements are related to the total cross sections
of isotope C for the energy groups ¢ = 7and g =9, ..., 16, respectively. The most negative value is
5@ (N 52, G‘E 1:12) = —1.803 for the 2nd-order relative sensitivity with respect to isotopic number density

of isotope C and the 12th energy group of the total cross section of isotope >Pu.
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Table 8. Second-Order Relative Sensitivities S(z)(N 5/2,02g 1 ), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.471 x 10+ 16 -1.177
2 —-8.863 x 10+ 17 -0.593
3 —2.548 x 1073 18 -0.385
4 -0.012 19 -0.306
5 -0.061 20 -0.257
6 -0.178 21 -0.223
7 —-1.044 22 -0.161
8 -0.982 23 -0.129
9 —1.146 24 -0.082
10 -1.143 25 -0.096
11 —-1.047 26 -0.100
12 —1.803 27 -0.027
13 -1.613 28 -0.005
14 —1.360 29 -0.055
15 —1.004 30 -0.761

2.3.9. Second-Order Relative Sensitivities $(2) (N5I2, o‘tg 5), g=1,..,30

The submatrix $(2) (N5,2, a‘tg 5) £ (82L / &Ni:5/m:2&of k:5)(N5,20tg 5 / L), g =1,...,30, comprising the
2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number
density of isotope 5 (C) and the total cross sections of isotope 5 (C), has a single large element that has
an absolute value greater than 1.0, namely S (2)(N5/2, 055:30) = =-2.016.

2.3.10. Second-Order Relative Sensitivities S(z)(N5,2, Gf 6), g=1,...,30

Table 9 lists the values for the elements of the submatrix S(z)(N5,2, Gf 6) e

(82L /ON;— 5,m:230‘f: e 6)(N 5,20‘5 o L), g =1,...,30, comprising the 2nd-order mixed relative sensitivities
of the leakage response with respect to the isotopic number density of isotope 5 (C) and the microscopic
total cross sections of isotope 6 ('H). This submatrix includes 11 elements, highlighted in bold, which
have absolute values greater than 1.0. These 11 elements involve the total cross sections of isotope 'H
for energy groups g = 16,...,25, and g = 30, respectively. The largest negative value in this submatrix
is S (N5, 05 ) = ~14.695.

Table 9. Second-Order Relative Sensitivities S(z)(N 5,2,0;3 6)’ g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —-3.183 x 107 16 -1.665
2 —-8.920 x 10~¢ 17 -1.676
3 —-3.198 x 10~° 18 -1.626
4 —2.007 x 107+ 19 -1.557
5 -1.438 x 1073 20 -1.471
6 —-6.575 x 1073 21 -1.383
7 -0.070 22 -1.273
8 -0.102 23 -1.183
9 -0.161 24 -1.076
10 -0.200 25 —-1.024
11 -0.232 26 -0.947
12 -0.567 27 -0.850
13 -0.715 28 -0.801
14 -0.812 29 -0.804
15 -0.827 30 -14.695

2.3.11. Second-Order Relative Sensitivities S(z)(N6,2, af 1), g=1,..,30

A

Table 10 presents the results obtained for the submatrix S(Z)(Nélz,(jfl) =
(82L/ 8N1‘:6/m:280_f,k:1)(Né/ZO-(f,kzl / L), g = 1,...,30, comprising the 2nd-order mixed relative

sensitivities of the leakage response with respect to the isotopic number density of isotope 6 (*H)
and to the microscopic total cross sections of isotope 1 (**Pu). As highlighted in bold in this table,
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11 elements have relative sensitivities with absolute values greater than 1.0. These large 2nd-order
mixed relative sensitivities pertain to the total cross sections of isotope ?*Pu for energy groups
g=7,...,16 and g = 30, respectively. The largest negative value in this submatrix is attained by the
relative 2nd-order mixed sensitivity S(z)(N6,2, a‘tg/ 1:12) = —2.884.

Table 10. Second-Order Relative Sensitivities S(2) (N@/z, atg 1 ), g=1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —7.340 x 107+ 16 -1.787
2 —1.456 x 1073 17 -0.892
3 —4.186 x 1073 18 -0.597
4 -0.020 19 -0.496
5 -0.101 20 —0.431
6 -0.293 21 -0.386
7 —-1.697 22 -0.286
8 —1.554 23 -0.235
9 —1.808 24 -0.153
10 -1.821 25 —0.183
11 -1.680 26 -0.196
12 —2.884 27 -0.055
13 —2.542 28 -0.011
14 —2.114 29 -0.114
15 —1.546 30 -1.933

2.3.12. Second-Order Relative Sensitivities S(Z)(N@z, otg 5), g=1,...,30

The matrix S (N6,2,G§5) 2 (32L/9Ni:6,m:290§k=5)(N6,20§5/L)/g = 1,...,30, comprising the
2nd_order relative sensitivities of the leakage response with respect to the isotopic number density of
isotope 6 ('H) and the microscopic total cross sections of isotope 5 (C), contains a single large element

$2%0) = —3.186.

that has an absolute value greater than 1.0, which is s (N6/2, 0y 5

2.3.13. Second-Order Relative Sensitivities S(z)(N6’2, af 6), g=1,..,30

Table 11 lists the values obtained for the 2nd-order relative sensitivities of the leakage response
with respect to the isotopic number density of isotope 6 (!H) and the microscopic total cross sections
of 'H, which are components of s (N6,2,O_§6) 2 (azL/aNi:6,m:ZaGtg,k:6)(N6,20_tg,6/L)/g =1,...,30.
In this submatrix, 19 elements have relative sensitivities with absolute values greater than 1.0, all
involving the total cross sections of isotope 'H for energy groups g = 12,...,30. The largest negative
value is attained by the 2nd-order mixed relative sensitivity 52 (N@z, af 6:30) = —47.398, occurring in
the 30th energy group of the total cross section of isotope 'H.

Table 11. Second-Order Relative Sensitivities S(2) (Né/z, Uf 6)' g=1,...,30

g Relative Sensitivities g Relative Sensitivities
1 -9.518 x 107 16 —3.558
2 —-2.606 x 1075 17 —3.679
3 —-9.353 x 10~° 18 —3.656
4 —5.963 x 10™* 19 —3.574
5 —-4.196 x 10™* 20 —3.440
6 -0.018 21 —-3.296
7 -0.169 22 —-3.102
8 -0.220 23 —2.937
9 -0.332 24 —2.730
10 -0.415 25 —2.630
11 -0.489 26 —2.476
12 -1.190 27 —2272
13 —1.465 28 -2.170
14 —-1.659 29 —2.176
15 —1.724 30 —47.398
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3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Isotopic Number Densities and Scattering
Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9°L( o) /dNJo of the leakage response with respect to the isotopic number densities
and group-averaged scattering microscopic cross sections for all isotopes of the PERP benchmark. These
2nd-order mixed sensitivities can also be computed by using the symmetric expression 9°L(cx) /dos0N.
These two distinct paths for computing the 2nd-order sensitivities with respect to the isotopic number
densities and group-averaged scattering microscopic cross sections will be presented in Section 3.1 and,
respectively, Section 3.2. As shown in Section 3.3, below, the pathway for computing 9°L(«)/INdos
turns out to be about 450 times more efficient than the pathway for computing 9°L(«) /dosON.

3.1. Computing the Second-Order Sensitivities d*L(cx) /INI o

The equations needed for deriving the expressions of the 2nd-order sensitivities 9L /dn j0Smy, j =
1,...,Jumy =1,..., s will differ from each other depending on whether the parameter s,;, corresponds
to the Oth-order (I = 0) scattering cross sections or to the higher-order (I > 1) scattering cross sections.
This is because, as shown in Equation (A3) of Appendix A, the zeroth-order scattering cross sections
contribute to the total cross sections while the higher-order scattering cross sections do not. Therefore,
the zeroth-order scattering cross sections must be considered separately from the higher order
scattering cross sections. As described in [1-3] and Appendix A, the total number of zeroth-order
(I = 0) scattering cross section comprised in o5 is denoted as J,5;—, where J;5;—9 = G X G X I. The
total number of higher order (i.e., [ > 1) scattering cross sections comprised in o5 is denoted as /g />1,

where [;; 151 = G X GXIXISCT, with J551—0 + J551>1 = Jos- There are two distinct cases, as follows:
2
Case 1: (a—L)
2192 ) (=N 5=0,-9)
the isotopic number densities, while the quantities s, refer to the parameters underlying the Oth-order
scattering microscopic cross sections; and

2
Case 2: ( aﬂ%g )
1772 J(n=N =05 51)

isotopic number densities, and the quantities s, refer to the parameters underlying the I""-order (I > 1)
scattering microscopic cross sections.

s J=1,...,Jn; ma=1,...,]ss1—0, where the quantities n; refer to

,J=1..., Jn; my=1,...,0,51, where the quantities 1; refer to the

3.1.1. Second-Order Sensitivities ( QL

W j:1,...,]n;m2:1,...,]65,1=0

)("_N/S_Us,zo)’
The equations needed for deriving the expression of the 2nd-order mixed sensitivities
(%)( are obtained by particularizing Equations (158), (159), (167), (168), (177), (178),
172 ] (n=N,s=0¢ 10
(204) and (205) in [5] to the PERP benchmark. Specifically, using Equation (158) in [5] to the PERP
benchmark yields the following expression:

1 G 2
& _ , 7L (1)
( e ) =-% Jy v [, 098, 0)p8 (r,0) 724

(n=N,5=05)—9)
& , , 95,8 59
~ X V[, a0o 0y 050,0) g s, ) B, >

forj=1,....Ju, my=1,...,]5s1=0,

where the adjoint functions ¢§2)’g and gbéz,)’g, i=1...,Js 8 =1, G are the solutions of the
2nd-LASS presented previously in Equations (11)—(14). In Equation (59), the parameters 1; and sy,
correspond to the isotopic number densities and microscopic total cross sections, respectively, and are
& ’ my —& ny

therefore denoted asn; = N;. ,,, and s, =0 .
] 777 2 S,ImZ :Ozlmz

, where the subscripts iy, , lin,, g’m2 and gy, refer
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to the isotope, order of Legendre expansion, and energy groups associated with the parameter s,,,
respectively. Noting that

M
0| ¥ ZNlmU +U +):a’ /BNZ o
PLE() EWI0) == fi
8njasm2 - BN[ . aag'mzﬂgmz - acfg mz"gmz
7157 8, lmy =0,im s,lmn =0,im
. 2 =0m, 2 =0y (60)
. ‘3_"3
lel)Zng N’mosl 0,i /asz,mj ,Z: Usl 01/
908 mzﬂgmz = US mzﬁgmz = 6iji'”2 6g,ng’
slmy =0,imy $lmy =0,imy
| ot 25 Nilot (048, (4 £ 055 06)
N; a f +(f <)+
32§(t) _ mZhZ NznlUtl( )‘ _ me1iz1 Lm o= sl 0,i
asmz 9 g’ 1y "8y 9 S,mz‘ﬂgmz
T iy =0iny sy =0,iny 61
M o T ( )
X Z ZN””UIO()
m=1i=1g¢'=1 g ! | 5 N
g my 8y - g/ng Ly My /
Sy =0imy

and inserting the results obtained in Equations (60) and (61) into Equation (59) yields the following
expression for Equation (59):

(1) / ,
AL _ s 18" &'m
(9”1"’5’"2 )<n—N,s—as,lo> = =Biiny Jy AV [ AP (r, Q)% 2 (1, Q)

(2)rg,m 1 , , (Z)Vg,m !
Ny Jy 4V Ji dﬂ[‘abl,j 2 (r, )y (1, ) + Yy @)ty Q)]/
forj=1,...,Jumx=1,..., Jssi=0-

(62)

Additional contributions stem from Equation (159) in [5], which takes on the following
particular form:

@ o
(‘9"?‘295"12 )( N ) Z JydV fin dﬂlP(z 3(r, Q) Z f ap (7, Ql)%
n=IN,5=05,1=0

¥ § ’ 4 s -8 /0’—>Q 63
+ Zl fvdVLn dﬂlabzlj (r,Q) Zlﬁm aQ (pg (r,Q )#, (63)
8= g'=

forj=1,...,Ju;my=1,...,]5s1=0-

Noting that
N N N;, Q-0
5 (50000 _ an8 Y (50000 _ 9|, & Nom (s
Isiy 3 & my—8my - ) 8 my =gy
S, Jim S, im
M I ISCT 2 2 (64)
d 21 _Zl IZO N (214+1)0% % P,(n'-n)]
_ m=1i=1 |= " o . /.
B g’mzﬂng - 6g/m2g68m2g/Nlm2/mm2 (ZZmZ + 1>le2 (Q Q)’
slmy jiny

{50 - 0) x50 - 0) '
&sz B aag’mz —8&my - 6g"’2g6glng’Ni”’2'm”lz (ZImZ + 1)Pl”’z (Q ' Q), (65)

S/ln12 rimz
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inserting the results obtained in Equations (64) and (65) into Equation (63), using the addition theorem
for spherical harmonics in one-dimensional geometry, performing the respective angular integrations,
and setting 1, = 0, yields the following expression for Equation (63):

2 (2) m )8 g " o
() N V0 0600 4o 0L 0]

(H:NrszgsJ:O)
forj=1,...,Jumy=1,..., Jss1-0-

PL 85] Btm2 L X8 8th

— n — =
9tm2 871] asmz an]-c)smz atM2 asmz

Using Equation (167) in [5] in conjunction with the relations 55—

azt ylelds the following expression:

(3)
L _ (1) T8 (1)
(‘7”#95'"2 )(n:N,s=Os,z:o) Z fv dVL dO[ i) + 6 (r s (r, Q)] Fsm ! (67)
forj=1,...,J;;my = 1,...,][,5,1:0,
where the 2nd-level adjoint functions 6< )8 , and 6( )8 ,i=1,...,Jusg=1,...,G, are the solutions of

the 2nd-Level Adjoint Sensitivity System presented prev10usly in Equatlons (19)—(22). Inserting the
results obtained in Equation (61) into Equation (67), yields the following expression:

®) @ : @) :
L _ 8 m (1):8" m 8 m S m
(75 )(n:Ns:g = N @V, anfo, " (r )y (r,0) + 0, (1,000 2 (1, 0)|

(68)
forj=1,..., Juymy =1,..., J5s1=0-

The contributions stemming from Equation (168) in [5] to the PERP benchmark are computed
as follows:

2 (4) G G , o , BZZg’Hg ;0 —Q)
(,9,;975) = X fav [ a0p0s(r,0) ¥ [ deps (r,0) P H00)
"2 /(n=Ns=05—0)  g=1 g=1 jOSmy

G , 05878 (0507
+ 2 ydv [, 400 28(r,0) L[, a0rpDe (r,0) 020

g/ 1 T( ‘95”’2 (69)
),g S ’ ’ " ! s:0'-0)
+ z deVLndQQ (r, Q) 2 L 408 (r, )2 Ty

for] =1,...,Jy;m = 1,...,](,5,1:0.

Noting that

N N ;0 =0 —
P58 S (s050) | o5F S (s0-0) { T )]/aN’l’ml}

— m=1i=1
anjast ON: 9 g ny —8my g mZﬁgmz
jmj Slmz Ay slmy Jiny
M ISCT ’
{ [Z £y Ni (214+1) gﬁgpz(ﬂ' )]/aNi-,m'} a{ L (21+1)U§173Pz(0"0)} 0
m=1i=1 1=0 ) li=o )
s iy 7 8my - 8,m2 —&my
s,lmy imy slmy dmy

= 6ijim26g'ng’6gm2g(2lm2 + 1)le2 (Q/Q),

inserting Equations (64), (65) and (70) into Equation (69), using the addition theorem for spherical
harmonics in one-dimensional geometry, performing the respective angular integrations, and setting
I;n, = 0 into the resulting expression yields:

(4) 4
2L ) _ g gmz 8 my
= r r
(an/‘?S'VlZ (n:N,s:Js,I:(]) ”mz 0 ( )(P ( )

(71)
1).gm 2):8"m &m 2).gm )
+Niy 1y fvdv[éé g (NO 5 " (1) +¢y " (r )@é}?}j 2|, forj =1,..., Juima =1, Jos—os
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where
2),
©\JE(r) £ f dQG( J8(1,00), (72)
i 4
2),
©\)E(r) £ f dQG( )8 (r,02). (73)
/)7 4
Contributions from the fission cross sections are computed by particularizing Equation (177) in [5],
L df; Otm 9L I%48(t) Ity _O%8(Y) .
in conjunction with the relations 5-&-— F ot an’] 3 sz I s and 8;m2 85»2 = 8;”2 , to obtain:
(75 )<5) :—z Jy v £ 40, )93, 00) 4l (1, )8 1, 0)| B
Injosm, (n=Ns=05;_) v At ISy 7 (74)

for j=1,...,Ju; my= l/“'/]us,l:Or
(2).8 )
Lj

the 2nd-Level Adjoint Sensitivity System presented prev10usly in Equations (27)—(30). Replacing the
result obtained in Equation (61) into Equation (74) yields the following expression:

where the 2nd-level adjoint functions u ,and u, ,j=1,...,Jug=1,...,G, are the solutions of

2 ®) (2).:8" m 1),¢ (2).8"m g
(755) = Ny g deVLndQ[uLj 2 (r, ) (1, Q) 4y Z(r,Q)(pgmz(r,Q)],

3"/'95"‘2 (”:N/5:‘75,1:0 )

for j=1,...Ju; my=1,..., ] =0

(75)

Contributions stemming from particularizing Equation (178) in [5] to the PERP benchmark take
on the following form:

(6) G G -8 . ’
ZL ) = av [ d0u'®4(r, A0/ w8 (r )22~ (50207
(anj Iy (n=N,s=04,—9) gZ::l fV Ln L (, )gél Ln v (r €Y) 9smy
G G g -8 ’
(2).g vy I8 ¥ (5,0 —>0) (76)
+g§l JydV J duy (r,n)g,z:1 [ AV @8 (1, Q) e,

(?sm2
fOVj = 1,...,]n; myp = 1,...,]05’120.
Inserting the results obtained in Equations (64) and (65) into Equation (76), using the addition theorem

for spherical harmonics in one-dimensional geometry, performing the respective angular integrations,
and finally setting [,;, = 0 in the resulting expression yields the following expression for Equation (76):

(6) 2 of ,
2L _ . (1)/gm ( )’g m 8 m (2),gm
(9"f95mz )(nN,sos,zo) = Nirynng i dv[‘go Uy o () g H U (r)]’ (77)
forj=1,..., Jy;my=1,..., 55 1=0,
where
ulisr) < | dou?(ra), (78)
ge 4m
U (r) + f4 404 (r,0), (79)

Contributions stemming from the source are computed by particularizing Equations (204) and
(205) in [5] to the PERP benchmark. Particularizing Equation (204) in [5], in conjunction with the

. 9L %atmz _ 2L az.tg(t) 3tm2 o QZt ()
relations 0,0ty I Fomy iP5y Ty Fomy —o— yields:
( 2L )(7) =Y [av] d0g 28 (r, Q)ps(r, 0)ZEW,
on;jdsm, (n=N,5=04,—0) g=1 v An Lj F5my (80)

for j=1 ] ma=1,.., Jusiz0,
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where the 2nd-level adjoint functions g?].) € j=1,....,Ju; §=1,...,G,are the solutions of the 2nd-Level

Adjoint Sensitivity System presented previously in Equations (35) and (36). Inserting the result obtained
in Equation (61) into Equation (80) yields the following expression:

7 @) ,
92 _ m (]), m
(a”jaémz ) - lle/mmz j{v/ dVLT[ dQ 1,j 2 (1’, Q)‘ab g 2 (7, Q), (81)

(n=N,s=0-9)
for j=1,...,Jn; my=1,...,]51=0-

Particularizing Equation (205) in [5] to the PERP benchmark yields the following contributions:

®) G G P ,
L — (2)g T (1), 7\ 9XS ° (5,020 )
(‘9”]"95"'2 )(nN,sUs,zo) gél fV dvﬁl” nglJ (r Q)gél LT[ aQy (1’, a ) I5my ’

forj=1,...,Ju;my =1,..., Jss1=0-

(82)

Inserting the results obtained in Equations (64) into Equation (82), using the addition theorem for
spherical harmonics in one-dimensional geometry, performing the respective angular integrations,
and finally setting [,;, = 0 in the resulting expression yields the following simplified expression for
Equation (82):

(8) 9) of
32L _ . (1),gm2 ( )rg my
((91’1/(95",2 )(HN,SUS,IO) — leﬂz/mmz fV dvéo (I”)Gllj;o (r), (83)
forj=1,..., Ju;my=1,...,]51=0,
where
()8 ().
Gy (r) = L ) d0gy" " (r,0). (84)

Collecting the partial contributions obtained in Equations (62), (66), (68), (71), (75), (77), (81) and
(83), yields the following result:

8 (i) , ,
2L ) _ ( 2L ) -5 av [ dowMEm (v o™ (5 O
(‘)”fas’"Z (n=N,s=04_0) igl Injdsm, (n=Ns=04)_0) lllmzf Ln v (r )¢ (. €2)

)& m )8 m ’
—Nimz,mmz fV av Ln dﬂ[d)l 2 (r ) 1.8 "y (7’ ) + IPZ 2 (7’, Q)(Pg my (I’, Q)]
()8 my &

(1)1 m m
Ny Jy V] 5 (13 " o 08 G >]
(2).8 m ( )g m '
_NirnZ,WWIZ fV av Ln dﬂ[e . 2( ) 1.8 ny ( r, ) 2 (I’,Q)(pg ny (I’, Q)}
(1).8m 8 m 1),8m ( )g’m 8 m (2).8m
Fijng g ()8 " (1) Nipyy JydV]E) "2 (110, 1 "2 (1) + g "™ (005" (1) (85)

()8 m
_Nirnzrmnzz fV av Ln dn[ul/j ’
()8 my

(1),8m, / 8 m (2),8m
+Nimz,mmZ fvdv[go $ 2(7)U]/].;0 ()+(p0 2(r)u27j;0g 2(1’)]

()8 m
_Nl-mzmm2 fV av Ln dﬂgw_ 2(r, Q)l}'( )18 iy (r,Q)

()zzm2

()9 1, ) -y 7, ) 2 (1, 0)|

1),gm ()8 m .
+Nim2,m,,,2 J“/dV‘E(() ma (r)Gl,j;(] 2 (1’), fOF ]= 1,0, ] my=1,.. -1]05,1:0 .

3.1.2. Second-Order Sensitivities (‘92—L

=1,....Jumy=1,...,0
an/asmz )(n_N,s_o's/lZl),] ’ r]l’l/ 2 ’ 7 Us,1>1

For the 2nd-order sensitivities (82L /on jBsz) j=1,....Jn my=1,...,041, the

(n:N/Szos,lzl)’
parameters n; = N, correspond to the isotopic number densities, and the parameters s;;, =

8 my ™8 . . . .
o, 1"12 ; "2 correspond to the "-order (I > 1) scattering cross sections. For this case, the expression for
stmy sty

(82L /on ]asmz) (n=N =0, 1) is obtained by particularizing Equations (159), (168), (178) and (205) in [5]
=IN,5=05,]>1
to the PERP benchmark, which yields,
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(#52)
I1jdmy (n=N,s=0>1)

Jir QPO (1, X)

’

G
2 foav . dn¢1] (r,Q) ¥
8

82§Hg, (s,00>QY)

95m2

21 of 50

G 2/ ’ ’ 3g
+ Z deVLndQ¢2?g(r/Q gél‘ﬁ;ndﬂ (Pg (r/Q)

(5,00 Q)

3228
) on; asmz

G
3 (r, Q) 21L Ay o8 (r, o
g/

G ’
+ z JodV [ @002 5 (r,0) ¥ [, a0y (0
§=1 " g'=1

+ Z fvde dQy™M

— ’
8 (s,0-0)

) oxg
a5m2

(5,00 - ) (86)

8sm2

G G

+ X v i, 4007 (r,0) ) L L0098 (r )=
8= g

_’g,(s;Q—>Q’)

) ozf
asmz

G G
+ L fav [ dauf]?fg (o) ¥ [ darpWg (r,0
8= g'=

’
T8 T8 (5,00 - Q)
asmz

G G
(2),g ’ 4 ’
+ g§1 JydV Jy duy 5 (r, ) gé 1 [, 4098 (1, Q)

2878 (5:050)
35mz ’

G
- Zl fv dv Ln dﬂggz')'g & (r, Q')
g=

G
y (r,())g/Z:lf47T Flo Iz S
forj=1,..

'/]I’l;mz = ]-/‘ . '/]GS,lZl/

where the 2nd-level adjoint functions vy l) 3 ¢21 .6, Z) 3, Gézl) 8 u g l) , u;i)’ and gé )8 for j =

Jug =1,...,G are the same as those presented in’Section 3.1.1, above. Insertmg the results
obtained in Equations (64), (65) and (70) into Equation (86), using the addition theorem for spherical
harmonics in one-dimensional geometry and performing the respective angular integrations, yields
the following expression:

(w52
on;dsmy (n=N5=05>1)

+ 1]lmz (217”2 + 1)5(1) A2 (r)(P[g "2 (T)
my m2

(Pg my (r>£

lm2

- (2):8" m
= Nimz'mmz (Zlm2 + 1) f dv[é( )g ’ (r)éllj)lmZ ’ (7’) +

(2.),81712 (r):l

2;]}ln12

m (z)rg,m g,m (2 &M
+Nim2/mmz (zlmz + 1 fV dV[ l( z ¢ ’ (r)®lrj;lm2 ’ (1") + (leZ ’ (r>®2'j);li22 (r)] (87)
(D).gmy ¢ 7128 m, &y (2)gmy
+Nim2/mrr12 (ZZmZ + 1 fV dV l (7’) ul,j;lmz (7’) + (lez (1") uzlj}lmz (1’)
(1),gm (2):8
+Nimz,mmz (2 ny + 1 fV dvél g ’ ( )Gllj;lmz ’ (7’),
fO?’j =1,....Jumy=1,. r]os,lzll
where
8 (r) 2 f 40P, (0)0))% (r,0), (88)
i 4n §
0% (r & | aapr(0)6)3(r,0), (89)
2,ji 4n 2
D)+ f4 40P ()4 (r0), (90)
Tt
(2),8/.7 & 2).8
Uy e (r) f4n QP (Q)uy S (r,02), 1)
Gf].),;g(r) 4 f dQP,(Q) ggzj)'g (r,Q). (92)
i 4n §

3.2. Alternative Path: Computing the Second-Order Sensitivities °L()/d0s0N

The results computed using the expressions for d*’L(«)/INJos obtained in Egs. (85) and (87) can
be verified by obtaining the expressions for the symmetric expression 9*L () /dosdN, the computation
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of which also requires separate consideration of the zeroth-order scattering cross sections. The two
cases involved are as follows:

2 . .
Case 1: W ;7 =1 Josi=0;m2 = 1,..., Jn, where the quantity s; refers to
(s=05, == N)

the parameters underlying the Oth-order scattering cross sections while 7,,, refers to the isotopic
number densities;

2 .
Case 2: a—L ,j=1,...,05151;,m = 1,..., Ju, where s; refers to the parameters
ds:ony, _ _ siz ]
1772 (s=0 j51,n=N)

underlying the "*-order (I > 1) scattering cross sections and where n,,, refers to the isotopic
number densities.

3.2.1. Second-Order Sensitivities (&ZL/8sj8nmz)(S:U o an)’j =1 Jesi=0om2=1,...,Jn

The equations needed for deriving the expression of the 2nd-order mixed sensitivities
(82L /0s j&nmz) (s=0u1_om=N)’ j=1,...,Jss)=0;m2 = 1,..., ], are obtained by particularizing Equations
(158), (159), (160),5’(162), (167), (168), (169) and (171) in [5] to the PERP benchmark. This procedure
leads to the following expression:

aZ—L J— ,g g a Zt ( )
(Bs]-Bnmz )(S_Us,lo n=N) Z fV dVL dﬂlab (7” Q)(P (1’ Q) as]anmz
G
- X fav, dn[ngri' (r,n)¢< 18 (r, Q) + 92 (r, )3 (7, n)](’%;mi )
g:

G G -, . ’
tL v i a0y (r,0) ¥ [ d0'y®s (r, o) 22 (000

g=1 Bnmz
)8 G b 358 8 (500 50)
+ z fvdvjm Oy (1, Q) g/z:l Jir Q98 (r, ) ==
A 6x)¥ 0]

@), G o
+vadvf4ndn¢ 2(r, Q) élﬁmdn(pg(ng)){gw

A (vz NS¢ G , , ,
+ 21 f,av |, dnlpl,z]?'g (r,Q)—[( an{f 0] zl [, 4 X S (1, Q)
g= =

2

My

G .
+ L fav [ d0p)(r,0) 2500
! (93)

Tlmz

G
, , I2)
-L fav dQ[ij)g(r,ﬂ)gb(l)'g(r,ﬂ) n 95}?8@,0)@@,0)} IZE(t)

3 & [PN4 N g8 ;0 —
+ Z fvdVL a0y Vs (r, Q) ZandQ o8 (nﬂ)w
glf
2 828 (.0 0)
+ Z deVLndQQZ)rSrQ ¥ [ daps (0 )%?0)
8 g=1 "
9Z§ $(s;00 > 0)
N

G
- 21 Jpav [, 30038 (r,0) ¥ [, d0es (1,0
9=

§'=1

G vzt G 7 ,
+ 3 fav dnegzj?'g(r,n)—[( s )2“] Y [doyy g ()
g=1 ’ m ¢=1
G G o 9 (=) ()
+ X v [, 40025 (r,0) ¥ [, d0'¢¢ (r,0 )Xg[le]
g: /7

G
. Q8
- 21 JrV Ji dﬂegj)g(’fﬂ) Q—(qrn forj=1,.... Jssi=0;m2 =1,..., Ju.
g:
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In Equation (93), the adjoint functions tpl ¢ and 1/)2]’3, j=1,...Jss1=0;8 = 1,...,G are the
solutions of the 2nd-Level Adjoint Sensitivity System presented in Equatlons (30), (32), (36) and (37) of
Part II [2], which are reproduced below for convenient reference:

Bg<“0)¢§/2j)lg(r’ﬂ) = —0g gNijm; @3 (1, Q),j =1, Jos=0; § = 1,-.., G, (94)
gbfj)'g(rd,ﬂ) =0,0-n<0;j=1,...,Jp0;8=1...,G, (95)
A(l),g(aO)lpgj)fg(r,Q) = —6g/]_gNij,mjll,(l)/8(r,Q)’]' =1 Josie0;g =1,...,G, (96)
4, 0) =0,0n>0 =1, Joss=0; g = 1,...,G. 97)

The 2nd-level adjoint functions, ol ]) and 6( )8 §i=1,. W osi=0;8 = ., G, in Equation (93)

are solutions of the 2nd-Level Adjoint Sen51t1V1ty System presented in Equatrons (46), (48), (51) and
(52) of Part II [2], which are reproduced below for convenient reference:

Bg(ao)egj?'g(r,a) = 8g,gNiy (21 + )Py ()] (), j=1,...,Josig =1,...,G; [ =0,...,ISCT, (98

2), .
95,]»)‘?(7‘51,0) =0,Q'n<0j=1....,Jos; §=1,...,G, (99)

A<1>'g(o¢°)9§i?'g(r, ) = 8 Niym, (21 + 1)P, (0)51(;)’37 (1, i=1,...,Jsig=1,...,G; 1=0,...,ISCT, (100)

2), .
Gé,]-)g(rd/ﬂ) :O,Q‘H>O;] = 1/"'/]05;g: ]'""’G‘ (101)

In Equation (93), the parameters s; and 7, correspond to the Oth-order scattering cross sections

4 i8]

and the isotopic number densities, denoted as s; = o and n,, = N; , respectively. Note that:

lj:(),i] my My
N; U +U i+ ag_)g ON;
PrE(t) 28 (1) { [m):llzl o Z:‘ si=0i )|/ fig M
50N, 9o 8 i—8j IN. 9 828
sl =0,i; = tmy My s[ =0,i;
] (] 102
M G ’
d| X Z ): sza /9sz mm 280N Ug;g-
m=1i=1¢’=1 2772 /=1 s1=0im,
£ = = 0ii O
P Ty Tt
Ts1=0; Ts1j=0,ij
and
M 1 ,
Pst Sty _ ont Sty _ P BN o0 =00 i |
s n = T g = g -8
My i8] j78j
9o sl] =0,i; aN’mz Mty 9o, 51] ()1/
M ’
A £ LT Non ol 5 n | Ny | 2 E 010855 per ) (103)
m=1i=1 I= _ —
o &j=8) o &js;
9ou) o P01 o

" J =
= Bijin, O /8/68]8(21 +1)P1 (Q-0).
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Inserting the results obtained in Equations (47)—(52), (102) and (103) into Equation (93) yields the
following expression for Equation (93):

2

(95;93:,,,2 )(rg 2=N) = ”mz f de;n dﬂlp g](r Q)(pg](r Q)
=0s,1=011=

G
~ LV L an[y 2 (r Q)O3 () + ) (r, )30, n)]

G ISC S e )8 G g
+ X Z (2141) fvdv51], () X of 8 & () + Z z (21+1) fvdvgzﬂ (1 L o ef ()

g 11=0 g=1 2 g=11=0 g'=1 ]

G , G /
+ £ favisslfn £ o of, of 01+ £ faveg o, s050) £ e )
8= 8= =

g=1 tmy fﬂm2 imy  fim

G G
+ i z fvdvgfj?,g’(r)Qﬁm - z deVatgi f4ndﬂ[@lj’g(r,n)ll;(1>rg(r,0)+6§i?’g(r,0)q38(r,0) (104)

+ 11”,2(21 +1)deV91 “(r )(P I(r) + Z Z (21+1) deVG) 28 2(7) g §=g 511%‘3/(,,)
g/:

qlzmz

ISCT G 5
+gzl L@+ deV® ()g;:: afwi of (1) + 2 fvdVv;?m i, 1,0() z xS &VE (r)

@8y & 8 &
+ gél favasols () gél Viey iy P0 (1) + ,,m Z deV®2]0 (N5, "
fO}’ ] = 1""/]05,]:0;”12 = 1,...,]n.

_ eye ey 2 ) - . _
3.2.2. Second-Order Sensitivities ((9 L/as,anmz)(S:US’IM:N),] 1,...,05um=1,...,],
For this case, the parameters s; correspond to the I"-order (I > 1) scattering cross sections, denoted

g —&j
s/1j.ij
[ — N,»m2 My Since the I"-order (I > 1) scattering cross sections are not part of the total cross sections,
the expression of ((92L /Js j8nm2) (50 o i) is obtained by particularizing Equations (167), (168), (169)

and (171) in [5] to the PERP benchmark, which yields,

assj = o , and the parameters n,, correspond to the isotopic number densities, denoted as

G o
(55) =- % fav a0[oi (r, Y5 (r, Q) + 055 (r, Q)8 (1, )| 550
/772 (s=04 51,n=N) g=1 " " e

32>:§ (5,0 Q)
85]0an

G
+ Z Jav [, doypWs(r,q) ; [ 40 % (r, 0)

P C , , azgﬁgl 00
+ Zlfvdvﬁn’m@l,j) () ¥ [ d0y W (r, ) L 5020)
§= g

anmz

G G , , §'o8 5,0 —
+ L pdv i, 4003 (1, Q) X Jor A0 ¥ (1, ) ) (105)
=

anm2
*iLW&M@%eﬁ@L—zfm%w Y 0)
9=

Iy
A=) ]
Iy

] G , ,
+ X fav Lndnafj?'g(r,n) L [ @0 (08
o

G
+ ZlfvdVﬁm dnefj?'g(r,n)M forj=1,...,Jopuma=1,...,]u
o=

where the 2nd-level adjoint functions, 6(2]) and 6( )8 J=1...,]s151;8§ =1,...,G, are the solutions of
the 2nd-Level Adjoint Sensitivity System presented in Equatlons (46), (48), (51) and (52) of Part IT [2],
which have been reproduced, for convenience, in Equations (98)—(101). Inserting the results obtained in
Equations (47)—(52) and (103) into Equation (105), using the addition theorem for spherical harmonics
in one-dimensional geometry and performing the respective angular integrations yields the following
expression:



Energies 2020, 13, 2580 25 of 50

L _ o@8 (1).g 2 )
(asia”mz )(sfa,m n=N) Z fV dVUt iy Ln dﬂ[ (r Q)l}) (1’ Q) + 6 (7‘ Q)(pg(r 0)]

G ,
+074,, (20 +1) fvdvg, g’(r)(plv (r) + z z (20+1) f,aves (1) X o878 £ W& ()

1 s,l,zm2 1
ISCT G G G
o 788 g g o8 ()8 106
+gz1 lzo (21 +1) fvdve)zﬂ () 2: Sl () + Z v 7 O (r)gélxg &8 (1) (106)
G , ,
+ z fvdvxg@g 0 X v aiim o8 (1) + ; fvdVG S(NQS,
g=1 " 3 9= 2

for] =1....Jsp;m=1,...,]n.

3.3. Numerical Results for 9*L(x)/INIo

The second-order absolute sensitivities, 9°L( ) /INJos, of the leakage response with respect to the
isotopic number densities and the scattering cross sections for all isotopes of the PERP benchmark have
been computed using Equations (85) and (87), and have been independently verified by computing
the symmetric expression *L(x)/dosoN using Equations (104) and (106). For the PERP benchmark,
computing the second-order absolute sensitivities, d°L(x)/dNdos, using Equations (85) and (87)
requires 16 forward and adjoint PARTISN [9] computations to obtain all the required adjoint functions.
On the other hand, computing the alternative expression 9°L(«)/d0s0N using Equations (104) and
(106), requires 7101 forward and adjoint PARTISN [9] computations to obtain the needed second level
adjoint functions. As have been discussed in Part III [3], the reason for needing “only” 7101, rather
than 21,600, PARTISN [9] computations is that all of the up-scattering and some of the down-scattering
cross sections are zero for the PERP benchmark. Thus, computing ¢°L(ex) /dNJos using Equations
(85) and (87) is about 450 (~7101/16) times more efficient than computing ¢’L(«)/dcsdN by using
Equations (104) and (106).

The dimensions of the matrix 82L/8n]-85m2,j =1,....Juma=1,...,]Jss is Ju X Jos(= 6 X 21600),
where J;s = GXG X (ISCT+1) X1 = 30x30x4x6 = 21600. The matrix of 2nd-order relative

sensitivities corresponding to 82L/8nj&sm2,j =1,...,J;;m =1,...,]ss, denoted as S(Z)(Ni,m, gl;)g)l
is defined as follows:
, 2 N; og’—»g
s<2>(N,-,m,g§1;g) L OL — | =03 ik =1,...,6m =12 ¢,g=1,...,30. (107)
M oNa0t 8 L

To facilitate the presentation and interpretation of the numerical results, the [, X Jss(= 6 X 21600)

matrix S(z)(Nim, g ) has first been partitioned into 4 submatrices, namely, s )( ims Gfl:g; k)’

s,k

sl k) s,1=2k
I1=0,1=1,1=2,and ! = 3, respectively. Subsequently, each of the 4 submatrices is further partitioned
into I XxI = 6 X 6 smaller submatrices, each of dimensions 1 X (G-G) = 1x900. The results are
summarized in Sections 3.3.1-3.3.4, below.

(2)(sz, £-8 ) S(Z)(Ni,m, o8 ) and S(z)(Ni,m, Gf l:?)gk)’ corresponding to the scattering orders

3.3.1. Results for the Relative Sensitivities S(Z)(Ni,m, f l—)g; k)

Table 12 presents the summary of the results for the components of the matrix s (Nl s asg l_)(‘)g k)

(32L/<9Nz maﬁs, Ok)(N,',maf:ng/L), ik=1,...,6m=12; ¢,g=1,...,30, for the 2"d-order relative
sensitivities of the leakage response with respect to the isotopic number densities and the Oth-order
scattering cross sections for all isotopes. Among the ], X J;5—0 = 6 X 5400 = 32400 elements in

the matrix S(Z)(Nl m,ag S1=0 k) 8844 elements have positive values and 2142 elements have negative

values, while the remaining elements are zero. Most of these relative sensitivities are very small.

§'=8

$1=0 k) have relative sensitivities with absolute values

However, 15 elements in the matrix S(z)(Nilm,
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greater than 1.0, as shown in the shaded cells in Table 12. These 15 large values reside in the
28 ) The value of the largest element of each of

sub-matrices S(?) (Nm,of l:()gl) and S Nl,lrUS —06 )
the other sub-matrices is positive, involving the Oth-order self-scattering cross sections for the 12th
energy group of isotopes 2Pu, 24Py, ®Ga, 71G, and C, or (occasionally) the Oth-order out-scattering
cross section 051?:01122 6 for isotope IH. The overall largest value in the matrix S(z)(Nirm, of l:(‘)g k) is
2 1212 ) _

SNy, 012212 ) = 1912

Table 12. Summary presentation of the matrix s@ (N i af/l:g k)’ for 2nd-order relative sensitivities of

the leakage response with respect to the isotopic number densities and the Oth-order (I = 0) scattering

k=6
(©) (‘H)

Ny,
/. Nl 1,
g8 2 7
51=0,3 O1=05 |, s )( oS8 )
Max. value Max. value Max. value s1=0,6
—680x 107 =436x10° =870x10-1 . clements
, . , with absolute
§=128= §=12¢= g =128= values >1.0
12 12 12 ’
No1,
NZ,]/ N2,1/ Nzrl, S(2> /_> N2,1/
5(2)( &8 } S<2)( &8 s o878 5,1:5,4 s@ &8 @) Nz/l;
. s5,1=0,1 5,1=0,2 5,1=0,3 Max. value 5,1=0,5 Gg 8
2140: 2 Max. value Max. value Max. value Max. value Max Svrl:l?iﬁe
(Pu) - =202x1077 =223x1072 =774x107* _ 4 =989x1072 N0 T Y
, , , 496 x 10 , 1.78 x 10
g:12,g: g:lZ,g: g:lzlg: g':lzg: g:lz,g: g':16g:17
12 12 12 12' 12 ’
] (2)[ N3’1/ ] N3,1, ]

cross sections for all isotopes.
k=4 k=5

k=3
('Ga)

°Ga)
FEAREAR

k=1 k=2
*Pu) *pw)
N1,

Ny,
5(2)( ] s<2)( s

o878
. s,1=0,1 s,1=0,2
21392 1 8 elements Max. value
(*7Pu) with

=118 x 1071
absolute

g =12,g=
values >1.0

§—-8
s,1=0,4

12

9]

N3 1, N3 1,
J S(2>[ e

N3 1, N3 1,
)SQ)( 7og | S@ e et S<2)( B

5(2)( s
) Os1=01 95 1-02 5,1=0,3 5,1=0,4 Os1=05 o
29: 3 Max. value Max. value Max. value Max. value Max. value Max Sv/l:l(l)iée
(*"Ga) =682x107* =452x10"° =517x10"* =167x10"° =3.01x10"* i 4
; ; ; , ; =547 x 10
g =12,g= g =12,g= g =12,g= g=12,g= g =12,g= ¢ =16,g=17
12 12 12 12 12 !

Nypa, Nya, Nya, Nya, Nypa,
] s<z)[ s N ) sef N ) sef Nt ] gof M
5,1=0,3 s1=0,4 s1=0,5 g8 78
Max. value Max. value s1=0,6
177 % 104 Max. value
) =293 x107*

s<2>( pa
5,1=0,2
g=12/g= g/:16,g:17

Os1=0,1
i=4 Max. value Max. value Max. value
('Ga) =425x107% =282x10° =1.62x10"% =331x10"%
g=12g= g =13g= g=12g= g=12g=
13 12 12

9]

) (2)[ 1\;5/2_;& ) S(2>[ Z\E/E:g ] (2)[ Ns2, ] @) Nsp,
o o ' —
) 51=0,3 51=0,4 51=0,5 oS8
1= Max. value Max. value Max. value ~ Max. value Max 51110'6
© =170x 1070 =113x102 =652x10"* =419x10% =159x10"! ax. vaue
7 ’ ’ 2 ’ = 155 X 10
g=12,g= g=12,g= g=12,g= g=12,g= g=12,g= g’=16g=17
12 12 12 12 ’
] (2)( N6’2, N6,2, ]

12
N2, Ne2,
<z>[ : )Sa)[ oxr oz, ]
- - @) v
) s Ug 8

Ns o, N5,
S(Z)( Ug’-)g ] S(Z)[ Gg’—)g
5,1=0,1 5,1=0,2
Max. value

o878 o
5,1=0,3 5,1=0,5
Max. value Max. value Max Svfl?ii
=1.04x 1073 =148 x 107! : 1
, , =3.81x10
§=125= geizg= -5
12 12 g =16,g=17

s<2)( Nz ] s<2)[ Nz

. Os,1=0,1 O41=0,2

i=6 Max. value Max. value

('H) =272x10"1  =1.80x 1072
g'=12,g= g=12g=
12 12

s,1=0,4
Max. value
=6.68x107*
g'=12,g=
12

Additional information regarding the two submatrices in Table 12 that have elements with absolute

values greater than 1.0 is as follows:
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1. The submatrix S (N1,1/ 0;2,:51 ), g’,9=1,...,30, comprises the 2nd-order sensitivities of the
leakage response with respect to the isotopic number density and to the Oth-order scattering
cross sections of 23Pu. Table 13 presents the 8 relative sensitivities in this submatrix that have
values greater than 1.0. All of these sensitivities involve the Oth-order self-scattering cross
sections for energy groups ¢ = 7, ..., 14 of isotope *Pu. The largest value in this submatrix is
S(z)(N 11, 023:01/1311) = 1.912, which involves the Oth-order self-scattering cross sections for the
12th energy group of 2391’u

2. The submatrix S )(Nl 1,0 sl 0 e 6) g, g =1,...,30, comprising the 2nd-order sensitivities of

the leakage response with respect to the isotopic number density of 2>Pu and to the Oth-order
scattering cross sections of 1H, includes 7 elements that have values greater than 1.0, as listed in
Table 14. Most of these 7 relative sensitivities are with respect to the Oth-order in-scattering or
out-scattering cross sections. The largest value in this submatrix is S (2)(N1,1, 033:01,]2:1) = 1.585,
involving the Oth-order out-scattering cross sections for energy groups ¢’ = 16 = g =17 of

isotope 23Pu.

Table 13. Elements of S(2>(N1,1, a‘j’:g, k:l)’ g¢’,9=1,...,30 with absolute values greater than 1.0.

Growp 878 §-8 §-8 88 §-8 8§78 §-8 §-8
77 88 99 10510 11511 1212 1313 14-14
values 1461 1155 1206 1.147 1.036 1912 1.660 1235

Table 14. Elements of S(Z)(Nlll, oi;zg e 6)’ g¢’,g=1,...,30 with absolute values greater than 1.0.

Group §-8 §-8 §-8 §-8 §-8 §-8 §-8
12—13 13-14 14—15 14—16 15-16 16—16 16—>17
values 1386 1300 1.110 1.146 1430 1.289 1585

3.3.2. Results for the Relative Sensitivities S(z)(Ni,m, af:lg k)

Table 15 summarizes the results obtained for the elements of the matrix S(z)(Ni,m, f lﬁf k)

(82L/(9Ni,mao§:fk)(N1m fl%fk/L) ik=1,...,6;m =1,2; ¢,¢g =1,...,30, which comprises the
2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number
densities and the 1st-order scattering cross sections for all isotopes. Most of these 2nd-order
mixed sensitivities are zero, and the non-zero ones are mostly negative. Specifically, the matrix
S(z)(Ni,m, g SI1 k)' having dimensions J; X J55 =1 = 6 X 5400 = 32400, comprises 7772 elements with
negative values, 2764 elements with positive values, while the remaining elements are zero. Most
of the relative 2nd-order mixed relative sensitivities are very small. Only 8 components have large
relative sensitivities with absolute values greater than 1.0, as shown in the shaded sub-matrices
s )(Nl 1,0 g 8 ) and S )(Nl 1,00, lg 6) in Table 15. Also, in the submatrices which have all their
elements w1th absolute values less than 1.0, the value of the largest element of the respective submatrix
is negative and involves the 1st-order self-scattering cross sections for the 7th energy group of isotopes
239Py, 240Py, Ga and 7!Ga, or the 12th energy group of isotope C, or the 1st-order out-scattering cross

12—-13
s,1=1,k=6

S(z)(NM' 3_)1% 6) —1.386.

section o of isotope 'H. The overall most negative element in the matrix S(2>(Nl - o ol lg k) is
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Table 15. Summary presentation of the matrix s (N,-,m, af:f k)’ comprising the 2nd-order relative
sensitivities of the leakage response with respect to the isotopic number densities and the 1st-order

(I = 1) scattering cross sections for all isotopes.

k=1 k=2 k=3 k=4 k=5 k=6
*Pu) C*Pw) *Ga) ('Ga) © (‘H)
Nyi,
2
sof e fse e Jsef e )sel W )® (BT ()
, si=111 Is1=12 Gsl 13 951=14 ) Min. value asl 16
I 1 element Min. valué ~ Min. value ~ Min. value C _35]x 6 elements
(*7Pu) with = —6.96 X =-234 X =-142 % e with
absolute 1072 1073 10738 P12 = absolute
value >1.0 g':7/g:7 g':7,g:7 g':7/g:7 ) _12/g_ values >1.0
Ny,
2 >
s I\{zz:g s Ngzgg s N;L,g s 1\2214? st )[ of 7% ] o N2
g o o . s, =15 S g
s,1=1,1 sl 1,2 s,1=1,3 sl=14 Min. value o
2140_ 2 Min. value Min. value Min. value Min. value — 400 % Min 31:1}1/2
(***Pu) =-1.30 x =-1.32 x =—2.65x =-1.61x T ' 1
10_1 10_2 10_4 10_4 10 = —150 X 10
, , , , g =12,g= g =12,g=13
g=7,g=7 g=7lg=7 g=7,g=7 g=7,g=7 12
N3, N3z, N3,
5(2)( g’,—>g ] S<2)( g"—>g N3 1, N3 1, S(Z) g’,—>g N
O1=1,1 Os1=12 5@ o878 s o878 Os1=15 ) (2 ;'llg
i—3 Min. value  Min. value N si=13 N si=14 ) Min. value 01
1= Min. value Min. value N
(®Ga) =-342x =-214x - 177 % = _4.06 X =-122x Min. value
1074 107° 104 1077 1074 =-4.56 x 107
g:iilg: g:}%/g: g,=7’g=7 g'=7,g=7 g:}i,g: g:lZ,g:l?)
Napa, Ny, Ny, Ny,
g2 )( g ) g2 )( S8 s s ) N4L, s g’—>g N41,
Os1=11 s1=1,2 O51-13 o878 Os1=15 ) (2 g
i— 4 Min. value Min. value Min. value . Tsi=14 Min. value Os1=16
1= Min. value NI
('Ga) =-213x =-1.33 x =-440x — 107 =-723x% Min. value
104 1075 1077 e x 105 =268 x 107
g=12g= g=128= §g=12g= _,,_, §=12g= g=12g=13
12 12 12 ! 12
Ns»,
Nsp, Nsp, Ns», N5y, ) 2
ARG [ 52 ) o N
) Isi=1,1 Is1=12 Is1=13 %i=14 ) Min. value o878
i=5 Min. value Min. value Min. value Min. value - 624 % Min i;lazlhg
© =-1.12 x =—6.76 X =227 x =-1.38x b ' .
Z - - - 10 =-131x10
107! 1073 1074 107
, , , , g =12,g= g =12,g=13
g=7,g=7 g=7/g=7 g=7lg=7 g=7lg=7 12
N2,
2 o
s Moz | saf Nezro | s@f Nex | sef Moz, |8 )( o8 ] of No
o (o) g o . s,1=1,5 S ¢'>g
. s,1=1,1 s,1=1,2 s,1=1,3 sl=14 Min. value o
11: 6 Min. value Min. value Min. value Min. value = 573 % Min i}la:ﬁig
(‘H) =-1.77 x =-1.06 x =-3.57 x =-217 x T ' 1
10_1 10_2 10_4 10_4 10 = —319 X 10
, , , , g =12,g= g =12,g=13
g=7,g=7 g=7lg=7 g=7,g=7 g=7,g=7 12

Detailed information regarding the two submatrices in Table 15 comprising elements having
absolute values greater than 1.0 is as follows:

1.  The sensitivity matrix s(2 )(Nl 1,05 fl) g,e=1..,

30, comprising the 2nd-order mixed

sensitivities of the leakage response with respect to the isotopic number density and the 1st-order

scattering cross sections of 22Pu, includes only one element, namely 5(2)(N1,1, o

77

s,l:l,l) — —1.245,
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which has an absolute value greater than 1.0. This element involves the 1st-order self-scattering
cross section for the 7th energy group of 2°Pu.

88
s,I=1,6

of the leakage response with respect to the isotopic number density of 2?Pu and to the 1st-order
scattering cross sections of IH, includes 6 elements that have values greater than 1.0, as listed in
Table 16. These 6 large relative sensitivities involve the 1st-order self-scattering or out-scattering
cross sections for energy groups ¢/, ¢ = 12,...,16 of isotope 'H, respectively.

’

2. The sensitivity matrix 5(2)(N1,1, o ), g’,g=1,...,30, comprising the 2nd-order sensitivities

Table 16. Elements of S(z)(Nlll, a‘sg:f e 6)’ ¢’,g=1,...,30 with absolute values greater than 1.0.

Groups § -8 §-8 §-8 §-8 §-8 §-8
12512 12513 1313 13514 1516 1616
values ~1.103 ~1.327 ~1.014 ~1.162 ~1.027 ~1.210

3.3.3. Results for the Relative Sensitivities S(Z)(Ni,m, 05:5 k)

=2k s,1=2k
1,...,66m=1,2; ¢',g=1,...,30, comprising the 2nd-order mixed relative sensitivities of the leakage
response with respect to the isotopic number densities and the 2nd-order scattering cross sections for
all isotopes, are summarized in Table 17. All of the values in this matrix are smaller than 1.0. This
is expected for the 2nd-order sensitivities with respect to higher order scattering cross sections. Of

the Ji; X J5s51—=2 = 6 X 5400 = 32400 components of s (Ni,m, osg:lg k), 6164 elements are positive, 4426
elements are negative, and the remaining elements are zero. As shown in Table 17, most of the largest
absolute values in respective submatrices involve either the 2nd-order self-scattering cross sections
for the 7th energy group of isotopes 2Pu, 24Py, ®*Ga and ”'G and C, or the 12th energy group of

IH. Also, as shown in Table 17, the largest elements in the respective sub-matrix are all positive, and

The sensitivity results in the matrix s (Ni,m, osg,l_)g ) z (82L /0N, i,maag’ -8 )(Ni,maf:f v/ L), ik=

the vast majority of them are very small. The overall largest element in the matrix s (Ni,m, asg lzg ) is

2,k
2 12—12 _ -1
st )(N1,1,05,1:2/k16) =350x1071.
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Table 17. Summary presentation of the matrix s (N,-,m, g 12 k) for 2nd-order relative sensitivities of
the leakage response with respect to the isotopic number densmes and the 2nd-order (I = 2) scattering
cross sections for all isotopes.

k=1 k=2 k=3 k=4 k=5 k=6
(339Pu) (240py) ®Ga) ("1Pu) © H)
Nl 1 Ni1, Ni1, Ni1, Ny, Ny,
s(2 )( T8 ] 5(2)[ 7—g | s® T8 s(2) e s(2) S8 s2 S8
= 5,1=2,1 sl 2,2 s,1=2,3 s,1=2,4 s,1=2,5 sl 2,6
(239Pu) Max. value Max. value Max. value Max. value Max. value Max. value
=713%x1072 =407x107 =122x10"% =757x10" =948 x1072 =350 x 1071

g =7g=7 g =7g=7 g =7g=7 g =7g=7 g =7g=7 g=12,g=12

Na, N1, Nay, Naj, Na, Na,
s@{ a ]sm[ a )sm[ a )sm[ fa )sm( a ]sa{ i )

=2 sl 2,1 sl 2,2 sl 2,3 sl 2,4 sI 2,5 sl 2,6
(240Pu) Max. value Max. value Max. value Max. value Max. value Max. value
=743x107% =752x10"* =136x10"° =846x10"° =1.08x 1072 =4.02 x 1072
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g =12,g=12
sm(%ig]sw(%iq)sw[ﬁkg]sw[%zg]su(%zg]su(%:g)
. 15) S 0%, ¢ %) %) %)
i=3 s,1=2,1 s,1=2,2 s,1=2,3 s,l=24 5,1=2,5 5,1=2,6
(69Ga) Max. value Max. value Max. value Max. value Max. value Max. value
=134x10° =817x107 =893x10"° =152x10"% =260x10"° =124 x107*
g =7g=7 g =7g=7 g =7g=7 g =7g=7 g =7g=7 g=12,g=12
Ny, Ny, Nya, Ny, Nyp1, Ny1,
g{&ﬂ]y{ﬁﬁ s Nt Vsof Nt ) sof N ) sof N
1i=4 s,1=2,1 5,1=2,2 s,1=2,3 s1=24 s,1=2,5 s,1=2,6
(71Ga) Max. value Max. value Max. value Max. value Max. value Max. value
=750x107% =459x1077 =138x10% =554x10"° =151x10"° =758 x107°
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g =12,g=12
Nso, N5, Ns», Ns», Ns», N5,
y{gﬂ]y{gﬂ s N ) sef Mo ) sof N | sof N
i=5 sl 2,1 sl 2,2 sl 2,3 sl 2,4 sl 2,5 s] 2,6
©) Max. value Max. value Max. value Max. value Max. value Max. value
=570x10% =349x10* =105x10"° =650x10"° =1.60x 1072 =2.80 x 1072
g =7g=7 g =7g=7 g =7g=7 g =7g=7 g =7g=7 g =12,g=12
N2, Ne,2, Ng.2, Ne,2, N2, N2,
y{&ﬂ]g{gﬂ s Nz, )sof Moz ) sof Nz, ) sof Nz
1= 5,1=2,1 sl 2,2 s,1=2,3 s,1=24 s,1=2,5 sl 2,6
(1H) Max. value Max. value Max. value Max. value Max. value Max. value

=772x107% =472x10"* =142x10"° =879x107® =1.41x102 =6.98 x 1072
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g=12,g=12

3.3.4. Results for the Relative Sensitivities S(z)(Ni,m, Sg l—>§ k)

Table 18 reports the summary of the results for the 2nd-order mixed relative sensitivities

S(Z)(Ni,mr ffg’k) B (aZL/aNimaogf3 k)(Ni,magljgk/L),i,k — 1. 6m=12 ¢,¢=1,...,30, of

the leakage response with respect to the isotopic number densities and the 3rd-order scattering cross
sections for all isotopes of the PERP benchmark. Of the [, X J5 =3 = 6 X 5400 = 32400 components

of the matrix 5(2)(Ni/m, g l_)3g k) 5311 elements have negative values and 5183 elements have positive

values, while the remaining elements are zero. As in Table 17, most of the largest absolute values in
respective submatrices shown in Table 18 involve the 3"d-order self-scattering cross sections for the 7th
energy group of isotopes 2>?Pu, 24%Pu, ®*Ga and 7'G and C, or the 12th energy group of 'H. All of the

g—>g)

values presented in Table 18 are very small; the overall largest element in the matrix S(2>( im0 5k

is S2)(Ny1,012212) = —7.00x 102,
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Table 18. Summary presentation of the matrix s (N,-,m, af lz:f k)’ comprising the 2nd-order relative
sensitivities of the leakage response with respect to the isotopic number densities and the 3rd-order
(I = 3) scattering cross sections for all isotopes.

k=1 k=2 k=3 k=14 k=5 k=6
(339Pu) (240py) ®Ga) ("Ga) © H)
s )( NglL’g ] 5(2)[ I\;ll'g ) 5(2)[ I\(];/L'g ) 5(2)[ I\Ql’g ] 5(2)( I\;ll’g ] @) Nl 1
. Os1=3,1 Os1=32 Os1=33 Os1=34 O51=35 o8
2139_ 1 Min. value Min. value Min. value Min. value Min. value Min i/ Ial?l Z
(*7Pu) =-8.98 x =-5.43 x =-154x =-9.66 X =-238 x ' 5
105 1076 107 1078 102 = 70010

g§=7,8=7 g=7,g=7 g=7,g=7 g=7,g=7 g=lg=7 B 2871

Nay, Nas, Nas, Nas, Nas,
s<>( s ]s<>( N )s<>[ pa ]s<>[ o ]s<>[ o ]S<)( Ny, )

(o) [ o o —

. s1=3,1 s1=3.2 s1=33 s,]=34 s1=3,5 §'=8
21402 2 Min. value Min. value Min. value Min. value Min. value Min. i] lali %
(**'Pu) = —6.38 x =—4.90 x =-1.11x =-7.62 X =-2.72 % 807 x 10-%

-6 -7 -8 9 3 =-8.
10 10 10 10 10 o =125 =12

g,:7’g:7 g’:7’g:7 g':7,g:7 g,:6’g:6 g,:7’g:7

Na1,
s(2) - N3 1 N3 1 N3 1
s Mo ( o5 ) s ’[ B o R I O (O S I 2
. s 78 Max. value 51=33 s1=34 51=3,5 as 78
i=3 s1=3,1 Min. value ~ Max. value  Min. value A sl=36
(“Ga) Max. value = 575 % — 136 % — 636 x Min. value
=1.24x1078 =7.65x% i i 6 =-251%x107°
g =7g=7 10710 W 1 , 9 g=12,g=12
o'=7,g=7 g=6g=6 g=7g=7 g=7¢g=7
s Mok | s@f Nt | sof Nt | sof N | sof N, Ny,
o o o o o s S
) 51=31 51=32 51=33 51=34 51=35 oS8
171: 4 Min. value Min. value Min. value Min. value Min. value Min s,la:13,6
("'Ga) = -8.45 x = -520 % = —1.48 x = -361x =-369x  _ 5'8"X ;106_5
1070 10710 10711 107 107 Y1 e 1D
§=7,=7 g=7g=7 g=7g=7 g=6g=6 g=7g=7 5 787
Nsp,
Nsa, Nsp, N5z, N5z, s y Nsa,
s<>( N ]sw[ i )sw[ i )sw[ o2 J s, ) s T
i=5 5,1=3,1 s,1=3,2 s,1=3,3 s,1=3,4 Min. Value s,1=3,6
©) Max. value Max. value Max. value Max. value = 363 % Min. value
=6.63x107° =408x107 =116x10"% =727x10"7 ~ 10-3 =-415x1073
g =7g=7 g =7,8=7 g =7g=7 g =7g=7 ¢ =7,g=7 g =12,g=12
(2) N621 (2) N62/ (2) N62/ (2) N62/ S(z) I\Ig6£g () N62/
S -8 | S o8 | S gms | S o 0155 ) S| 4878
i1=6 sl 3,1 sl 3,2 sl 3,3 s,1=34 Min. value sl 3,6
('H) Max. value Max. value Max. value Max. value = 273% Min. value
=141x10° =865x107 =246x10"% =154x10"% ~ 1053 =-9.49 x 1073
g =7g=7 ¢g=7¢g=7 g=7¢g=7 g=7g=7 o =7,g=7 g =12,g=12

4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Isotopic Number Densities and Fission Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9L (ex) /INJIo  of the leakage response with respect to the isotopic number densities
and group-averaged fission microscopic cross sections of all isotopes of the PERP benchmark. Due to
symmetry, these 2nd-order mixed sensitivities can also be computed by using the alternative expression
82L(cx) /do faN. These two alternative paths are presented in Sections 4.1 and 4.2, respectively. The
numerical results for the 2nd-order mixed sensitivities 9’L(«)/dNdo + have been verified with the
results obtained for 9*L(ex)/do 79N, and are presented in Section 4.3.
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4.1. Computing the Second-Order Sensitivities 9°L(x) /INdo ¢

The equations needed for deriving the expressions of the 2nd-order sensitivities 9L (cx) /INJdo f
are obtained by particularizing Equations (158), (160), (167), (169), (177), (179), (204) and (206) in [5]
to the PERP benchmark. Specifically, using Equation (158) in [5] in conjunction with the relations

RL %ty 2L OLS(t) Oty ITE(1) PLE(t) O Oy PES(H) . :
8tj8tm2 3’?1‘ afmz - anjanZ/ atm_z afmz = afmz and 8tj8tm2 &”j 3fmz = —8nj8fm2 y1€1dS the fOHOWll’lg
eXpreSSIOrl:

1 G 2
L ) _ dav [l douw®sg I (t)
_PL_ _— 2(r, s (1,0
(a”fafmz (n=N,f=0y) g§1 Jy @V i 4005 Q)3 )a”fgfmz

& 2), 2), ISt (108)
—g§1 fav] dn[lpg,]? $(r, Q)8 (r, Q) + lpg,]? $(r, Q)8 (r, Q)]sz),

forjzlr'“/]n/ mZ:l""’]Uf'

The 2nd-level adjoint functions yb ] ¢ and 1#2] J=1...,]Jsr;§ =1,...,G in Equation (108) are
the solutions of the 2nd-LASS presented in Equations (11)— (14) In Equatlon (108), the parameters 7;
and f;;, correspond to the isotopic number densmes and microscopic fission cross sections, respectively,
and are denoted as 1j = Nj, ,; and Sy, = o3 f " , where the subscripts i,,, and g, refer to the isotope

and energy group associated w1th the parameter f,,,, respectively. Noting that

88 .
PrE) | Prs) { mZ]tZlNlm(G ot Z: Tsi= 0']]/%’7'"‘]'}
dnjd Smy S""z
fy Nijm; 90y, dopin (109)
8
{ [mzllleZmofl]/ 1] " } _ a{af'ij} = 6 ; 6
2 g,
s s
t m=1i=1 — 6, N 110
g fmz o0 gmz = Oy 8 Vimy My 1 ( )

and inserting the results obtained in Equations (109) and (110) into Equation (108) yields the following
expression for Equation (108):

(1)
aZ—L — 5 . (1)7 m m
(3"13me )(ﬂN,fJf) = “Oijiny Jy AV [y 4OV (1, Q) 872 (1, Q)

2 r& M 2 ,Im
Nisgtny Jy AV [ 00|97 (1, )9V (1, 0) + 937 (1, Q)72 1, )|
forj = 1,...,];1;7’7’12 - ]‘""/]Uf'

(111)

The contributions stemming from Equation (160) in [5] takes on the following particular form:

() G G | (ve )g/]
PL _ (2).g ’ o ’ [ f
(an.afmz )( N, f=o)) = gZ deVLn dﬂlp2 ’ (1’,0) Z L aQ (pg (7‘,0 )Xg—afmz
+ z fvdvﬁ1 Aoy 2>'g(, Q) [(afl Z L aqy x8 e (r, ),

for]—l,...,]n, mz—l,...,]af.

(112)
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Noting that

fonf)_ AL ENwbol] AE E Nt

m=1i=1 _ m=1i=1 g
afmz B o 8y o Jo 8y = 6gm2gsz2,mm2 imy” (113)
fl’”z fzm2

8[(1/Zf)gl] [ b Z sz(Vof) ] [ h Z N; mV; of1:|
_ _Lm= 1li=1 _ _Lm= li= -5 N
O fn, P aagmz §mp &' TN
f iy f Iy
and inserting the results obtained in Equations (113) and (114) into Equation (112) yields the following

expression for Equation (114):

(114)

g
iy s mmz i 2’

@ . )
2L _ gmz )gmz g (1), Sy < (2),8
(anjafmz )<n:N’f =or) B b dV[ b0 (r)gélx ot el )gélx &0 M) (115)
forj:l/"-/]n; m2:1,...,]0.f_
PL_ 9 Otmy PL I58 Ftmy

Using Equation (167) in [5] in conjunction with the relations 5-%7— Tty 915 oy — T3y and Ty T —

gfi yields the following expression:
le

®3)
L _ _ 174 O O)vWVE(r O (2).8 Moé(r. O Ixs8
(a”/afmz )(n Nf—af) Z fvd L a [ S ys(r,) 62/1 (r, Q)3 (r, Q) 9fmy

for j=1,...,Ju m2—1,...,]gf,

(116)

where the 2nd-level adjoint functions 6%2].)’3’ , and 652].)"53, i=1...,Jusg =1,...,G, are the solutions
of the 2nd-Level Adjoint Sensitivity System presented in Equations (19)—(22). Inserting the results
obtained in Equation (110) into Equation (116) yields the following relation:

®3)
L _ gl2)8n 1),2m (2).8m .
(T3 )y = Ny 8V i 40] 017571, Q05,00 465757, @) 1, )

for ]':1/'--/]11; myp :1""’]0'f'

(117)

The contributions stemming from Equation (169) in [5] to 9>L /dn jO fm, are obtained in the following
form:

T av [, 4003 (r,0 ACE)T] § p e 0 (v
(anjafmz )(n_N,f_af) gz fV V‘L; (1’ ) 9fimy Z LT( X ll} (1" )

G N (- (118)
+g§1 fav |, dnegi?'g (r,Q)gél [ 40 ¥ (1,0 )Xg[aTz]’

forjzll--'/]n;mz:1,...,]Gf,

Inserting Equations (113) and (114) into Equation (118) yields the following expression for
Equation (118):

(4) G G
2L o L8 (2),8m, ¢ (1)8 8y ¢e(2)8
( e )(n:N,f:gf) Niy i, Vi f, dV|©) 0 (r)gélx % (r) + @ (r )g§1X 9,0 (M}

forj=1,.... Juimy =1,..., ).

(119)
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Further contributions stem from Equation (177) in [5] in conjunction with the relations

_PL 9wy L 958 Otmy 58
8fjatm2 Qn] afmz - anlgfmz an atmz afmz f , as fOllOWS

)
_PL - 2).8 (1).g (2)8 g ]azfs
O I ZLWLM% 0y 80,0 + S s |,
for j=1,..., ]y my= 1/"'/]0]'/
where the 2nd-level adjoint functions u(Z) ,and u( )8 ,j=1,...,Jug=1,...,G, are the solutions of

Lj
the 2nd-Level Adjoint Sensitivity System comprising Equatlons (27) (30). Replacmg the result obtained

in Equation (110) into Equation (120) yields the following relation:

(5)
L _ (2).8m 1),9m (2).8m "
(aﬂfafmz )(n=N,f=Gf) = ~Nisym Jy 4V fin dn[uw (r @)y (1, 0) + i (r, Qs (r,Q)],

for j=1,....Jn; my=1,..., ]

(121)

Contributions stemming from Equation (179) in [5] to J*L/ onjdfm, are given by the
following relation:

(6) G G 32[(1/2 )?’]
_*L - (1).8 08 AV 3l A A
(an,-afmz)(n_N,f_gf) gglfvdv Jiz 4 WE(r, Q) Z f 4O 8 (r, Q) xS~
G
2. I (v=p)°] , ,
+g§ fvdvﬁ;n‘m”l,]‘ (r, Q) =57 Z L dQ XglP & (1, Q) (122)
, , N (DK
+2 fvdVLndQu )3(rn f dQY o8 (r, Q) x8 [8f—m]
for ]—1,...,]n,m2—1,...,]af,
where
g 4 ¥y P 4
2 2 - g g
Aemy] Aer] MEEtmon] i)
anjafmz B aNij:m,vangfz B do 8y N Jdo gy T Thjtmg gng’vimz‘

f/lmz flmz flmz

Inserting the results obtained in Equations (113), (114) and (123) into Equation (122) yields the
following expression for Equation (122):

®) .
L gmz Sy g (1).8
(an]-c?fmz )(W_N,f_af) 61]lm2 im fV dV(P ( ) ggl X 50 (7’)
m (2 m G ’ 1 , ’ m 2 , 124
‘Wwwfﬁﬁﬂ%ﬁ“kﬁﬁ%”m+&%>zw®jm 124

for j=1,..Jumr=1,..., ]

Additional contributions stemming from the sources are computed by particularizing Equations
(204) and (206) in [5] to the PERP benchmark. The expression obtained by particularizing Equation (204)

in [5], in conjunction with the relations aqa;tL gjé g}mz = an?;} and agég(t) gj,’"Z = ag}—q(t) yields:
n12 n12 n12 n12 n12
(_«92L )(7) :_z Jy v [, d0g ) (1, 0)p 08 (1, 0) ZEY,
;0 fm, (n=N,f=0y) g=17V AT o fmy (125)

for j=1,...,]u mzfl,...,]af,
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where the 2nd-level adjoint functions gg ]) €, j=1,...,Ju; §=1,...,G,are the solutions of the 2nd-LASS

presented previously in Equations (35) and (36). Inserting the result obtained in Equation (110) into
Equation (125) yields the following result:

(Qz—L)m = Ny, oy AV [ 808,772 (1, Q) p V2 (1, 2),
‘9”j‘9fmz (n:N,f:af) mo /My JV ATt 1,j

fOT' ]:1//]}1/ mzzl,...,](jf,

(126)

Finally, using Equation (206) in [5] to the PERP benchmark yields the following contributions:

oL ®) (v):. )
(‘9”(1?;[1;"12 )(n_N,f—cff) - gz fV dVLn dﬂglz) g(r Q)% Z Lﬂ a0 X I’b ( )

for j=1,....Jn; ma=1,...,Jsf.

(127)

Using the result obtained in Equation (113) into Equation (127) yields the following expression for
Equation (127):

(8) G /
%L ) — N g’”z AvaG (2).8m, e (1),g
(aﬂjafmz (n:N,f:O'f) Imz mmz im fV 1 ] 0 ( )gél X 50 (r)/ (128)
for j=1,..., ]y, my= 1/-~~/]af-

Collecting the partial contributions obtained in Equations (111), (115), (117), (119), (121), (124),
(126) and (128), yields the following result:

( 2L ) Z( 2L )“
MOfmy )(n=N,f=0) i 1 M0 ) (n=N,f=ay)
~Oisiy AV Jir d(w V8 (1, Q) @S2 (r, €2)
m 2 7& M
~Nipy i, fy AV [, dO0 ¢11 P9 (1, Q) Dism (1, 2) + " (1, Q)i (r,Q)]

G . G
+N1mz My f:z fv av E5,]');(38,"12 ") gél X 5(()1), (r) + (Pg *(r) Z ngfj?,_g(r)]
[ 2 &M m
Nivyinsg fy AV fin @001 (r, Q)0 (1, ) + 0, 5, ) Q)|

m 2),8m § 4 7 m
i V|01 (1) 20 &S0+ o0 >gz X0 (r >]

P (129)
[ (2),8m m
Nipy i, 8V [, d0[u) (1,0 Q)10 g (1, Q)8 1, )|
G
F04, Vi Jy Vg™ (1) Py xeegV3 ()

m ( m; G 4 ’ / m
N §2fvdv[u G 0L e )+ () z XUy (r >]

(2>, "
~Niy iy Jy @V [, 408 .g 2(r, Q) pVm (1, )

m ) m: G 4 1,’ .
+Niyy 1ty lglszdVGljog 2(r )gél)(g éé)g(r), for j=1,...Jn; may=1,..., ]

4.2. Alternative Path: Computing the Second-Order Sensitivities 9*L(ex)/ dodN

Due to symmetry of the mixed 2nd-order sensitivities, the results computed using the expression
for ’L(ax) /INdo ¢ obtained in Equation (129) can be verified by obtaining and using the expressions for
PL(x)/do #ON. The equations needed for deriving the expression of the 2nd-order mixed sensitivities
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’L(x)/do #ON are obtained by particularizing Equations (158), (159), (160), (162), (177), (178), (179)
and (181) in [5] to the PERP benchmark, which yields the following relation:

_PL - _ PEE(Y)
(aﬁanmz)(f_gf’n_m = Z fV&lVﬁ1 dQyp M8 (r, )8 (r, ) 55

_ El deVLn dn[wl,i’ ( )[l;(l)g(r 0) +1P Z)g(r Q)(Pg(r Q)]82,8(t)
g=

My

G G , ’ , P {Z—’g 50— ,
+g§1 fV dVﬁln dﬂlpg,z],)’g(r, Q) gél Ln a0 ll)(l),g (T’,Q )M

3”ln12

G G 8'=8 .y
(2)g ’ o IS T8 (5,00 - Q)
+ g§1 JydV [ a0, 4 (r, ) g; Jin Q@8 (r, Q) =5 =

=1
c G , o (vep)¥ (8)
n Z fvdv [ d(w(z?'g(r,n) lgl [, 48 (r,ﬂ’)xg—[ a,fmz |

(vzp)i] & , o , ,
. z v faogl 0 >%g§1fmﬂ YOS (1, 00)

, Q8 (q;r,
+ z Jpav [, d0ui)8 (r, 0) 22 00

) (130)
- Z fvdvﬁmdn[ 28 (r, )9 (r, Q) +u, ( ) S(r, Q)8 (r, Q)]azfg(t)

Iy,

Moy

, G ’ N -8 (5050
+ z Jyav [, d0u8(r, 0) g’zlﬁmdw DE (7, ) 2 5020)

G I ’
- 2 foav [ dou?8(,0) ¥ [ doves (r, )2 5020)
g

,J g=1 i 8nm2

G , 2|z
+ 21 [, v [, doypMs(r,0) 21 i, QY @ (1, V)& —m— e
8= g'=

G a| (v 8 G ’ ’
+ L v i, 40 (1, 00) (6] L Jin 2y ()
8= §'=

8711712
G G 3| (ves)¥
2), ) o , f
+ L Jydv [, 4028 (r, 0) L [, 408 (1,0 )xﬁ—[ — ]
8= &=

G
2), 208 (q;r,Q2 .
+g§1fvdvﬁndnu;}g(nn)%, fori=1,...Jopm=1,..,]u
In Equation (130), the adjoint functions 1/1 $ and ¢2 ;] = 1,...,]Gf,'g =1,...,G are the

solutions of the 2nd-Level Adjoint Sensitivity Systern presented in Equations (33), (35), (39) and (40) of
Part III [3], which are reproduced below for convenient reference:

Bg(oco)ng,zj)'g(r,ﬂ) = —0g;gNi,m;@3(r.Q),j=1,.... Jor; § =1,...,G, (131)
(2)/8(1, 0)=0,0-n<0;j=1 Io9=1 G (132)

284 ) = 0, ii=1. g =1....G,
(1)’g(a°)¢§?'g(r,0) = _68j8Nijrmj'1b(l)/g(er)/j =L Jepig=1....G (133)
W% (r,0) = 0,00 >0,/ =1, Jopi g =1,...,G. (134)

Furthermore, the 2nd-level adjoint functions, uﬁ) and u( ]) J=1,...,]s 8= =1,...,G, which
appear in Equation (130) are the solutions of the 2nd-Level Ad]omt Sen51t1V1ty System presented in

Equations (19), (21), (29) and (30) of Part III [3], which are reproduced below for convenient reference:

Bg(a")uﬁ?'g(r,n) =N, m]vl oS, j=1,.,Jeig=1,...,G, (135)
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(1, 0) =0,0 0 <0;j=1,....Jop; g=1,..,G, (136)
G
ADS(o )" Q) = 0Ny m, i Y eV =1 depg =1,..,G, (137)
g:l
uf]?'g(rd,n)zo,n-n>o;j:1,...,]Uf;g:1,...,c. (138)

In Equation (130), the parameters f; and n,,, correspond to the fission cross sections and the
isotopic number densities, denoted as f] =%

fij

and 1y, = Nj,, m,,, respectively. The following results

will be used in subsequent derivations:

o T % Ny of +of+ Z alc /90"
azztg( ) _ 322,5 ( ) o m=1i=1 fr’]
df;0 & - ON-
f] My 80/ BN,mZ mmz iy iy (139)
N; /90’ } .
{ mzlt; lma ] G _ a(égjgNlj,mj) — 5
3N,mZ Mty aN,-memz l]'lm2 g]g/
4 g M 965 ,
2 2 ‘ o
? |(vzf) ] I [(sz) ] [ [mzhlelmv ‘ ]/ ’ ] a((Sg/glle’mfvij) Sii O 4 (140)
- j = = = 0j otV
afj&nmz 86?1‘ aanlzrmmz aNinrzlmnxz aNinxerHmz titma 7818 tmy
]

Inserting the results obtained in Equations (47)—(52), (139) and (140) into Equation (130) and
performing the respective angular integrations yields the following expression for Equation (130):

PL )
(af/‘%‘mz )(f:cf,n:N) "mzf dV.[L dﬂ¢ g,(,,’ )(Pgl(r’ﬂ)
G
_ Z fvdvﬁ; dn[lplzmg r,Q)lp(l)rg(r,Q)+1p22.’g(r,ﬂ)(pg(r,0)]dg
G ISC G ISCT G
+ B D@ favelio) §oSE g w0 £ @, dVééi?rgm L oSt el ()
tz 11=0 g'=1 g=1 1=0 g=1 2
+ Z deVngz “0( ) /Z, fmz f’fm (pO + Z‘ deV ilzailm 552]0( ) Z Xg (( & (7‘)
sl £ v, - £ fvdvﬁﬂdn[ S, (s, m+ 2 s r ) |of, (141)
— G —
+ zl Izo (21+1) fvdvu§ 8 (r) ¥ aflﬁ £V (1) + 21 zo (21+1) deVLI D3y Y o fllm‘i(pf()
; = - =
G G
i Vi, Jo AV (1) £ xS VR + Z fvdVVl,,f?,m Uz ; PSS &% (n)
8= &=
G
+ Z fvdVXquzjo (r) ; an,z fz,,, 2 (r) Z deVUZ]O( )Qsmmz

forjfl,...,]gf,mz =1,...,Jn-

4.3. Numerical Results for 9*L(x) /INdo ¢

The second-order absolute sensitivities, 9°L(cx) /INJo r, of the leakage response with respect to the
isotopic number densities and the fission cross sections for all isotopes of the PERP benchmark have been
computed using Equation (129) and have been independently verified by computing 9*L(cx) /do N
using Equation (141). For the PERP benchmark, computing the second-order absolute sensitivities,
P L(«)/INIdo #, using Equation (129) requires 16 forward and adjoint PARTISN computations to
obtain all the adjoint functions required in Equation (129). On the other hand, computing the
alternative expression 9°L () /do fON using Equation (141), requires 120 forward and adjoint PARTISN
computations to obtain the needed second level adjoint functions required in Equation (141). Thus,
computing ¢’L(«)/INdo ¢ using Equation (129) is about 8 (~ 120/16) times more efficient than
computing 9°L(a) /9o (dN by using Equation (141).
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The matrix 82L/8n]-(9fm2,]' =1,...,Ju;mz =1,..., ], has dimensions ], X ]af(: 6 X 60), where
Jof = GX Ny = 30x%2, and where Ny = 2 denotes the total number of fissionable isotopes in the
PERP benchmark. The matrix of 2nd-order relative sensitivities corresponding to 9°L/dn;dfu,, j =

Lo Jume=1,..., ], s denoted as S(z)(Ni/m,o]g( k) and is defined as follows:

2 Ni/mOg
s(2>(N- oL L Lem=12k=12¢=1,..30.  (142)

1,ms gik) = L U
’ ON; m&afk

Table 19 summarizes the results for the matrix S(? (N Py af; k)’ i=1,...,

6;km=1,2, ¢=1,...,30,
which comprises the 2nd-order relative sensitivities of the leakage response with respect to the isotopic

number densities and the fission cross sections, for all isotopes. To facilitate the presentation of the
numerical results, the [, X ], (= 6 x 60) matrix S(z)( im0, k) has been partitioned into [, X N¢(= 6 x2)
submatrices, each of dimensions 1 X G = 1 x 30. The computational results are as follows: (i) all 360

elements of the matrix S(?) (Ni,m, o ) have positive values, and (ii) of the 360 elements, 21 elements

fk
have very large relative sensitivities, with absolute values greater than 1.0, as shown in shaded cells in
the table. All of these large sensitivities involve the fission cross sections of 2>Pu and most of them

relate to the isotopic number densities of 2>Pu or 'H. Of the sensitivities summarized in Table 19,

the single largest relative value is S 2 )(N 11,07 1) = 11.735. The results in Table 19 also indicate that,

when the 2nd-order mixed relative sensitivities 52 )(N s ) involve the isotopic number densities of

i,mrs fk

isotopes ®?Ga and 7'Ga or the microscopic fission cross sections of isotope 24°Pu, their absolute values
are all smaller than 1.0. The element with the largest value in the respective submatrix is related to the
microscopic fission cross sections for the 12th energy group of isotopes 2>Pu and 4°Pu.

Table 19. Summary presentation of the matrix s(2) (Ni,m/ af;k), i= L6 km=1,2,¢=1,...,30

k=1 k=2
*rw (*pw)
2 g
1 S@(Ny1,0% ) SN, 08,
(2Py) 12 elements with Max. value = 5.62 x 1071
absolute values >1.0 atg=12
. s >(N , )
i=2 S(2)(N2,1,0§ 1)1 element with 219, )
240 _ -
(*Pu) absolute value >1.0 Max. value =112 x 10
atg=12
52 >(N31 ) 52 >(N31 )
i=3 9fa T2
(9Ga) Max. value = 4.72 x 1073 Max. value = 2.44 x 10~*
atg=12 atg=12
i—4 S (Nus,f 5 (Nyy08,)
('Ga) Max. value = 2.98 x 1073 Max. value = 1.54 x 104
atg=12 atg=12
. s >(N , )
i=5 S(z)(N5 2,0 fl)l element with 529, 5
© absolute value >1.0 Max. value = 6.13 x 10
atg=12
s 2 >( )
1‘: (N62/ fl) S N62/ f2
(H) 7 elements with Max. value = 9.73 x 102

absolute values >1.0

atg=12
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4.3.1. Second-Order Relative Sensitivities S(?) (N1 1,0 7, 1) =1,...,30

The submatrix S(z)(N 11,0 7, 1) =1,...,30, comprises the 2nd_grder sensitivities of the leakage

response with respect to the isotopic number density and the fission cross sections of 22°Pu. The 12
elements of this matrix which have values greater than 1.0 are presented in bold in Table 20. These
12 large 2nd-order mixed relative sensitivities involve the fission cross sections of isotope 2**Pu for
the energy groups ¢ = 6,...,16 and g = 30, respectively. The element having the largest value in this

submatrix is $© >(N1 1,0 fl) = 11.735.

Table 20. Second-Order Relative Sensitivities S(? >(N1 1,0} 1) =1,...,30.
8 Relative Sensitivities g Relative Sensitivities
1 0.005 16 2.654
2 0.011 17 0.979
3 0.032 18 0.536
4 0.144 19 0.443
5 0.683 20 0.424
6 1.735 21 0.380
7 7.787 22 0.335
8 6.470 23 0.286
9 7.761 24 0.267
10 8.073 25 0.228
11 7.521 26 0.212
12 11.735 27 0.194
13 8.197 28 0.115
14 5.313 29 0.154
15 3.007 30 1.467

4.3.2. Second-Order Relative Sensitivities S2 )(N2 1,0 fl) g=1,...,30

The submatrix $(2 )(Nz 1,0y 1) g =1,...,30, comprising the 2nd-order sensitivities of the leakage

response with respect to the isotopic number density of isotope 2 (*4°Pu) and the fission cross sections
of isotope 1 (3*°Pu), contains a single large element that has an absolute value greater than 1.0, which is

=12
s<2>(N2,1,aJ%,1 ) = 1.290.
4.3.3. Second-Order Relative Sensitivities S2 )(N5 2,05 1) g=1,...,30

The submatrix S() (N5 5,0 1 ), g= ., 30, for the 2nd-order sensitivities of the leakage response

with respect to the isotopic number den51ty of isotope 5 (C) and the fission cross sections of isotope
1 (*®Pu), also contains a single large element that has an absolute value greater than 1.0, namely,

s >(N52, o ):1.184.

4.3.4. Second-Order Relative Sensitivities S2 )(N6 5,0 fl) g=1,...,30

The submatrix $(2 )(N6 2,0 1) g =1,...,30, comprising the 2nd-order sensitivities of the leakage

response with respect to the isotopic number density of isotope 6 (*H) and the fission cross sections of
isotope 1 (3°Pu), includes 7 elements that have values greater than 1.0, as listed in Table 21. These 7
relative sensitivities are concentrated in the energy groups ¢ = 7,. .., 13 of the fission cross sections for
isotope 2Pu.
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Table 21. Elements of S >(N6 5,0 ¥, 1) g =1,...,30 with absolute values greater than 1.0.

Group g§=7 g=8 g=9 g=10 g=1 g=12 g=13
values 1.279 1.061 1.266 1.312 1.217 1.879 1.294

5. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Isotopic Number Densities and Average Number of
Neutrons per Fission

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9°L () /INJv of the leakage response with respect to the isotopic number densities
and the average number of neutrons per fission of all isotopes of the PERP benchmark. These 2nd-order
mixed sensitivities can also be computed using the alternative expression 9°L(«)/dvoN. These two
alternative paths are presented in Sections 5.1 and 5.2, respectively.

5.1. Computing the Second-Order Sensitivities d*L () /INIv

The equations needed for deriving the expressions of the 2nd-order sensitivities 9°L(cx) /INIv
are obtained by particularizing Equations (160), (169), (179) and (206) in [5] to the PERP benchmark.
Specifically, Equation (160) in [5] takes on the following particular form for the PERP benchmark:

M G c R [C>hh
(anfélfm)( v = L fav [, ngbgz.)’g(r,Q) X L A0/ 8 (1, Q0 )xg—[ o |
n=N,j=v g=
e v [aow@8e o) § o aan e wne g0
+g§l fV LT( lpl,j (V, ) I fy Z‘ Ln lli (1’ )

forj:]v"-l]n; m2:]0f+1/-"/laf+]1//

(143)

where the 2nd-level adjoint functions 4} ] € and yl)z gJ=1...] 8= 1,...,G are the solutions of the
2nd-Level Adjoint Sensitivity System presented previously in Equations (11)—(14). In Equation (143),

the parameters 7; correspond to the isotopic number densities, denoted as n; = Nj;,;, and the
parameters fu,, m2 = Jof +1,..., Jof + J, denoted as fi, = v"2, correspond to the respective
my

f
parameter for average number of neutrons per fission in the vector v = [ Jlog+10---2 17, f+]v] =

+
vilzl,viz:l,...,viczl,...,vf,...,v}:Nf,...,v?:Nf] ,fori= 1,...,Np ¢g= 1,...,G ], = Gfo, as shown

in PartI [1] and Appendix A. Noting that

foeyf] AL BN AE BNt

m=1i=1 m=1i=1

&
= = = ; . 144
9 fm, v (lgmz 51/;%2 6gm2gsz2,mm2 Of Ay (144)
my my

8[(v2f)g,] [ Z Z Nlm(Vof) ] [ Z Z N1 mV Of 1:|

_ _Lm= 1i=1 _ _Lm= 1i= -5 N Gg' (145)

s o avf"’z a8’ v s fing!
my my

and inserting the results obtained in Equations (144) and (145) into Equation (143), yields the following
expression for Equation (143):

(1) G ,
2L gm & ¢ (18 o (2)8
(9"/%2 )(n=N,f= ) = Ny, W dv[glf )L T 0 F et ) é K& (1)

fOl’jZl,...,]n; m2:]af+1/~~/]af+]v~

(146)
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The contributions stemming from Equation (169) in [5] to d°L/dn;0 f,u, are:

(2) G (9[(1/2 )g] G ’ ’
il _ (), f , , ’
(an],afcmz) — ; ﬂ/dngln dQGl,] g(T,Q)W Z L dQ Xg lp(l)g (1’,0 )

(n=N,f=v)
ahvzf> ] (147)

+ z v [, mez} (r,Q) z f 40 o8 (r, O )Sr—,

for]_]-/--'/]n/ mz _]Uf+1l'”r]0f+]1/r

where the 2nd-level adjoint functions 6< )8 ,and 6( )8 =18 ., G, are the solutions of
the 2nd-Level Adjoint Sensitivity System presented in Equatlons (19)- (22) Insertmg Equations (144)
and (145) into Equation (147), yields the following expression for Equation (147):

2 G , G
LI Sm ) Sm 4 (1),3 8Sm (2)/3
(B gy = N5, Jy V|01 ) 2 5 ””VMQ”%W%

fOszl,...,]n; mZ:]Uf—‘rl,...,]gf—f—]v.

(148)

The contributions stemming from Equation (179) in [5] to 9°L/dn j0fm, are given by the following
expression:

(3) ) » (sz)g’
(‘9”(/?‘29/%1«2 )(n:N,f Z fV dVL A0y (r, ) Z L aqy o8’ (r, Q )Xg%

" El fV av Ln dQ”Lj), (n Q) =r. = a[(VZf Z Ln dQ/Xg Y& (r, Q)
o=

G o 3 (vep)¥
+ zlfvdvﬁm dnuf]?'g(r,n) Zlﬁm dQY ¢f (r, )xg—[ o ]
8= 8=

fOT’jZl,...,]n,‘ m2:]0f+1l"'1]0f+]1/l

(149)

where the 2nd-level adjoint functions ugz.)’g ,and u§2j),g ,j=1,...,Jug=1,...,G, are the solutions of

the 2nd-Level Adjoint Sensitivity Systeﬂl presented in Equations (27)—(30). Note that the following
relations hold:

g g g8
i e O A e N e AP
IMjofus N S n" = o Vil Oy, (150)

7

l,,,z lmz 1"’2

Inserting the results obtained in Equations (144), (145) and (150) into Equation (149), yields the
following expression for Equation (149):

3) G

_PL gmz Smy g (1).g

(aﬂjafmz )(n:N f: ) 61]1"’2 f im fV dV(p ( ) ggl X ‘SO (T)
G , .

+Nl"’2 oMy ?"1’2 fv dVl: )’gmz ) gé1 X8 ét()l), (r) + (Pg 2(r )gz Ué ])0 (|

forj=1,....Jw; ma=Jor+1.... Jor+]v.

(151)

Additional contributions stemming from the sources are computed by particularizing
Equation (206) in [5] to the PERP benchmark, which yields the following expression:

(=N, f=v)
forj: 1,...,]n; My —]Jf+1,...,]of+fv,

2 (4) v):
(8'1?8—?2) 7g§ Jo v fi d0g7; 'g(m)[(aTL L Ln‘m Ky (r ) (152)
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where the 2nd-level adjoint functions ggzj) €, j=1,...,Ju; §=1,...,G,are the solutions of the 2nd-LASS

presented previously in Equations (35) and (36). Inserting the results obtained in Equations (144) into
Equation (152) yields the following expression for Equation (152):

’

(4) G
%L _ gmz (2),:8my ' d (1)
(Qn]‘&fmz )(n:N,f:v) - Nlmzfmn12 frimy fV dVGl ,j;0 ( )gél X 50 (1’),

fOT’jIl,...,]n; mZ:]Gf+1,...,]gf+]v.

(153)

Collecting the partial contributions obtained in Equations (146), (148), (151) and (153), yields the
following result:

(88 )~ .
Mifny ) ey, fmv) i0fny ) e, )

m m G (1), m 2),,
= Niyg iy 052 fvdv[éljf (1) g; & () + 9 (r )gzlx%;j{[f(r)

+N1n12 My ;’731 fV dv[ 1, 0‘27”2 ( ) Z Xg/ (e ( ) + (Pgmz( ) qél Xg@é?j??aq(r) (154)
. §
01, 012y AV (1) Py ngo 5(r)

G G
8m ),gm S (2).8
+N, Iy My fI:Z fV [ 1,70 2 /{‘1 X‘g 50 ( ) + Po 2 ( ) gél Xguz’].;o (T’)

g
G
8m: 8 .
+N1m2mm2 fz:, fvdVG1]0 2 (r) Z Xg (T),for]:l,...,]n; m2:]0f+l/~~~/]0f+]1/'

I'd

5.2. Alternative Path: Computing the Second-Order Sensitivities 9°L( o) /dvON

Due to symmetry of the mixed 2nd-order sensitivities, the results to be computed using the
expressions for 9°L( o) /dNJv obtained in Equation (154) can be verified by obtaining and using the
expressions for d?L(«)/dvIN. The equations needed for deriving the expression of the 2nd-order
mixed sensitivities 9”L( ) /dvIN are obtained by particularizing Equations (177), (178), (179) and (181)
in [5] to the PERP benchmark, which yields:

G
L _ )8 (1), (2 ),g ]8& (t)
(afjanmz )(f:v,n:N) g§1 fvdvﬁm dQ[uLj (r, Q)Y L& (r, Q) + iy (r, Q) @8 (r, Q)

My

G G
@) D8 (r ) Y (5:0007)
+g§1 JydV [ a0 (r,n)g,z:1 [ d Q¢ (r, ) P00
(9Z§I_>g(s;0’—>0)
.

70z

G G )
+ 21 [, av [, doyp®s(r,q) 21 [, Y 08 (1, Q')XgW (155)
8= g

G G ,
+L fav [ daufj)'g (rQ) ¥ [, d0es (r,Q)
g=

’—

+ El fV dvﬁm dﬂ”f]?'g(r,n)a[(vzf)g] Z f dQ’)(g l/) (1),¢ (1, Q')
g=

8711712

S oF N (D
+ 21 fv de;m dﬂuz,j (r,Q) Zlﬁm aqy 8 (r, Q) )Xg—an,,,z
8= §'=

G , 23 (qr, .
+ L fydV [ 0, )R, for j = Jog 1, Jog + Joima =1y T,
g=

where the 2nd-level adjoint functions, ugzj) and u( )8 J=1...]s n8= 1,...,G, are the solutions of
the 2nd-Level Adjoint Sensitivity System presented in Equatlons (116), (118), (124) and (125) of Part

III [3], which are reproduced below for convenient reference:

Bg(cxo)ugi?fg (r,Q) = Nij,mjaji{l.jxggogf (1), j=TJor+ L Jog +Jvig=1,...,G, (156)
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g,])’g(rd,ﬂ):O,Q-n<O;j:]0f+1,...,]of+]1,; ¢=1,...,G, (157)
G Do
ADS(a)u (]>’g(r Q) = 6g,6Nijm 0" fl Y 0, = Jor + 1 Jop + g =1,...,G, (158)
g:1
ufj)'g(rd,n):o,Q-n>o,-j:J(,f+1,...,]af+]v;g:1,...,G. (159)

In Equation (155), the parameters f; and n,, correspond to the average number of neutrons per

respectively. The

.. . . ey _ .8 _ )
fission and the isotopic number densities, denoted as f; = Vi and 1, = Niy, iy, s

following relations hold:

¢ ¢ g
] o] HEE A o)
- ‘ = = i O/ 0. .
9fj9Mm, 3V;'gj]<9N 1 aNimzrmmz aszz,mnzz Vitma “818 f iy

Iy My

Inserting the results obtained in Equations (47)—(52) and (160) into Equation (155) and performing
the respective angular integrations yields the following expression for Equation (155):

Lin

G
2 _ (2), , 2 )
((;f/arjfm )(f =) = - Z f\/ av Ln dﬂ[ul ] g(i’, 0)4)(1) g(r, Q) + ll (1’ Q)(pg(i’ Q)]
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+ 2 Favisulsm) ¥ of (r) Z Javuls( )Q
v 2j0 ") 2= Ving f,,,,z(/’o % 2,j0 SFiny ’
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5.3. Numerical Results for 9*L(cx) /INv

The second-order absolute sensitivities, 9°L()/dNdv, of the leakage response with respect to
the isotopic number densities and the average number of neutrons per fission for all isotopes of the
PERP benchmark have been computed using Equation (154) and have been independently verified by
computing 9%L(e) /dvIN using Equation (161). Computing the second-order absolute sensitivities
d’L(a)/INJv using Equation (154) requires 16 forward and adjoint PARTISN computations to obtain
all of the required 2nd-level adjoint functions. On the other hand, computing the alternative expression
d’L(«)/dvoN using Equation (161) requires 60 forward and adjoint PARTISN computations to obtain
the second-level adjoint functions required in Equation (161). Thus, computing 9°L(«)/dINJv using
Equation (154) is about 4 times more efficient than computing 9*L () /dvoN by using Equation (161).

The matrix BZL/anjafmz,j =1....Jwmy = Jor +1,..., ] + ]y has dimensions J, X Jv(= 6%
60), where J, = GXN = 30 x 2. The matrix of 2nd-order relative sensitivities corresponding to
&ZL/anjBfmz,j =1L... Jumr = Jor+1,.... Jsr+Jv,is denoted as S(z)(Ni,m,vf) and is defined as
follows:

. L (N i,ng
) 5|

IN; S| L k]’ i=1,...,66m=12%k=12¢=1,...,30. (162)
i,m Vk

Table 22 summarizes the results obtained for the elements of the matrix S(2>(N,-,m, vf ), i =
.,6kkm=1,2, ¢=1,...,30, for the 2nd-order relative sensitivities of the leakage response with
respect to the isotopic number densities and the average number of neutrons per fission for all isotopes.
To facilitate the presentation of the numerical results, the ], X J, (= 6 x 60) matrix s (N i vf ) has been
partitioned into J; X N¢(= 6 X 2) submatrices, each of dimensions 1 X G = 1 X 30. The computational

results have shown that the majority (358 out of 360) of the elements in the matrix S(z)( ims O, k) have
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positive values; only 2 elements have very small negative values, of the order of 107* and less. As
shown in shaded cells in Table 22, 34 among the 360 components of S(Z)(Ni,m,vf ) have very large
relative sensitivities, with absolute values greater than 1.0. All of these large sensitivities involve the
average number of neutrons per fission of isotope 2> Pu and relate to the isotopic number densities of

isotopes 2?Pu, 24°Pu, C or 'H, respectively. The overall largest relative value in the matrix s (N,',m, vf )

is S (Nu,v%z) = 16.06. The computed results have also shown that the 2nd_order mixed relative
sensitivities S(z)(Ni/m,vf ) involving the isotopic number densities of isotopes “’Ga and "'Ga or the

average number of neutrons per fission of 24°Pu have absolute values smaller than 1.0; the element
with the largest value in the respective submatrix is related to the average number of neutrons per
fission for the 12th energy group of isotopes 2*Pu and 4°Pu.

Table 22. Summary presentation of the matrix S(2>(Ni,m,vf), i=1,...,6; km=1,2,¢g=1,...,30.

k=1
*°Puw)

k=2
(***pu)

SN vE)

SPI(N11,v,)

i=1 1
(339Py) 13 elements with Max. value = 7.72 x 107!
absolute values >1.0 atg =12
i—2 S@(N2p, ) SB(Na1, vy
(240py) 6 elements with Max. value = 1.55 x 107!
absolute values >1.0 atg =12
i=3 s<2)(N3,1/ V§=1) S(Z) (N3,1,Vf=2)
69 Max. value = 6.52 x 1073 Max. value = 3.39 x 1074
(*Ga)
atg=12 atg=12
SN ()
71 Max. value = 4.11 x 1073 Max. value = 2.14 x 104
(" Ga)
atg=12 atg=12
2 (2 3
i=5 S@)(Ns2, v _,) SB(Nsa,vi_,)
©) 6 elements with Max. value = 8.52 x 1072
absolute values >1.0 atg =12
2 2 g
i=6 s )(Néﬂ'vfz;) st )(N6r2’vk=2)
('H) 9 elements with Max. value = 1.35 x 107!

absolute values >1.0

atg=12

5.3.1. Second-Order Relative Sensitivities $(2) (Nu,vf:l), g=1...,30

The submatrix S(Z)<N1,1, vle), g =1,...,30 comprises the 2nd-order sensitivities of the leakage
response with respect to the isotopic number density and the average number of neutrons per fission
of 2°Pu. Table 23 presents the 13 elements of this submatrix that have values greater than 1.0; these
large 2nd-order mixed relative sensitivities are concentrated in energy groups g = 6,...,17 of the
average number of neutrons per fission of isotope 2>Pu. The largest value in this submatrix is

S@)(Ny1,v1?) = 16.06.

Table 23. Elements of 8(2)(N1,1,v]§:1), g =1,...,30, having absolute values greater than 1.0.

Group g=6 7 8 9 10 11 12 13 14 15 16 17 30
values 2267 10.10 8.675 1053 11.07 10.34 16.06 1130 7458 4330 3987 1535 5217

5.3.2. Second-Order Relative Sensitivities S(2) (Nz,lr vle), g=1,...,30

The submatrix S(?) (Nz,l, vle), g =1,...,30, comprising the 2nd-order sensitivities of the leakage

response with respect to the isotopic number density of isotope 2 (>4°Pu) and the average number of
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neutrons per fission of isotope 1 (***Pu), contains 6 large elements that have values greater than 1.0, as
listed in Table 24.

Table 24. Elements of S<2)(N2,1, vle), g =1,...,30 with absolute values greater than 1.0.

Group g§=7 g=9 g=10 g=1 g=12 g=13
values 1.107 1.162 1.221 1.142 1.772 1.248

5.3.3. Second-Order Relative Sensitivities S(2) (N5,2,v§:l), g=1,...,30

The submatrix S (N 52, Gf; 1), g =1,...,30 comprises the 2nd-order sensitivities of the leakage
response with respect to the isotopic number density of isotope C and the average number of neutrons
per fission of isotope 2>Pu. Table 25 presents the 6 elements of this submatrix which have values

greater than 1.0.

Table 25. Elements of S<2)(N 52, vle), g =1,...,30 with absolute values greater than 1.0.

Group g§=7 g§=9 g=10 g=1 g=12 g=13
values 1.016 1.083 1.135 1.056 1.638 1.159

5.3.4. Second-Order Relative Sensitivities S(2) (N6’2,V§:1), g=1,...,30

The submatrix $(?) (N6,2, vle), ¢ =1,...,30, comprising the 2"4-order sensitivities of the leakage
response with respect to the isotopic number density of H and to the average number of neutrons
per fission of isotope 23?Pu, includes 9 elements that have values greater than 1.0, as listed in Table 26.
These 9 relative sensitivities are concentrated in the energy groups ¢ = 7,...,14 and g = 30 of the
average number of neutrons per fission of isotope 2**Pu.

Table 26. Elements of S<2)(N6,2, vle), g =1,...,30 with absolute values greater than 1.0.

Group g§=7 g=8 g=9 g=10 g=11 g=12 g=13 g=14 g=30
values 1.660 1.424 1.723 1.809 1.687 2.605 1.815 1.188 1.930

6. Discussion and Conclusions

The following conclusions can be drawn from the results for the mixed 2nd-order sensitivities
*L(x)/INdoy, *L(x)/INIos, I°L(x) /dNdo s and J?L(x) /INIv reported in this work:

The 2nd-order mixed sensitivities 9°L(«) /INJdo; are mostly negative. Almost all, namely 1072
out of the J, X J5+(= 1080) elements in the matrix S(z)(Ni/m,afk), ik=1,...,6, m=12¢=1,...,30
of 2nd-order mixed sensitivities have negative values; only 8 elements have very small positive values
(e.g., in the order of 10~ or less). Among the 1080 elements in the matrix, 125 elements have very large
relative sensitivities, with absolute values greater than 1.0. Majority of those large sensitivities involve
the isotopic number densities of isotopes 2 Pu or 'H (namely, Ny ; and Ng ) and/or the microscopic
total cross sections of isotopes 239py or 1H (namely, afl and of 6). In the matrix S (Ni,m,a‘f/ k) , the

single largest relative value is S @) (N 1,1, af’%) = —94.91. Moreover, the element with the most negative
value in each of the submatrices mostly involves the microscopic total cross sections for the 12th energy
group or the 30th energy group (i.e., otli, k=1,...,40r 022, k =5, 6) of the respective isotopes.

The 2nd-order mixed relative sensitivities corresponding to the J, X J5s = 6 X 21600-dimensional
matrix d°L(a)/INJo; are generally very small, with a few exceptions. Specifically, 25 of the ], x

Jos = 6 X 21600 elements have relative sensitivities with absolute values greater than 1.0. These 25

large elements belong to the submatrices S(z)(NM, Gf:g 1 ), s@ (Nm, af:ég 6), s® (N1,1/ Gf:lg 1) and
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S(Z)(N 11 Gf:f 6)’ respectively, and involve the isotopic number density N ;1 of 2Pu and the Oth-order

or 1st-order scattering cross sections (namely, afl:g 1 oi;:(‘i e of;:f =1’ afl:f’k: 6) of 2°Pu or 1H.
These large sensitivities are positive when involving even-order (I = 0,2) scattering cross sections but
are negative when involving odd-order (I = 1, 3) scattering cross sections. Furthermore, the larger the
Legendre expansion order (I =0, ...,3), the smaller the absolute values of the corresponding mixed
2nd-order relative sensitivities. Noteworthy for the 2nd-order mixed sensitivities 9°L( ) /INJo is
also the observation that for the scattering order /| = 0, most of the largest absolute values of the
respective submatrix occur at the Oth-order self-scattering cross sections for the 12th energy group
for isotopes 2Py, 24°Pu, ®Ga, 7'Ga and C (i.e., 0513:01,%, k=1,...,5), or the Oth-order out-scattering
cross section between energy groups ¢’ = 12 — ¢ = 13 of isotope 'H (namely, 633:012). On the other
hand, when the scattering order | = 1,2,3, these large sensitivities mostly involve the I™-order
self-scattering cross sections for the 7th energy group of isotopes 2*Pu, 24Py, °Ga, "!Ga and C
Z;;Z,l =1,2,3,k=1,...,5), or 12th energy group of isotope 'H (namely, 0513;:15,1 =1,2,3).
The overall largest 2nd-order mixed relative sensitivity involving an isotopic number density and a

scattering cross section is S (2)(NL1, 03:0%:1) =1.912.

(namely, 0

All values of the 2nd-order mixed relative sensitivities S(Z)(Ni,m,ajgr k)’ i=1,...,6,k,m =
1,2; ¢=1,...,30 corresponding to the J, X ]af(: 6 % 60) elements of the matrix BzL(cx)/3N8Gf are

positive. The matrix S(Z)(Ni,m, o? k) comprises 21 elements which have values greater than 1.0. Most

of these elements belong to the submatrices s@ (N 1,1, ajf 1) and S (N6,2, o? 1), involving the fission

cross sections of 2>Pu and the isotopic number densities of 2>?Pu or 'H. The 2nd-order mixed relative
sensitivities involving the isotopic number densities of 240py, 9°Ga, "'Ga and C (i.e., N 21,N31,N41,N52)

or the microscopic fission cross sections o? 8= 1,...,30 of 220Py are generally smaller than 1.0. The
largest element of the matrix S(z)(Ni,m, Oi’f) is S (2)(N1,1, a}i) = 11.735.

The majority of the elements belonging to the J, X J,(= 6 x 60)-dimensional matrix
S(Z)(Ni,m,vf), i=1,...,6km =12, ¢ = 1,...,30, of 2nd-order mixed relative sensitivities

corresponding to the matrix 9°L( o) /dNdv have positive values. The matrix s (Ni,m, vf ) comprises
34 elements that have relative sensitivities greater than 1.0. These large sensitivities occur in the
submatrices S(z)(NM,vf:l), S(z)(Nzll,vle), S(Z)(Ng;,z,vf:l) and S (N6’2,‘V§:1), which involve the
average number of neutrons per fission of isotope 2**Pu (i.e., vle) and the isotopic number densities of
isotopes 239Py, 240Py, C or 'H (i.e., N1,1,N2,1,N52, Ne2), respectively. The remaining 2nd_order mixed

relative sensitivities in the matrix S(Z)(Ni,m,vf ) are all smaller than 1.0. The largest values among

these smaller sensitivities involve the average number of neutrons per fission, viz, k = 1,2, for the 12th
energy group of 2°Pu and 24°Pu. The overall largest 2nd-order mixed relative sensitivities comprised
in the matrix s(2>(Ni,m,vf) is 5(2) (Nl,l,v%z) = 16.06.

Subsequent work will report the values and analyze the effects of the 1st-order and unmixed
2nd-order sensitivities of the PERP’s leakage response with respect to the imprecisely known isotopic
number densities [13], and the 1st-order sensitivities of the leakage response with respect to the
imprecisely known fission spectrum parameters [13]. The overall impact of 1st- and 2nd-order
sensitivities on the response uncertainties will also be highlighted [13].
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Appendix A. Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage
response with respect to the model parameters, denoted as S («), was defined as follows:

N IL(x) . IL(x) . JL(x) _ JL(«x) . JL(«x) . JL(x) . JL(x) f

M) (g) &
S 2 | o 0, do; " o9v ' “op ' dq ' oN (A1)

The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters, denoted as s (a), was defined as follows:

[ PL(x) . . . . .
90‘,}80}
L) L) . . . . .
Jdosdo; 005005

PL(a)  PL(ax) P L(x)
30‘f¢90‘t 80‘fz90'5 80‘f90'f
) R ?L( o) ’L( ) PL(x) L) . . .
S () =| 9vior vdes dvdo;  vov : (A2)
PL(a)  PL(x) PL(a)  PL(a) PL(x)
dpdo dpdos dpdoy dpdv Jdpdp
L) L) PL(ax) L) ?L(x) ?L(x)

dqdo dqdos Jdqdoy dqdv dqdp dqdq

PL(x) PL(x) PL(a)  PL(x) PL(x) PL(x) PL(x)
INdo dNdos JINdo ¢ INTZAY JdNdp dNdq JINON

* * *

* *

As defined in Equation (1), the vector o = [O't 105, 0F,V;,P;q; N]Jr denotes the “vector of imprecisely
known model parameters”, with vector-components o}, o5, o VP q and N, comprising the various
model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections,
average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which
have been described in Part I [1]. For easy referencing, the definitions of these model parameters will
be recalled in the remainder of this Appendix A.

The total cross section Zf for energy group g, ¢ =1,...,G, is computed for the PERP benchmark
using the following expression:

M=2 I 1 G
8 _ § . v8 _ .8 158 g §—¢’ _
2= ) B T = Y Niwoh, = ) Niglo$ 405+ ) o878 | m=1.2, (A3)
m=1 i i g'=1

8
f

group microscopic fission and neutron capture cross sections for group g, ¢ = 1, ..., G. Other nuclear
reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section
Zf - Ztg (t) will depend on the vector of parameters t, which is defined as follows:

where m denotes the materials in the PERP benchmark; o ; and of ; denote, respectively, the tabulated

t= [tlw--/t]tr = [t1,...,t]gt;n1,...,n],lr 2 [ouN]Y, Ji = Jot + s (A4)

where .
N = [711,.--,”]”] 2 [N1,1,N2,1,N31, N1, Ns o, Neal', = 6, (A5)

t t
S a1 2 G 8 1 G
o = [tl,...,t]gt] = [ot,izl’gt,izl"'"at,izl""’at,i"'"ot,i:I""’at,i:I] ,

(A6)
i=1,..1=6g=1..G=30;Js=IxG.
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In Equations (A4) through (A6), the dagger denotes “transposition,” af ; denotes the microscopic
total cross section for isotope i and energy group g, N;,, denotes the respective isotopic number density,
and J,; denotes the total number of isotopic number densities in the model. Thus, the vector t comprises
atotal of J; = Jst + J» = 30 X 6 4+ 6 = 186 imprecisely known “model parameters” as its components.

The scattering transfer cross section Zf,_)g (Q/ - Q) from energy group g¢’, ¢’ =1,...,G into
energy group §, § = 1,...,G, is computed using the finite Legendre polynomial expansion of order
ISCT =3:

=80 - )= A:;: =850 - ),

el s =6 ISCT=3 . ) (A7)
50 - 0)=2 TNy £ (24165 80 Q), m=1,2,
i1 =0 s,li

where asg l?g denotes the I-th order Legendre-expanded microscopic scattering cross section from
energy group g’ into energy group g for isotope i. In view of Equation (A7), the scattering cross

section ng,%g (Q' - Q) - ng,_)g (s; Q - Q) depends on the vector of parameters s, which is defined
as follows:

t t +
A A . A . _
sz [sl,...,s]s] 2 [sl,...,shs,nl,...,n}n] £ [os; N, Js = Jos + Jn, (A8)
N ta [ g=1-g=1 g¢'=2-g=1 §=Gog=1 g¢'=1-g¢=2 ¢ =2-g=2 -9 GG
o551, Sjos] = [Gs,lzo,izl 105 1=0i=1 7"/ 9s1=0i=1 *s)=0i=1 *Ts)=0i=1 1"’ s i /“'f“sECT,z‘:I] ’ ( A9)

for 1=0,..., ISCT; i=1,..., L 99 =1...,G Joss=(GXG)xIx(ISCT +1).

The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., I = 0) scattering
cross sections must be considered separately from the higher order (i.e., I > 1) scattering cross sections,
since the former contribute to the total cross sections, while the latter do not. Therefore, the total number
of zeroth-order scattering cross section comprise in o, is denoted as ] j—o, where [, -0 = G X G X I;
and the total number of higher order (i.e., | > 1) scattering cross sections comprised in o5 is denoted as
Jos>1, Where [ 151 = G X G XIXISCT, with J551=0 + J5s1>1 = Jos. Thus, the vector s comprises a total
of Jos + Jn = 30%x30x 6 X (3+1) + 6 = 21606 imprecisely known components (“model parameters”).

The transport code PARTISN [9] computes the quantity (VZ f)g using directly the quantities (va)?i,

which are provided in data files for each isotope 7, and energy group g, as follows

=2
(ves)* Z vEe) s (veg) ZNlmvaf (A10)

m=

=

In view of Equation (A10), the quantity (VZ f) - (VZ f) (f;r) depends on the vector of parameters
f, which is defined as follows:

A + A 1-
£2[firoos flogi Frogtroes Blogiti g fiy| 2 [0pviN] Jp=Jop + 140w, (AID)
where

a1 2 G g 1 G s *
of= [Gf,izl’gf,izl""’Gf,izl""’af,i"'"Gf,i:Nf""’Gf,i:Nf] = [fl,...,fjgf] , (A12)
i=1,...,N5g=1,..,GJss = GXNy,

+
a |1 2 G 8 1
v = [vizl,vizl,...,vizl,...,vi,...,vi:Nf,..., rl Nf] [f}uf+1, . /f]‘,fﬂv] ’ (A13)
i= 1,...,Nf,' g= 1,...,G,']V = GXNf,
8

and where ¢%, . denotes the microscopic fission cross section for isotope i and energy group g, vf denotes

fi

the average number of neutrons per fission for isotope i and energy group g, and Ny denotes the
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total number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity vlg , can
be obtained by using the relation V?i = (va)?i / a?i, where the isotopic fission cross sections o Fi
available in data files for computing reaction rates.

The quantity x¢ in Equation (3) quantifies the material fission spectrum in energy group g, and is

defined in PARTISN [9] as follows:

are

/e G ¢ o
LN X (vor); S

(var)t £

’

G
g 2 ; g _
X N, c , with Z‘ xX; =1, (A14)
Z N, im §=1
i=1 ¢=1
where the quantity )(f" denotes the isotopic fission spectrum in energy group g, while the quantity fl.g

denotes the corresponding spectrum weighting function.
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